
UNIVERSIDAD DE ALCALÁ
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Resumen

En las últimas décadas, el tráfico, debido al aumento de su volumen y al consiguiente
incremento en la demanda de infraestructuras de transporte, se ha convertido en un gran
problema en ciudades de casi todo el mundo. Constituye un fenómeno social, económico
y medioambiental en el que se encuentra inmersa toda la sociedad, por lo que resulta
importante tomarlo como un aspecto clave a mejorar. En esta ĺınea, y para garantizar
una movilidad segura, fluida y sostenible, es importante analizar el comportamiento e
interacción de los veh́ıculos y peatones en diferentes escenarios. Hasta el momento, esta
tarea se ha llevado a cabo de forma limitada por operarios en los centros de control de
tráfico. Sin embargo, el avance de la tecnoloǵıa, sugiere una evolución en la metodoloǵıa
hacia sistemas automáticos de monitorización y control.

Este trabajo se inscribe en el marco de los Sistemas Inteligentes de Transporte
(ITS), concretamente en el ámbito de la monitorización para la detección y predicción
de incidencias (accidentes, maniobras peligrosas, colapsos, etc.) en zonas cŕıticas de
infraestructuras de tráfico, como rotondas o intersecciones. Para ello se propone el
enfoque de la visión artificial, con el objetivo de diseñar un sistema sensor compuesto de
una cámara, capaz de medir de forma robusta parámetros correspondientes a peatones y
veh́ıculos que proporcionen información a un futuro sistema de detección de incidencias,
control de tráfico, etc.

El problema general de la visión artificial en este tipo de aplicaciones, y que es donde
se hace hincapié en la solución propuesta, es la adaptabilidad del algoritmo a cualquier
condición externa. De esta forma, cambios en la iluminación o en la meteoroloǵıa,
inestabilidades debido a viento o vibraciones, oclusiones, etc. son compensadas. Además
el funcionamiento es independiente de la posición de la cámara, con la posibilidad de
utilizar modelos con pan-tilt-zoom variable para aumentar la versatilidad del sistema.

Una de las aportaciones de esta tesis es la extracción y uso de puntos de fuga (a partir
de elementos estructurados de la escena), para obtener una calibración de la cámara
sin conocimiento previo. Esta calibración proporciona un tamaño aproximado de los
objetos buscados, mejorando aśı el rendimiento de las siguientes etapas del algoritmo.
Para segmentar la imagen se realiza una extracción de los objetos móviles a partir
del modelado del fondo, basándose en mezcla de Gaussianas (GMM) y métodos de
detección de sombras. En cuanto al seguimiento de los objetos segmentados, se desecha
la idea tradicional de considerarlos un conjunto. Para ello se extraen caracteŕısticas cuya
evolución es analizada para conseguir finalmente una agrupación óptima que sea capaz
de solventar oclusiones.

El sistema ha sido probado en condiciones de tráfico real sin ningún conocimiento
previo de la escena, con resultados bastante satisfactorios que muestran la viabilidad del
método.
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Abstract

In recent decades, traffic has become a great problem in most of the cities around the
world, due to the increment of the number of vehicles and the transport infrastructures
demand. It represents a social, economical and environmental phenomenon which
involves all the society. Therefore it is crucial to consider it as a key area to improve.
Along these lines, and to guarantee a safe, fluid and sustainable mobility, it is important
to analyse the behaviour and interaction of vehicles and pedestrians in different scenarios.
Not long ago this task was performed only by human operators at traffic control centres.
However, the advances in technology, suggest an evolution in the methodology towards
the automation of the surveillance and control.

The presented work describes a target detection system on transport infrastructures,
for applications in the framework of Intelligent Transportation Systems (ITS). Particu-
larly as a monitoring system to detect and predict incidents (traffic accidents, danger-
ous manoeuvres, traffic jams, etc.) on critical areas of transportation infrastructures,
like intersections or roundabouts. To achieve this objective, a monocular vision-based
approach with hierarchical camera auto-calibration is proposed. It is able to measure
parameters of vehicles and pedestrians, as an input of a future incident detection system,
traffic control system, etc.

The common problem of computer vision in this kind of applications, and where the
proposed solution puts special emphasis, is the adaptability of the algorithm to external
conditions. Accordingly, illumination or weather changes, occlusions, instabilities due
to wind or vibrations, etc. are compensated. Furthermore the algorithm is independent
of the position of the camera, and it is able to work with variable pan-tilt-zoom cameras
in fully self-adaptive mode.

One of the contributions of this thesis is the extraction and use of vanishing points,
through structured elements of the image, to obtain an automatic calibration of the
camera without any prior knowledge. This calibration provides an approximate size of
the searched targets, improving the performance of the detection steps. To segment the
image, a background subtraction method, based on Gaussian Mixture Models (GMM),
image stabilization and shadow detection algorithms, is used. Finally about tracking,
the traditional idea of considering objects as a whole is rejected. Instead, characteristic
target features are extracted and analysed to achieve an optimal clustering which deals
with occlusions.

In the document, the results obtained in real traffic conditions are presented and
discussed, without any prior knowledge of the scene or the camera.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, traffic has become a great problem around the world, due to
the increment of the number of vehicles and the transport infrastructures demand. It
represents a social, economical and environmental phenomenon which involves all the
society. To make the governments aware of its seriousness, the European Commission
devoted the year 2011 in their annual White Paper to report about the importance to
improve and build a competitive transport system1. They assume that new technologies
for vehicles and traffic management will be key to achieve the goal: “The race for
sustainable mobility is global. Delayed action and timid introduction of new technologies
could condemn the EU transport industry to irreversible decline. Overall, transport
infrastructure investments have a positive impact on economic growth, create wealth
and jobs, and enhance trade, geographical accessibility and the mobility of people”.

Along these lines, and to guarantee a safe, fluid and sustainable mobility, it is
important to analyse the behaviour and interaction of vehicles and pedestrians in
different scenarios. Not long ago this task was performed only by human operators at
traffic control centers, like the center shown in Figure 1.1. However, it is demonstrated
that the level of attention and the human accuracy of incident detection decreases over
time, and it is becoming a harder task because of the increment in the number of
surveillance cameras, transport infrastructures and vehicles. The advances in technology,
suggest an evolution in the methodology towards the automation of the surveillance and
control.

The associated technologies which could be automated can vary from basic
management systems, such as traffic signal control, variable message signs or
infrastructure-to-vehicle communication; to monitoring applications, such as automatic
incident detection (accidents, wrong way vehicles, stopped vehicles on the road, etc.),
vehicle counting, congestion detection, plate number recognition, speed cameras or even
tunnel surveillance or security CCTV systems.

In the framework of Intelligent Transportation Systems (ITS), there are several
existing technologies to address some of these issues. On the one hand, intrusive
systems like inductive loop detectors (ILDs), radar and laser. ILDs have been used

1European Commission White paper 2011. Roadmap to a Single European Transport Area - Towards
a competitive and resource efficient transport system.
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26 Introduction

Figure 1.1: Example of traffic control center.

extensively, providing good detection and classification results. However they have
significant drawbacks: (i) their use involves the excavation of the road to place the
sensing devices, (ii) they are installed per lane so vehicles travelling between lanes are
miss-detected, and (iii) they cannot manage well traffic congestions. Technologies based
on time-of-flight sensors can deliver similar counting and classifying results, but as well
they have important drawbacks: Radar has high error on horizontal resolution and it is
extremely complex to interpret, and Laser is more expensive and does not work under
certain weather conditions. Moreover the emission of radiation of both systems must
not be forgotten.

On the other hand, computer vision analysis systems have become popular in
transport management due to their capability to extract very rich information on road
traffic (shape, texture, color), track a variable number of targets and classify them.
Considering that and adding a lower price, no intrusion and easier installation and
maintenance, video processing seems to be the best alternative to the technologies cited
before; to detect and track vehicles and pedestrians for traffic flow estimation, signal
timing, safety applications or video surveillance. Furthermore, there are many cameras
already installed on the roadside, particularly at intersections and roundabouts, so part
of the installation work is already done.

In order to extend the surveillance area and overcome occlusions, there is a possibility
of using multiple cameras in the same infrastructure. However, the higher price and
complexity of the installation, the computational cost, etc. make the monocular system
the best solution; cheap, versatile and flexible.

1.2 Visual surveillance of transportation infrastructures

Recently, a lot of research has been carried out on systems to detect and track
vehicle and pedestrians using vision from traffic infrastructures. Nevertheless very few
address the problems of complex urban environments, the adaptability to every external
condition or the chance to vary the position, angle or zoom of the camera in order to
make the system as versatile as possible (“plug&play”).
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As the traffic applications often use fixed cameras, most of the related work is based
on the background subtraction algorithm. The idea is to subtract the current image
from a reference image, which is a representation of the scene background, to find the
foreground objects. The technique has been used for years in many vision systems as
a preprocessing step, and the results obtained are fairly good. However the algorithm
is susceptible to several problems such as sudden illumination changes, cast shadows,
camera shake or image noise; which often cause serious errors due to misclassification of
moving objects. Moreover, the size of the foreground targets is very dependent of the
position of the camera. In the next subsections, the specific challenges related that have
to be solved to get a complete application are summarized.

1.2.1 Position of the camera

Before starting to program a computer vision algorithm, one of the first questions
to make is related to the size of the searched targets. The fact is how far the camera
from the objects is, because the size depends on the distance. In case of surveillance
applications, the position of the camera is totally random, and it is different from one
infrastructure to another. Therefore, as the goal is to develop a “plug&play” system, the
approximate dimensions of the objects are needed.

Camera calibration reveals fundamental to estimate 3D sizes of the targets and
makes object detection and tracking more robust to noise and occlusions, and adaptable
to every camera location possible. In particular auto-calibration methods seem to be
the most suitable way to recover camera parameters for these types of autonomous
applications. Since most surveillance systems make use of one single camera, auto-
calibration can be only achieved from inherent structures of the scene or structured
object motion.

Figure 1.2 shows two traffic surveillance images. The sizes of the searched objects in
each system are completely different. Furthermore, due to camera perspective, objects
have different sizes depending on its position in the image, and occlusions affect in a
different way.

Figure 1.2: Different traffic scenes and searched objects sizes.

1.2.2 Pan-tilt-zoom specifications

In recent years, Pan-tilt-zoom (PTZ) cameras have been widely used for monitoring
and surveillance applications. These cameras provide a full coverage for a given area
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due to the chance to zoom and modify the viewing angles, making the systems robust
and flexible. The problem of using PTZ cameras for image processing applications, and
in particular in the one presented in this thesis, is the continuous change of scene. The
challenge is to detect camera motion and zoom, to adapt the parameters computed for
background subtraction and calibration.

One of the main advantages of the auto-calibration method developed lies in the
possibility to change the position and parameters of the camera without manual
supervision of the system process.

1.2.3 Object (cast) shadows and illumination changes

Generally, most foreground segmentation methods are sensitive to illumination
conditions. Accordingly, cast shadows (occlusion of light sources by foreground objects)
and illumination changes due to meteorology, are detectable as foreground since they
typically differ from the background. Moreover, shadows are connected to and have the
same motion as the objects casting them.

There are several problems associated to these effects: the segmented area can be
bigger than expected and merge different objects into one, the shape of the targets
can be distorted, new erroneous objects can appear, etc. giving rise to an inaccurate
detection and a low tracking performance. For all these reasons, a reliable and accurate
method to identify illumination changes is required.

Figure 1.3 depicts examples of shadows and illumination changes which make
foreground segmentation more difficult to analyse or invalid.

(a) (b)

(c) (d)

Figure 1.3: Background subtraction problems due to cast shadows (a)-(b), and a
sudden illumination change (c)-(d).
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1.2.4 Instabilities of the camera

Vibrations of the camera structure, small movements due to wind or camera jitter
make the captured image unstable. Because of that, the image does not fit to the
background model and the result is inaccurate as can be seen in Figure 1.4.

(a) (b)

Figure 1.4: Background subtraction problems due to instabilities of the camera.

1.3 Document structure

After the present introduction, the remainder of the document is organized as
follows. Chapter 2 contains a brief review of the most significant published research
on traffic infrastructures monitoring. In particular about calibration methods, object
segmentation approaches, shadow detection algorithms and tracking works. A discussion
and the main objectives of the thesis are then introduced.

Chapter 3 describes the developed camera auto-calibration method, based on
vanishing points, and the hierarchical system proposed, with results that prove the
viability of the system.

In Chapter 4 the global monitoring approach is presented, whit the segmentation
and tracking algorithms used. Results for experiments on real traffic conditions are
presented and discussed.

Finally Chapter 5 contains the conclusions and main contributions of the thesis, and
future research lines that may spring from it.





Chapter 2

State of the art

Detecting and tracking pedestrians and vehicles in traffic applications has been one
of the most active fields of ITS research for the last years. Many approaches try to
solve this problem, however, due to the numerous advantages against other methods,
monocular vision stands out as the best solution (see Section 1.1). This chapter presents
a brief survey of the state of the art in monocular target monitoring on transport
infrastructures. For the sake of clarity, the related work will be divided into three sections
according to the steps of the algorithm: camera calibration, object segmentation and
tracking.

2.1 Camera calibration. Auto-calibration

Camera calibration, is a fundamental stage in computer vision, essential for many
applications. The process is the determination of the relationship between a reference
plane and the camera coordinate system (extrinsic parameters), and between the camera
and the image coordinate system (intrinsic parameters). These parameters are very
useful to recover metrics from images or apply prior information of 3D models to estimate
2D pose of targets, making object detection and tracking more robust to noise and
occlusions.

The standard method to calibrate a camera is based on a set of correspondences
between 3D points and their projections on image plane [1], [2]. However, this method
requires either prior information of the scene or calibrated templates, limiting the
feasibility of surveillance algorithms in most possible scenarios. In addition, calibrated
templates are not always available, they are not applicable for already-recorded videos
and if the camera is placed very high their small projection can derive in poor accurate
results. Finally in case of having PTZ cameras, using a template each time the camera
angles or zoom change is not available. One novel method which solves the problem of
the template is the orthogonal calibration proposed by Kim [3]. The system extracts
the world coordinates from aerial pictures (on-line satellite images) or GPS devices to
make the correspondences with the image captured. However this system is dependent
on prior information from an external source and it does not work indoor. Figure 2.1
shows an example of the point extraction and the results of the calibration.

Therefore auto-calibration seems to be the more suitable way to recover camera
parameters for surveillance applications. Since most of these applications make use of

31
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Figure 2.1: Orthogonal calibration by [3].

only one static camera, auto-calibration cannot be achieved from camera motion, but
from inherent structures or flow patterns of the scene.

One of the distinguished features of perspective projection is that the image of an
object that stretches off to infinity can have finite extent. For example, parallel world
lines are imaged as converging lines, which image intersection point is called vanishing
point. In 1990 Caprile and Torre [4] developed a new method for camera calibration
using simple properties of vanishing points. In their work the intrinsic parameters of
the camera were recovered from a single image of a cube. In a second step, the extrinsic
parameters of a pair of cameras were estimated from an image stereo pair of a suitable
planar pattern. The technique was improved by Cipolla et al. [5], who computed both
intrinsic and extrinsic parameters from three vanishing points and two reference points
from two views of an architectural scene. However these assumptions were incomplete,
because as demonstrated by Hartley, Zisserman and Liebowitz in different publications,
and summarized in [1], it is possible to obtain all the parameters needed to calibrate a
camera from three orthogonal vanishing points.

From the works mentioned before, a lot of research has been done to calibrate cameras
in architectural environments (Rother [6], Tardif [7], etc...). All these methods are based
on scenarios where the large number of orthogonal lines provide an easy way to obtain
the three orthogonal vanishing points, just taking the three main directions of parallel
lines. Examples of architectural scenarios and the main orthogonal lines extracted are
depicted on Figure 2.2.

Figure 2.2: Architectural scenarios and main orthogonal lines by [6].
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Nevertheless, in absence of so strong structures, as usual in the case of traffic scenes,
the vanishing point-based calibration is not applicable. In this context, a different
possibility is to make use of object motion. The complete camera calibration work using
this idea was introduced in 2006 by Lv et al [8]. The method uses a tracking algorithm
to obtain multiple observations of a person moving around the scene; computing the
three orthogonal vanishing points by extracting head and feet positions in their leg-
crossing phases. The approach requires accurate localization of these positions, which
is a challenge in traffic surveillance videos. Furthermore, the localization step uses
FFT based synchronization of a person’s walk cycle, which requires constant velocity
motion along a straight line. Finally it does not handle noise models in the data and
assumes constant human height and planar human motion, so the approach is really
limited. Based on this knowledge, Junejo proposed a quite similar calibration approach
for pedestrians walking on uneven terrains in [9]. There are no restrictions as with Lv’s
work, but the intrinsic parameters are estimated by obtaining the infinite homography
from all the extracted points in multiple cameras.

To manage the inconveniences shown in the previous paragraph, the solution lies in
computing the three vanishing points by studying three orthogonal components with
parallel lines in the moving objects or their motion patterns. Zhang et al. [10] presented
a self-calibration method using the orientation of pedestrians and vehicles. The method
seems to extract a vertical vanishing point from the main axis direction of the pedestrian
trunk, perpendicular to the ground plane. Additionally, two horizontal vanishing points
are extracted by analysing the histogram of oriented gradients of moving cars, as shown
on Figure 2.3(a). The idea is interesting and it was initially implemented for this thesis.
However, the straight vehicles used by Zhang differ from the modern ones, usually with
more irregular and rounded shapes (Figure 2.3(b)). Finally, the pedestrian detection
step is not described and results are not depicted in the paper.

(a) (b)

Figure 2.3: Differences between modern and old vehicles in terms of HOG.
(a) Zhang flowchart for estimation of line equations for vehicles [10]. (b) Example

of modern vehicle an its ”perpendicular” lines

Hodlmoser et al. present a different approach [11]. They use zebra-crossings with
known measures to obtain the ground plane, and pedestrians to obtain the vertical
lines. The problem is the maximum distance the camera can be from the ground and
the necessity of knowing real distances from the scene.
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The mentioned works are summarized and grouped in Table 2.1, where a taxonomy
of approaches is shown.

A. Number of cameras

a. 1 camera (Hartley, 2000 [1]; Tsai, 1986 [2]; Kim, 2009 [3]; Rother, 2002 [6];
Tardif, 2009 [7]; Lv, 2006 [8]; Zhang, 2011 [10]; Hodlmoser, 2010 [11]).

b. Multiple cameras (Caprile, 1990 [4]; Cipolla, 1999 [5]; Junejo, 2009 [9]).

B. Technique

a. 3D points correspondence (Hartley, 2000 [1]; Tsai, 1986 [2]; Kim, 2009 [3]).

b. Vanishing points (Caprile, 1990 [4]; Cipolla, 1999 [5]; Rother, 2002 [6]; Tardif,
2009 [7]; Lv, 2006 [8]; Junejo, 2009 [9]; Zhang, 2011 [10]; Hodlmoser, 2010 [11]).

C. Needed scenario elements

a. Calibration pattern (Hartley, 2000 [1]; Tsai, 1986 [2]).

b. Cube (Caprile, 1990 [4]).

c. Architectural (Cipolla, 1999 [5]; Rother, 2002 [6]; Tardif, 2009 [7]).

d. Urban (Kim, 2009 [3]; Lv, 2006 [8]; Junejo, 2009 [9]; Zhang, 2011 [10];
Hodlmoser, 2010 [11]).

D. Prior knowledge

a. Pattern measurements (Hartley, 2000 [1]; Tsai, 1986 [2]).

b. GPS coordinates (Kim, 2009 [3]).

c. Camra height (Kim, 2009 [3]; Caprile, 1990 [4]; Cipolla, 1999 [5]; Rother,
2002 [6]; Tardif, 2009 [7]; Zhang, 2011 [10]).

d. Pedestrians height (Lv, 2006 [8]; Junejo, 2009 [9]).

e. Metrics from the scene (Hodlmoser, 2010 [11]).

E. Restrictions

a. Orthogonal structures (Cipolla, 1999 [5]; Rother, 2002 [6]; Tardif, 2009 [7]).

b. Constant and straight motion (Lv, 2006 [8]).

c. Straight vehicles (Zhang, 2011 [10]).

d. Camera height (Hodlmoser, 2010 [11]).

e. None (Hartley, 2000 [1]; Tsai, 1986 [2]; Kim, 2009 [3]; Caprile, 1990 [4]).

Table 2.1: Taxonomy of camera calibration approaches.

In this thesis, the author proposes a self-calibration procedure based on vanishing
points through an hierarchical process, which covers most of traffic infrastructure
scenarios with all possible configuration. The objective is to obtain both intrinsic
and extrinsic camera parameters without any restriction in terms of constraints (e.g.
restrictions mentioned in previous paragraphs, vehicles driven in only one road direction
[12], deprecated camera roll [13], etc.) or the need of prior information.
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2.2 Object segmentation

Traffic surveillance systems consist on detecting and tracking moving objects by
a static camera. In this context, several segmentation approaches have been proposed,
although background subtraction based ones are the most discussed pixel-wise techniques.
This method requires a relatively small computation time and shows robust detection
in good illumination conditions. However, it suffers under the presence of shadows
and sudden illumination changes, distorting the estimation of the targets. The object
segmentation methodologies have then two main discussion points, in which the section
is divided: background subtraction and cast shadows and illumination changes detection.

2.2.1 Background subtraction

The basic idea of the method is to subtract the current image from a reference image
that models the background scene, to obtain the moving objects. In spite of the lot of
research done in the field, many difficulties have still to be considered, especially under
dynamic environments, changing situations, different weather conditions, etc.

Most researches have abandoned non-adaptive methods because of the need of
manual initialization. Without an update of the background model, errors accumulate
over time and do not allow changes in the scene. Therefore they are only useful in
highly supervised and short-term applications. A background subtraction method should
continuously estimate a statistical model of the variation for each pixel. A common used
method is averaging the images over time, creating a background approximation which
is similar to the current static scene except where motion occurs. While this is effective
in situations where objects move continuously and the background is visible a significant
portion of the time, it is not robust to scenes with many moving objects, particularly if
they move slowly. It also recovers slowly when the background is uncovered, and has a
single and predetermined threshold for the entire scene.

The existing adaptive background modelling methods can be classified as either
single-layer or multi-layer. Single layer methods obtain a model for the color distribution
of each pixel, based on past observations. Usually, a single Gaussian is used to model
the statistical distribution of a background pixel, being updated through a blending
approach. These models are fast and simple, but in practice, multiple surfaces often
appear in the view of a particular pixel and they are not able to adapt to multiple
backgrounds. Figure 2.4 shows the importance of using adaptive methods, because of
the movement of the sun, and multiple layers because of the movement of the trees.

Figure 2.4: Shadows moving in the same scene over time.
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The use of Gaussian Mixture Models (GMM) has enjoyed tremendous popularity
since it was first proposed for background modelling by Friedman and Rusell [14] in 1997.
After them, in 1999 Stauffer and Grimson [15] developed more efficient update equations
and wrote a very important publication base of many works. In 2005, Lee extended the
standard equations to increase the adaptation speed of the model [16]; and finally in
2006 Zivkovic [17] improved the method incorporating a model selection criterion to
choose the proper number of components for each pixel on-line. This segmentation is
very robust to variations in the scene due to progressive changes of the illumination,
moving tree leaves, slow moving objects, etc. Nevertheless, it is vulnerable to sudden
illumination changes with just a few Gaussians (usually 3 to 5), so a non-parametric
technique was developed for estimating background probabilities at each pixel from
many recent samples over time using Kernel density estimation [18]. The problem is the
computational cost and the difficulty of choosing a correct kernel and kernel size.

In conclusion, due to a good compromise between robustness and performance,
GMM is the most used technique for background subtraction. There are drawbacks
with illumination changes, cast shadows and camera shake; but it gives a compact
model useful for further postprocessing. In this thesis a robust adaptive background
segmentation method, similar to the Zivkovic’s one, is used.

2.2.2 Cast shadows and illumination changes

Despite its success, the mixture of gaussians method fails, as said before, classifying
pixels as foreground or background in case of sudden illumination changes or cast
shadows (Figure 2.5).

(a) (b)

(c) (d)

Figure 2.5: GMM Background subtraction problems due to cast shadows (a)-(b),
and sudden illumination changes (c)-(d).
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Earlier systems set manual thresholds or used supervised algorithms to avoid these
problems. But recently many works have been published looking for a solution.
According to the taxonomy proposed by Prati in [19] (see Figure 2.6), the algorithms
can be classified as deterministic and statistical; and the first one subdivided into model-
based and property-based. On the one hand, model-based methods use prior knowledge
of scene geometry, target objects or light sources to predict and remove shadows. Joshi et
al. [20] propose an algorithm which detects shadows by using Support Vector Machine
(SVM) and a shadow model, learned and trained from a database. Reilly et al. [21]
propose a method based on a number of geometric constraints obtained from meta-data
(latitude, longitude, altitude, as well as pitch, yaw and roll). Specifically, they obtain the
orientation of ground plane normal, the orientation of cast shadows in the scene, and the
relationship between human heights and the size of their corresponding shadows. The
problem of these methods is that they need prior information and offline processing.

Figure 2.6: Classification of shadow detection methods according to Prati [19].

On the other hand, property-based approaches use features like geometry, brightness
or color to detect illumination changes. Some authors detect shadows in grayscale
video sequences. Jacques et al. [22] use the normalized cross-correlation as an initial
step for shadow detection, and refine the process using local statistics of pixel ratios.
However, these algorithms sometimes become invalid since pixels of different colors may
have a similar gray level. Therefore, most authors detect illumination changes using
color information. Atev et al. [23] integrate an illumination filter before processing the
image. The filter scales and adds an offset to all pixels in the image to prevent sudden
brightness or contrast changes while preserving the color information. The method seems
to be effective to compensate sharp changes in the overall scene, but it does not work
well with local changes. Horprasert et al. [24] propose a color model to classify each
pixel as foreground, background, shadowed background, or highlighted background. The
algorithm performs well in indoor environments or under certain illumination conditions,
but not for the variability of traffic scenes. Salvador et al. [25] use the idea that a shadow
darkens the surfaces on which it is cast, to identify an initial set of shadowed pixels,
that is then pruned by using color invariance and geometric properties of shadows.
In [26], Cucchiara et al. use the hypothesis that shadows reduce surface brightness and
saturation while maintaining hue properties in the HSV color space. Schreer et al. [27]
adopt the YUV color space to avoid using the time consuming HSV color transformation
and segment shadows from foreground objects based on the observation that shadows
reduce the YUV pixel value linearly. These methods are deterministic approaches which
can deal with illumination noises and soft shadows but they fail representing heavily
shadows where color and chromaticity information are totally lost.
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Statistical models can be subdivided into parametric and non-parametric. Para-
metric approaches use a series of parameters which determine the characteristics of the
statistical functions of the model, while non-parametric automate the selection of the
model parameters as a function of the observed data during training. There are also
statistical approaches such as [28] that uses Gaussian Mixture Model to describe mov-
ing cast shadows, or [29] which models shadows using multivariate Gaussians. These
methods can adapt to changing shadow conditions and provide a low number of false de-
tections. However, the hypothesis is not effective with soft shadows and if the shadowed
pixels are seldom or they have never been taken up by the algorithm.

In 2012, Sanin et al. published a survey [30] to evaluate newer shadow detection
algorithms. They classify the reviewed works into four categories: chromacity-based
methods, geometry-based methods, texture-based methods and physical methods (see
Figure 2.7). Chromacity-based techniques do not provide new ideas and have the same
advantages and disadvantages mentioned before. About geometry-based approaches, all
publications exposed are focused on pedestrians or on vehicles but not on both or any
object in general, which is one of the objectives of a surveillance system. Texture-based
works are divided into small region (SR) and large region (LR) approaches. On the one
hand the most representative method presented as SR is based on Gabor functions [31].
Region-level correlation is more robust than pixel-level correlation and Gabor functions
can provide optimal joint localisation in the spatial/frequency domains. The texture
analysis is performed by projecting a neighbourhood of pixels onto a set of Gabor
functions with several bandwidths, orientations and phases, and the matching between
frame and background is found using Euclidean distance. The problem of small regions
is that they are not guaranteed to contain significant textures. In a different paper,
Sanin et al. [32] proposed using colour features to create large candidate shadow regions
(ideally containing whole shadow areas), which are then discriminated from objects using
gradient-based texture correlation.

Figure 2.7: Classification of shadow detection methods according to Sanin [30].

Probably the most interesting part of the survey is related to physical methods. The
authors chose the work of Huang et al. [33] which does not make prior assumptions
about the light sources and ambient illumination. For a pixel, given the vector from
shadow to background value, the colour change is modelled using a 3D colour feature,
constructed by the illumination attenuation and the direction of the shadow vector. This
colour feature describes the appearance variation induced by the blocked light sources
on shaded regions.
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In spite of the descriptions and results, the survey is not really representative for
traffic surveillance applications. The paper provides a graph (Figure 2.8) which exposes
a comparison of the analysed methods. For highway tests the performance obtained is
too low. Moreover, a source code of the implemented algorithms is available to download
and it has been tested with unsatisfactory results. Figure 2.9 shows the foreground mask
obtained from different shadow detection algorithms. Shadowed areas are not removed.

Figure 2.8: Sanin’s shadow detection performance graph [30].

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.9: Results of Sanin’s survey shadow detection results. (a) Source image.
(b) Initial foreground mask. (c) Groundtruth with shadows in red. (d) Foreground

after chromacity shadow detection. (e) Foreground after geometric shadow
detection. (f) Foreground after SR shadow detection. (g) Foreground after LR

shadow detection. (h) Foreground after physical shadow detection.
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The main conclusion is that only the simplest methods are suitable for generalisation,
but in almost every particular scenario the results could be significantly improved by
adding assumptions. As a consequence, there is no single robust shadow detection
technique and it seems better for each particular application to develop its own technique
according to the nature of the scene.

An overview of the described methods is presented in Table 2.2.

Category Method Technique Prior info.

Model
Joshi [20] SVM Offline learned shadows

Reilly [21] Orientation of shadows
Information of the Sun

and camera

Property

Jacques [22] Gray NCC None

Atev [23] Image filter Filter thresholds

Horprasert [24] Color model None

Salvador [25] Geometric constrains
Geometric model of

targets

Cucchiara [26] Color model None

Schreer [27] Color model None

Parametric
Brissom [28] GMM None

Porikli [29] GMM None

Texture
Leone [31] Gabor functions None

Sanin [32]
Gradient-based texture

correlation
None

Physical Huang [33]
Physical illumination

properties
None

Table 2.2: Overview of the described shadow detection methods.

2.3 Target extraction and tracking

After detecting moving objects by background subtraction and lighting analysis,
there are new challenges for the system. One problem is how to manage occlusions and
merged foreground blobs to extract the different targets on the scene. The second one is
about the way to track these targets. Four main approaches have been used to solve the
problems: 3D model-based, region-based, contour-based and feature-based methods.

There are some methods which address (avoid) the problem of occlusions by locating
the camera above the scene. However this condition is not easy to implement, especially
in traffic applications, so it will be discarded.

2.3.1 3D model-based methods

The basic principle of these methods is to define a 3-D geometric model as a matching
template that describes the shape of the target. They exploit the a priori knowledge



2.3. Target extraction and tracking 41

of typical objects to localize and recognize vehicles and pedestrians in the scene. This
allows the recovering of trajectories with high accuracy for a small number of objects,
and even to address the problem of partial occlusions. The weakness is the reliance on
detailed geometric object models. It is unrealistic to expect being able to have models
for all targets that could be found in a real scenario. An example of a 3D model-based
method is the work of Dahlkamp et al. in [34], with a result depicted in Figure 2.10.

Figure 2.10: Example of 3D model-based method by [34].

2.3.2 Region-based methods

The idea of region or blob-based methods is to identify connected regions of the
image (blobs) which represent the targets searched. Regions can be obtained through
background subtraction, and then tracked over time using information provided by
the entire region (motion, size, color, shape, texture, centroid). Many approaches use
Kalman filters for that purpose.

Region-based tracking is computationally efficient and works well in free-flowing
traffic. However, under partial occlusions, crowds or congested traffic conditions, blobs
can be merged making the task of segmenting individual targets very difficult. These
methods cannot usually cope with complex deformation or a cluttered background.

Figure 2.11 shows a simple example where vehicles are partially occluded and
appeared merged in a large blob. Moreover, in the case of the red car in the bottom
part of the image, the tree splits its mask into several parts. Region-based methods are
unable to manage these situations.

(a) (b)

Figure 2.11: Example of blob merge due to partial occlusions and blob split due
to a tree, after applying background subtraction. (a) Original image. (b)

Foreground mask.
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2.3.3 Contour-based methods

Similarly to the previous subsection, contour-based methods use active contours to
model the boundary of vehicles, which can be updated dynamically. They have relatively
lower computational complexity, but the initialization for each target is a complex issue,
which is difficult to achieve efficiently in practice. In some cases, shape restriction is
applied together with a Kalman filter to estimate the spatio-temporal relationships of
the contour to improve tracking robustness in the presence of occlusion, as it is done
by Fan [35]. Experimental results were encouraging for tracking vehicles that are well-
separated but the inability to segment partially occluded objects remains.

The only work found with interesting results, based on contour analysis, is the
proposed by Pang et al. in [36]. The method first deduces the number of vertices per
individual vehicle from the camera configuration. Next a contour description model is
used to describe the contour segments direction regarding its vanishing points. Finally, it
assigns a resolvability index to each occluded vehicle based on a resolvability model, from
which each occluded vehicle model is resolved and the vehicle dimension is measured. As
can be seen on Figure 2.12 results are impressive. However the system only works with
a straight and common motion pattern and has not been tested with pedestrians (with
a more variable contour model). Therefore the method is not valid for intersections,
roundabouts and other scenarios needed by a complete traffic surveillance system.

(a) (b)

(c) (d)

Figure 2.12: Example of occlusion management by Pang et al. method [36].
(a) Original image. (b) External contour extraction. (c) Computed contours.

(d) Final result.
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2.3.4 Feature-based methods

Feature-based methods give up the idea of tracking objects as a whole. Instead, they
track features extracted from the targets. Even in the presence of partial occlusion, some
of the features of the moving objects remain visible, so it is a chance to overcome the
problem. Furthermore, the same algorithm can be used for tracking in daylight, twilight
or night-time conditions, as well as different traffic conditions and camera positions. It
is self-regulating because it selects the most salient features under the given conditions
(e.g. window corners, bumper edges... during the day and tail lights at night).

In stereo-based methods, two or more images of the same scene are used to track
densely populated objects. Otsuka and Mukawa [37] modeled the spatial structure of
the occlusion process between human and its uncertainty, and formulated a recursive
Bayesian estimation method for human position and posture. Although they have tested
their model using six cameras on five people successfully, its reliance on a large number
of camera views implies high computational complexity, which is a big drawback for
traffic surveillance.

In a monocular case, the algorithms can adapt successfully and rapidly, allowing real-
time processing and tracking of multiple objects in dense traffic. Kanhere et al. [38] use
the background subtraction result to segment and track vehicles at low camera angles.
They estimate the 3D height of vehicle features by assuming that the bottom of the
foreground region is the bottom of the object, but this assumption is only valid in case
of no occlusions. Moreover, the vehicle is interpreted as a box, which features lie on one
of the four surfaces orthogonal to the road plane. Notwithstanding even at low camera
angles there are features in the ceiling and hood so the idea is questionable. The main
problem of feature-based methods is how to group the multiple features obtained to
separate different objects. An example of commonly used cues for grouping are spatial
proximity and similar motion.

One of the most representative works in this area is [39], by Kim. He introduced a
dynamic multi-level feature grouping algorithm that can handle various sizes of objects,
and provides a set of robust trajectories (Figure 2.13). Although promising results are
presented in several transportation scenarios, the system is not fully autonomous. The
individual probability distributions for the feature membership are estimated by using a
semi-supervised learning procedure. First the algorithm is ran with manually-assigned
parameters to obtain a reasonable result. In addition, a user interface is developed to
correct observably erroneous membership assignments.

Figure 2.13: Feature tracking by Kim’s method [39].
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In this thesis a feature-based algorithm is presented. Features are extracted from
background subtraction algorithm and tracked by optical flow analysis and an interesting
approach based on flock of features. After that, a novel 3D clustering method based on
occlusion reasoning and MeanShift technique is done in order to separate and track every
single object in the image.

2.4 Discussion

Previous sections have introduced a number of used and published methods for
transport infrastructures surveillance. It is not possible to mention all the existing
approaches, but it has been shown the high diversity of works and the importance of the
topic. Some of the presented methods have provided inspiration for the development
of the thesis, although their drawbacks have been analysed to contribute with some
improvements.

Several conclusions can be extracted from the review of the state of the art:

• Camera calibration is a fundamental stage in this framework, making object
detection and tracking more robust to noise and occlusions. The standard
methods, based on calibration patterns, limit the feasibility of surveillance
algorithms in most possible scenarios, and any non-automatic approach makes the
system vulnerable to unexpected variables and dependent on the user interaction.
Therefore auto-calibration reveals as the optimum solution. Nevertheless, there
are no complete automatic methods published (with single camera and no prior
knowledge) which cover many possible situations in a traffic scenario.

• Traffic surveillance systems consist on detecting and tracking moving objects by a
static camera. In this context, background subtraction is the most discussed pixel-
wise technique because it requires a relatively small computation time and shows
robust detection in good illumination conditions. However, it suffers under the
presence of shadows and sudden illumination changes, distorting the estimation of
the targets. In spite of the lot of research done in the field, many difficulties have
still to be considered, especially under dynamic environments, changing situations,
different weather conditions, etc.

• The main conclusion about shadow detection algorithms is that only the simplest
methods are suitable for generalisation, but in almost every particular scenario
the results could be significantly improved by adding assumptions. Consequently,
there is no single robust shadow detection technique and it seems better for each
particular system to develop its own method according to the nature of the scene.

• One problem associated to traffic surveillance is the high probability of occlusions
and the derived difficulties to extract the different targets of the scene. Because
of the multiple possible scenarios and the strong variability of objects (vehicle
type and model, sizes due to camera position, etc.), feature-based methods reveal
as the solution. Even in the presence of partial occlusion, some of the features
of the moving objects remain visible, so it is a chance to overcome the problem.
Furthermore, the same algorithm can be used for tracking in daylight, twilight or
night-time conditions, as well as different traffic conditions and camera positions.
Then, the problems come from the way to cluster them.
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• From an application perspective, the main technical challenge is the high diversity
of camera views, operating conditions and observation objectives in traffic
surveillance. As a consequence, there is an important lack of a common framework
and most authors use their proprietary sequences. This condition has generated
a large diverse body of work, where it is difficult to perform direct comparison
between the proposed algorithms.

2.5 Objectives

After the review of the state of the art, and considering the discussion presented
before, the aims of this thesis are the following:

1. To develop an automatic hierarchical camera calibration system based on the scene.
The aim is to use the most common elements present in a typical traffic scenario
to cover as many situations as possible. The system has to be able to detect PTZ
displacements in order to recalibrate the camera if necessary.

2. To develop a monocular vehicle and pedestrian detection system. It has to be
able to work in a wide range of environments and conditions without any prior
knowledge (only an approximate size of the objects searched).

3. To overcome the common traffic surveillance problems like camera vibrations,
lighting variations, shadow effects and object occlusions with automatic self-
adapting algorithms.

In summary, the final goal and the main contribution of the thesis is the development
of a “plug&play and pan-tilt-zoom” traffic monitoring system, based on a low-cost
monocular camera. The research objective is to develop an algorithm able to work in a
wide range of environments and conditions without any prior knowledge. The challenge
is to be robust to illumination changes, adverse weather conditions, target occlusions,
small camera movements and complete variations of its position and zoom.





Chapter 3

Camera auto-calibration

3.1 Introduction

Camera calibration is a fundamental stage in computer vision, essential for many
applications. As explained in Section 2.1, the implemented methods of the state of the
art are unavailable, do not cover all possible scenes, or need prior information to work
correctly. In this thesis, a novel self-calibration procedure based on vanishing points is
proposed. The objective is to obtain the camera parameters without any restriction in
terms of constraints or the need of prior knowledge, to deal with most traffic scenarios
and possible configurations. The developed method is explained in the following sections.

3.2 Camera model

The most common geometric model used to represent a camera is the perspective or
pin-hole model [1], shown in the Figure 3.1.

Figure 3.1: Pin-hole camera model.

For a pin-hole camera, perspective projection from the 3D world to an image can be
conveniently represented in homogeneous coordinates by the projection matrix P :
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P can be further decomposed by the relative orientation and position of the camera
with respect to the world coordinate system, by a 3 x 3 rotation matrix R, a 3 x 1
translation vector T , and the intrinsic parameter matrix K defined by:

K =

 αu s u0

0 αv v0

0 0 1

 (3.2)

where αu and αv are scale factors, s is a skew parameter and u0 and v0 are the pixel
coordinates of the principal point. With the common assumption of zero skew (s = 0)
and unit aspect ratio (αu = αv = f (focal length in pixels)), the global equation has the
following form:
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(3.3)

To compute the intrinsic camera parameters and the rotation angles for the camera
calibration, the origin of the world coordinate system (WCS) is placed on the ground
plane, and it is initially aligned with the camera coordinate system (CCS). Then, it is
translated to T , followed by a rotation around the Y-axis by angle yaw(α), a rotation
around the X-axis by angle pitch(β), and finally, a rotation around the Z-axis by angle
roll(γ). The corresponding rotation matrix R = Rz ·Rx ·Ry is formed by:

Rz =

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

 Rx =

 1 0 0
0 cosβ sinβ
0 −sinβ cosβ

 Ry =

 cosα 0 −sinα
0 1 0

sinα 0 cosα


Therefore the rotation matrix R is:

R =

 cosγcosα+ sinγsinβsinα sinγcosβ −cosγsinα+ sinγsinβcosα
−sinγcosα+ cosγsinβsinα cosγcosβ sinγsinα+ cosγsinβcosα

cosβsinα −sinβ cosβcosα

 (3.4)

Real camera lenses typically suffer from non-linear lens distortion which maps
straight lines in the image as curved. Pin-hole model is linear and does not manage
distortions. However in the case of traffic sequences, the focal distances used are usually
long and the analysed objects are far enough from the camera to consider the distortion
effect negligible.

The objective of the algorithm is to compute the unknown variables: the focal length
f and the rotation angles α, β and γ. It will be achieved extracting three orthogonal
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vanishing points from the image and using the principal point (u0, v0) as the orthocenter
of the triangle formed by the three of them (Figure 3.2). This last assumption is widely
explained in several references like Zisserman’s book [1].

Figure 3.2: For the case of zero skew and unit aspect ratio, the principal point is
the orthocenter of an orthogonal triad of vanishing points.

3.3 Camera calibration from vanishing points

One of the distinguishing features of perspective projection is that the image of an
object that stretches off to infinity can have finite extent. Particularly, parallel world
lines are projected on the image as converging lines, and their image intersection is the
vanishing point. A representative example is the effect of the parallel railway tracks
shown in Figure 3.3. They never intersect in world coordinates, but have a common
point in the image. In the following paragraphs the camera calibration process through
three orthogonal vanishing points is analysed. The proposed extraction of these points
from the image is explained in Section 3.4.

Figure 3.3: Parallel lines converging in a vanishing point.

A vanishing point Vx is defined at infinity, in homogeneous 3D coordinates, as
[1, 0, 0, 0]T . Applied to Equation (3.3) with the CCS aligned to the WCS (T = 0) it
is possible to obtain useful relationships to find the value of the searched variables:

λuvx = fR11 + u0R31

λvvx = fR21 + v0R31

λ = R31

(3.5)
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And substituting the value of λ:
uvx = f

R11

R31
+ u0

vvx = f
R21

R31
+ v0

(3.6)

In a similar way a vanishing point Vy is defined at infinity, in homogeneous 3D
coordinates, as [0, 1, 0, 0]T . Following the same previous steps an analogous equation is
obtained: 

uvy = f
R12

R32
+ u0

vvy = f
R22

R32
+ v0

(3.7)

There are four unknown variables (α, β, γ, f), so four expressions are needed.
Combining Equations (3.4), (3.6) and (3.7) the necessary expressions are obtained:



uvx = f
cos γ cotα

cosβ
+ f sin γ tanβ + u0

vvx = −f sin γ cotα

cosβ
+ f cos γ tanβ + v0

uvy = −f sin γ cotβ + u0

vvy = −f cos γ cotβ + v0

(3.8)

The variable isolation is not a complicated task but a little bit laborious. Hence, for
the sake of clarity it is summarized into the final expressions:

roll = γ = tan−1

(
uvy − u0

vvy − v0

)
(3.9)

f =
√

(sin γ(uvx − u0) + cos γ(vvx − v0))(sin γ(u0 − uvy) + cos γ(v0 − vvy)) (3.10)

pitch = β = tan−1

(
− f sin γ

uvy − u0

)
(3.11)

yaw = α = tan−1

(
f cos γ

(uvx − u0) cosβ − f sin γ sinβ

)
(3.12)

Although in theory the sign of the term under square root in Equation (3.10) should
be always positive, it can be negative in practice. That is a good indicator of a wrong
vanishing point estimation, to repeat the extraction process.

After explaining how to calibrate a camera from three orthogonal vanishing points,
the next paragraphs complete the first necessary steps to do the whole process.
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3.3.1 Line extraction

Three sets of orthogonal parallel lines from the image are needed to get the orthogonal
vanishing points. The different situations studied in this thesis are depicted in Section 3.4
with an hierarchical tree and a description of every single case. Before that description,
it is important to explain how the lines are extracted from the segmented elements.

The first step of the line detection stage is the computation of image derivatives using
Sobel edge detector. The line fitting algorithm follows an approach similar to the one
suggested by [40]. The gradient direction is quantized into a set of k ranges, where all the
edge pixels having an orientation within the certain range fall into the corresponding bin
and are assigned to a particular label. All the edge pixels with the same label are then
grouped together using connected components algorithm. The line segment candidates
are obtained by fitting a line parametrized by an angle θ and distance from the origin
ρ = x cos θ + y sin θ.

Each connected component consists of a list of edge pixels (xi, yi) with similar
gradient orientation, which form the line support regions. The line parameters are
directly determined from the eigenvalues λ1 and λ2 and eigenvectors v1 and v2 of the
matrix D associated with the line support region:

D =

[ ∑
i x̃

2
i

∑
i x̃iỹi∑

i x̃iỹi
∑

i ỹ
2
i

]
(3.13)

where x̃i = xi−x and ỹi = yi−y are the mean corrected pixels coordinates belonging
to a particular connected component and x = 1

n

∑
i x̃i and y = 1

n

∑
i ỹi. In case of an

ideal line, one of the eigenvalues should be zero. The quality of the line fit is characterized
by the ratio of the two eigenvalues of matrix D, v = λ1

λ2
. The line parameters (ρ, θ) are

determined from the eigenvectors v1, v2, where v1 is the eigenvector associated with the
largest eigenvalue. The line parameters are finally computed as:

θ = atan2(v1(2), v1(1))

ρ = x cos θ + y sin θ
(3.14)

3.3.2 Vanishing point estimation

Due to noise, a set of imaged parallel lines will generally not intersect in a single point.
The “intersection point” can be estimated by determining the point that minimizes the
sum of squared perpendicular distances to the fitted lines. However this process is very
sensitive to outliers (misclassified segments) so the result can differ considerably from
the ideal one, and a previous step is then necessary. To solve this problem, a RANSAC-
based algorithm (RANdom Sample Consensus [41]) is used to search for concurrent lines
among the detected line segments. Figure 3.4 shows an illustrative example with the
vanishing points computed with and without RANSAC processing.

In brief, RANSAC is an algorithm which simultaneously fits parameters and rejects
outliers. The idea is that by fitting the parameters to a subset of data consisting of inliers,
it is possible to suppress the outliers by rejecting the data which is not consistent with
the fitted model. The data which is consistent with this model is called the support of
the model. To obtain a subset of inliers in the first place, the whole dataset is randomly
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(a) (b)

Figure 3.4: Vanishing point computation from line segments. (a)Wrong vanishing
point due to a misclassified line segment. (b) Same solution after RANSAC

algorithm. Green segments are inliers and the red segment is an outlier.

sampled and for each sample the parameters are estimated, thus producing a whole
population of fitted models. The model with the greatest support is able to be the
salient grouping. In this case the model consists of a point, and a sample is performed
by choosing randomly pairs of lines. For each pair, their intersection is computed to get
putative vanishing points and then the support for this vanishing point is found. An
image edge e is able to support the (vanishing) point Vi if there exists a line l through
Vi for which the rms fitting error to the points on e is less than a threshold (In this
work the average distance of the lines to the global least squares solution). Thus the
thresholding is done where the measurement errors occur, in the image.

After RANSAC, the point that minimizes the sum of squared perpendicular distances
to the fitted lines is obtained. This step is done for each set of lines because the
method proposed looks for defined elements in the scene that are known orthogonal (e.g.
pedestrians and crosswalks or perpendicular vehicle motion, etc.). In an opposite case
where it is known that most of lines are orthogonal (e.g. architectural environments),
the algorithm can be launched globally to look for the three most common orientations,
with a simultaneous grouping and estimation of vanishing directions using expectation
maximization (EM) algorithm [40]. However, such favourable conditions are not always
available in traffic scenarios.

3.3.3 Summarized process and preliminary results

The diagram depicted by Figure 3.5 summarizes the proposed camera calibration
process. In the following lines, a brief description of each step is presented.

Figure 3.5: Camera auto-calibration process.
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• Line extraction: extraction of three orthogonal sets of parallel lines.

• Vanishing points estimation: the common image intersection points are esti-
mated. Outliers are discarded by RANSAC and the point which minimizes the
sum of orthogonal distances to the lines is taken.

• Locate the principal point: under the previously described assumption, the
orthocenter of the triangle formed by the three orthogonal vanishing points as
vertices is the principal point (u0, v0).

• Compute focal length and rotation angles: the focal length and extrinsic
angles (roll, pitch and yaw) are computed by the equations (3.9)-(3.12).

• Obtain camera height: if any metric of the scene is available, the camera height
(H) can be computed. Otherwise this parameter has to be given or estimated man-
ually in a straightforward step. However, although intrinsic and extrinsic param-
eters are unknown, in the case of traffic cameras the height is usually associated
to the post or building where they are placed. Therefore this parameter is not
considered as crucial as the ones explained above.

The first steps are tested in an experiment with a 3D pattern used to simulate three
sets of orthogonal lines. As can be seen in Figure 3.6 the orthogonal vanishing points
are correctly extracted and the principal point is obtained from them.

(a) (b) (c)

Figure 3.6: Graphic result of the method through a 3D pattern. (a) Original
image. (b) Extracted lines. (c) Computed vanishing points and principal point.

After checking the vanishing point extraction, the result of the algorithm is compared
with a ground-truth calibration to evaluate the performance of the developed method.
The intrinsic parameters are computed by the Matlab Calibration Toolbox [42], and the
extrinsic ones by a tripod which provides the angles of the camera with respect to the
ground plane. For the Matlab calibration, 15 images have been taken to compute the
intrinsic camera parameters. Figure 3.7 shows some examples of the images used.

Figure 3.7: Samples of the set of images used to calibrate the camera with the
Matlab Calibration Toolbox.
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The experiment consist of 15 images, which resolution is 640 × 480, taken in a
controlled scenario. Some samples are depicted in Figure 3.8 where the scene remains
unaltered but the position and orientation of the camera changes randomly. Figure 3.9
shows the graphic result of one calibration example and the Root Mean Square Error
(RMSE) obtained for each parameter is presented in Table 3.1.

Figure 3.8: Samples of the set of images used for the auto-calibration.

(a) (b)

(c)

Vx

Vy

Vz

(d)

Figure 3.9: Graphic result of a calibration. (a) Original image. (b) Extracted
lines. (c) Initial vanishing point estimation. (d) Lines, vanishing points and

orthocenter after RANSAC.

Parameter Num. Images ROLL PITCH YAW FOCAL OP. CENTER

RMSE 15 1.22◦ 0.71◦ 1.79◦ 14.33 pix 7.20 pix

Table 3.1: RMSE between groundtruth calibration and the proposed method.

The error of the extrinsic parameters is less than 2◦. Moreover, the focal distance
provided by Matlab is 580 pixels, so the deviation error is 2.47%, and the principal
point is located in (u0, v0) = (325, 224) which means an error of 1.82%. These values
are considered more than acceptable for the proposed system.
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3.4 Hierarchical auto-calibration system based on the
scene

Once the procedure to calibrate a camera from three orthogonal vanishing points
has been described, this section presents the proposed process to extract these points
from the image. Depending on which elements appear in the scene and the chance of
using camera zoom, 5 levels have been established to determine the hierarchy of each
developed method and the priority of the solution adopted. The system will choose
the available option with higher hierarchy level, corresponding to the smallest number.
Levels 1, 2 and 3 provide complete automatic calibration; level 4 needs some assumptions
or inputs; and level 5 means manual calibration.

3.4.1 Vanishing point extraction options

Before presenting the hierarchical tree, and to make its comprehension easier, the
different options developed in the thesis to obtain the vanishing points and optical center
are summarized. In next subsections they are widely explained.

• Zoom: when zooming, if several features of the image are matched between frames
they converge in a common point which corresponds to the optical center. If this
point is known, only two additional vanishing points are needed to compute the
rest of the parameters. Subsection 3.4.3 describes the developed process.

• Crosswalk: the alternate white and gray stripes painted on the road surface
provide a perfect environment to obtain two perpendicular sets of parallel lines. It
means that two vanishing points of the ground plane can be extracted, as explained
in Subsection 3.4.4.

• Pedestrians: humans are roughly vertical while they stand or walk. This
characteristic makes them very useful to extract perpendicular lines to the ground.
In the case of a structured scene, it is also possible to extract lines of the elements
parallel to them (see Subsection 3.4.5).

• Vehicle motion: if one vanishing point from the ground plane is needed, it can
be obtained from vehicles moving along the main motion direction. Moreover,
if there is a perpendicular intersection (in 3D coordinates) in the scene, vehicles
moving along the two main directions will provide perpendicular sets of parallel
lines corresponding to the two ground plane vanishing points. This procedure is
described in Subsection 3.4.6.

• Structured scene: in the case of scenes exhibiting a considerable number of
orthogonal architectural elements, a last option is available (although less common
and effective) to extract the three orthogonal vanishing points by brute force
gradient analysis. The extraction process is explained in subsection 3.4.8.

• Optical center assumption: there are some cases in which it is not possible
to obtain one of the three vanishing points. One option is to enter manually one
set of parallel lines, but the autonomy of the system is reduced. To solve this
problem, it is possible to assume that the optical center is located on the center
of the image, although a small error is committed. Subsection 3.4.7 analyses its
advantages and drawbacks.
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3.4.2 Hierarchical tree

Figure 3.10 depicts the hierarchical tree proposed in a flowchart. For the sake of
clarity, each level has been separated by different lines and colors. As explained before,
top levels are the preferred cases, so in case of multiple options available, the system
will choose the higher ones.

Figure 3.10: Hierarchical calibration tree used. Note: Perp. Intersec means
perpendicular intersection; and Struct. Scene means structured scene.

The different possible cases are described as follows:

• Case 1: principal point through zooming process and the two ground plane
vanishing points from a crosswalk.

• Case 2: principal point through zooming process, the vertical vanishing point
from pedestrians and one vanishing point of the ground plane obtained by vehicles
moving along the main motion direction.

• Case 3: principal point through zooming process and the two ground plane
vanishing points from the vehicles moving along the two main directions of the
perpendicular intersection.

• Case 4: principal point through zooming process and two vanishing points due
to parallel lines of the structured scene.

• Case 5: principal point through zooming process and manual input of two set of
parallel lines, due to absence of necessary information of the scene.

• Case 6: the two ground plane vanishing points from a crosswalk and the vertical
vanishing point from pedestrians.

• Case 7: the two ground plane vanishing points from a crosswalk and either the
principal point assumed as the center of the image or manual input of vertical
lines.

• Case 8: the vertical vanishing point from pedestrians and the two ground plane
vanishing points from the vehicles moving along the two main directions of the
perpendicular intersection.
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• Case 9: the vertical vanishing point from pedestrians, one vanishing point of the
ground plane obtained by vehicles moving along the main motion direction and
the principal point assumed as the center of the image. Otherwise manual input
of two sets of lines of the ground plane.

• Case 10: the two ground plane vanishing points from the vehicles moving along
the two main directions of the perpendicular intersection and either the principal
point assumed as the center of the image or manual input of vertical lines.

• Case 11: three vanishing points from the main orthogonal lines of the scene.

• Case 12: manual input of three set of orthogonal lines due to total absence of
necessary information in the scene.

3.4.3 Principal point through camera zoom

The objective is to find three orthogonal vanishing points and compute the principal
point through them. However, if the equations are analysed, after this step only two
points are required. Therefore, if it is possible to find the principal point, only two
additional vanishing points will be necessary.

When zooming, if several features of the image are matched between frames, the lines
which join the previous and new feature positions converge in a common point which
corresponds with the optical center. To demonstrate this phenomenon the situation of
Figure 3.11 is outlined.

Figure 3.11: Situation to analyse the relation between zoom and optical flow.

The objective is to find if the segments which join (ua2, va2) to (ua1, va1) and (ub2, vb2)
to (ub1, vb1) have a common point corresponding to the optical center. For this purpose
it is necessary to use again the pin-hole camera model of the Figure 3.1 to obtain a
geometric relationship between the 3D point, which does not change with zoom, and
the point in the image which change with the focal length (f1→ f2):

 u = f XZ + u0

v = f YZ + v0

(3.15)
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With simple geometric line analysis it is known that the lines which pass through
(ua1, va1) and (ub1, vb1) are:  v − va1 = ma(u− ua1)

v − vb1 = mb(u− ub1)
(3.16)

where mi is the slope of the lines with the form:
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(3.17)

Therefore isolating a point (u, v), the following expression is derived:

v =
Ya
Xa

(u− u0) + v0 (3.18)

And finally if u = u0 → v = v0, which is the result searched. Figure 3.12 shows an
example of this phenomenon: An image was taken before and after zooming and the
matched features converge to the same point, the optical center.

(a) (b)

(c)

Figure 3.12: Principal point computation through camera zoom. (a) Image before
zooming and features extracted. (b) Image after zooming and features extracted.

(c) Feature matching. The common point corresponds to the optical center.
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3.4.4 Zebra crossing vanishing point extraction

A common intersection scenario usually has zebra crossings like the one presented
in Figure 3.13.

Figure 3.13: Example of zebra crossing.

The alternate white and gray stripes, painted on the road surface, provide a perfect
environment to obtain two perpendicular sets of parallel lines. It means that the two
vanishing points from the ground plane can be obtained.

To detect if there are crosswalks in the image for a posterior analysis, the following
steps are done.

Figure 3.14: Crosswalk detection process.
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• Background model estimation: by the background subtraction algorithm
presented in Section 4.2.1, the background model is extracted to look for crosswalk
candidates without moving objects that can occlude them, or sudden illumination
changes.

• Thresholding: as the typical zebra crossing has a strong white component, a
thresholding step is done in order to highlight the white stripes.

• Gradient analysis: the line extraction algorithm explained in Section 3.3.1 is
used in order to obtain the straight lines of the scene, necessary for the vanishing
point estimation.

• Angle clustering: all the lines extracted are initially grouped by angle in order
to distinguish between different kind of candidates. To separate lines with close
angles but from different crosswalk candidates a RANSAC filter is applied. The
input of the algorithm is the distance from each line to the rest of the cluster.
Segments that do not belong to the neighbourhood are included in a different
cluster or discarded.

• Verify crosswalk hypothesis: a confidence factor of each candidate is taken in
order to decide if whether or not it can be consider as a zebra crossing. In the
case of more than one valid candidate, the system chooses the one with the highest
confidence factor. This factor is based on two indicators:

1. Bipolarity analysis. A gray color based histogram is constructed to analyse
the bipolarity component of a crosswalk. In case of a zebra crossing, this
histogram should have two representative gaussian components, as shown in
Figure 3.15(b).

2. Transition analysis. The b/w transitions (in the binary image) are analysed,
in order to measure the number of changes and how constant the width of
the stripes is. This process is done through a transitions binary pattern
constructed by the values of the line which best represents the direction of
the crosswalk. This line is obtained fitting by RANSAC the center of the
gradient lines extracted for each zebra crossing.

The corresponding gradients (in yellow), representing line (in red), bipolar
histogram and transition pattern of the crosswalk of Figure 3.13 are represented
in Figure 3.15.

• First vanishing point estimation: The vanishing point corresponding to the
main direction of the crosswalk stripes is computed as explained in Section 3.3.2,
with the gradients extracted previously.

• Second vanishing point estimation: Due to the small size and the irregularity
of the perpendicular segments of the stripes, the gradient analysis is not accurate
enough to obtain the desired set of parallel lines. To solve this problem, the
centroid of each segment is computed as the intersection of the central line of the
stripe with the end of the stripe. All the points obtained are fitted to a line by
RANSAC and the intersection between the upper and lower lane is consider the
second vanishing point. The process is represented in Figure 3.16.
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(a)

(b) (c)

Figure 3.15: Confidence factor indicators of a crosswalk. (a) Gradients and fitted
representing line. (b) Bipolar histogram. (c) Transitions binary pattern.

Figure 3.16: Extraction of the second vanishing point from a crosswalk.

An example of the whole method proposed is depicted in the Figure 3.17. Firstly,
the background model image is binarized (Figure 3.17(a)), and the lines are extracted by
gradient analysis and grouped by angle (Figure 3.17(b)). After that, a RANSAC-based
filter is applied to get the final candidates (FIgure 3.17(c)). The red line is the one
which best fits the candidate. Bipolarity and transition analysis are then done in order
to obtain the confidence factor with the following results:

• Candidate 1 = 0.10 (Low value due to an irregular pattern).

• Candidate 2 = 0.14 (Low value due to a white stripe detected with black holes).

• Candidate 3 = 0.96 (Good pattern. This is the candidate chosen).

• Candidate 4 = 0.40 (Bad result due to the interruption of the traffic light).

• Candidate 5 = 0.77 (Acceptable value, but more irregular than candidate 3).

Finally, the vanishing points are computed (Figure 3.17(e)) with the following results:
Vx = (−212.64,−266.07) and Vz = (950.23, 59.11)
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(a) (b)

(c)

(d)

(e)

Figure 3.17: Crosswalk detection example. (a) Binarized background model.
(b) Line extraction. (c) Grouped candidates with testing lines in red. (d) Transition

pattern of candidates 1 to 5. (e) Parallel lines to compute the vanishing points.



3.4. Hierarchical auto-calibration system based on the scene 63

3.4.5 Pedestrian vanishing point extraction

Humans are roughly vertical while they stand or walk. This property makes them
very useful to get perpendicular lines to the ground, to compute the vertical vanishing
point. One option is to extract the vertical component of each pedestrian to form the
necessary set of parallel lines, as done by Hodlmoser et al. [11]. However, the cameras in
common traffic scenarios are usually located quite higher than the situations proposed
by the authors in the paper, and small pedestrians can derive into erroneous lines
extractions. Traffic scenes provide a lot of structured elements with vertical components
(walls, lampposts, traffic lights, etc.), that can be used to increase the performance and
quality of the system. The developed algorithm is based on this idea, and it is divided
into the following steps: pedestrian detection with vertical component extraction, scene
analysis and vanishing point computation.

The aim of this method is to detect pedestrians with no false positives, to avoid lines
that are not perpendicular to the ground. Therefore, it is not crucial to detect all the
pedestrians in the image but it is important to be sure that the detected objects are
humans. In order to obtain useful candidates for vertical lines extraction two kinds of
parameters for every moving object are obtained: the motion direction and the main axis
direction. The difference of these directions is quite significant for moving pedestrians
while it is very small for vehicles, in most cases of camera view as shown in Figure 3.18.
As a result, this parameter is taken as a discriminant feature for coarse classification
along blob aspect ratio constraints like height > 3 · width. It is supposed that cast
shadows have been previously deleted as described in Section 4.2.3.

Figure 3.18: Angles used to differentiate between vehicles and pedestrian. Green
arrowhead stands for velocity direction; Red line stands for main axis direction.

It is evident that this classification is not very accurate, but in practice it is good
enough to get valid pedestrians useful to extract vertical lines.

To get the motion direction of the blob, the average motion of the blob features is
taken. This feature analysis is explained in the next chapter. In the case of the main
axis direction of the blob θ, three different approaches have been used: moment analysis,
principal component analysis and RANSAC estimation. The direction estimated by
moment analysis is defined as:

θmoment = tan−1(
2µ11

µ20 − µ02
) (3.19)

where µpq is the central moment of order (p, q).
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Principal component analysis (PCA) is equivalent to major axis regressions, so
the largest axis can be considered as the vertical component. And finally RANSAC
algorithm takes the centroid of each candidate row to estimate the line that corresponds
to the main axis of the pedestrian. When these three methods obtain similar results
and the blob aspect ratio is valid, the candidate is considered a pedestrian. Figure 3.19
shows an example of vertical line extraction.

Figure 3.19: Pedestrian main axis extraction.

At the same time, a gradient line extraction of the image is done in order to extract all
the possible structured elements. The angle of the vertical components of the pedestrians
will be compared to the lines extracted and, in case of matching, the lines will be saved
to compute afterwards the vanishing point. Due to the perspective of the camera, a
perpendicular line to the ground in the image has different angles depending on the
position. Moreover, because of the negative pitch the vertical vanishing point has to
be positive. Therefore the image is divided into five quadrants following the angle
constraints depicted in Figure 3.20.

Figure 3.20: Quadrants and angle constraints due to perspective.

Figure 3.21 depicts an example of the developed method. Figure 3.21(a) represents
the lines extracted from the scene, with different colors depending on the belonging
quadrant. Figure 3.21(b) shows the detected pedestrian inside a green box with
the estimated vertical component in red, and the matched vertical lines in cyan.
Finally, Figure 3.21(c) depicts the estimation of the vertical vanishing point with all
the accumulated vertical lines. Red lines are the outliers and green lines the inliers
for the RANSAC-based method explained before. The resulting vanishing point is:
Vy = (305.52, 1698.65).
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(a)

(b)

(c)

Figure 3.21: Vertical vanishing point extraction example. (a) Extracted scene
lines divided by 5 quadrants. (b) Detected pedestrians with red vertical component

and vertical matches in cyan. (c) RANSAC vanishing point estimation with red
outliers and green inliers.
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3.4.6 Vehicle motion vanishing point extraction

One of the properties of the traffic scenarios is that many vehicles drive in the same
or inverse direction of the 3D world. Therefore the main axis of these vehicles are
parallel to each other, and also parallel to the ground plane. This supplies important
information to extract horizontal vanishing points.

As explained in the hierarchical calibration tree (Figure 3.10), there are cases that
need only one ground plane vanishing point while others need two. In case of computing
the optical center (either by zooming analysis or assuming it as the image center) and
detecting pedestrians, only one vanishing point from the ground plane is needed, in
any direction. On other hand, in case of needing two ground plane vanishing points
and if a perpendicular intersection (in 3D coordinates) is present in the scene, vehicles
moving along the two main directions will provide perpendicular sets of parallel lines
corresponding to the two ground plane vanishing points. In both cases the followed
process is similar, done either for one direction or two.

Firstly, the main motion directions are extracted. For this purpose, a feature optical
flow analysis of the foreground blobs is done and their motion direction is saved into an
histogram. Once it is constructed after a determined number of frames, an EM algorithm
is used to fit the histograms into gaussians in order to get the principal components of
the movement. Figure 3.22 shows an example of a perpendicular intersection, where
the features of the foreground objects are tracked by optical flow and the motion
direction histogram with the gaussian components in red is computed. The vertical
axis corresponds to the frequency of the angle, and the horizontal axis corresponds to
the angle value between 0◦ and 180◦. In this case, the extracted main directions are
14◦ and 137◦. These values are not perpendicular in image coordinates due to the
perspective projection.

(a) (b) (c)

Figure 3.22: Example of main motion directions extracted in a perpendicular
intersection. (a) Perpendicular intersection. (b) Foreground optical flow analysis.

(c) Histogram of directions and fitted gaussians in red.

After getting the main directions of the scene, the motion of each foreground blob
is analysed. In case of detecting motion in the computed directions, the gradients of
the blob are extracted (see Section 3.3.1) in order to look for parallel lines with the
mentioned angles. Once obtaining a representative number of parallel segments, the
RANSAC method proposed in Section 3.3.2 is used again. Finally, the searched vanishing
points are obtained. Figure 3.23 shows an example of two ground plane vanishing point
extraction using the method explained in this section.
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Figure 3.23: Example of ground plane vanishing point extraction in a
perpendicular intersection.

This method has to manage the drawback of that not all vehicles have exactly the
same trajectory and the same gradients along the main directions. Section 3.6 analyses
the maximum vanishing point error that can be assumed.

3.4.7 Optical center assumption

There are some cases in which the automatic extraction of one vanishing point is
not available. To manage this problem, one option is to manually enter a set of parallel
lines, but the autonomy of the system is reduced. Other possibility is to assume that
the optical center is on the center of the image, although a small error is committed
depending on the camera and the lens. Figure 3.24 represents an example where two
vanishing points are known and the third one is obtained from these points and the
center of the image. The first vanishing point is extracted from the crosswalk and the
number 2 from pedestrians. The green line is formed by joining the optical center with
the mathematically isolated third vanishing point to demonstrate it is orthogonal to the
others. In the results chapter, the optical center assumption is tested with the rest of
methods to show the committed error.

Figure 3.24: Example of optical center assumption.
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3.4.8 Structured scenarios vanishing point extraction

In the case of having a considerable number of architectural elements in the scene,
a last option for an autonomous calibration is available (although less common and
effective). It consist on extracting the vanishing points by brute force gradient analysis,
assuming that the three sets of parallel lines with most number of lines are orthogonal.
To group the lines, J-Linkage algorithm [43] is used. This method is based on the work
of Tardif in [7], although he does not look for orthogonal vanishing points.

The input of the algorithm is a set of N edges, that can be obtained by the method
proposed in Section 3.3.1. The output is a set of vanishing points and a classification
for each edge: assigned to a vanishing point or marked as an outlier. The solution relies
on the J-Linkage algorithm to perform the classification.

The first step is to randomly choose M minimal sample sets of two edges S1...M

and to compute a vanishing point hypothesis vm = V (Sm, 1) for each of them (1 is a
vector of ones, i.e. the weights are equal). The second step consists of constructing the
preference matrix P , a N ×M Boolean matrix. Each row corresponds to an edge εn
and each column to a hypothesis vm. The consensus set of each hypothesis is computed
and copied to the mth column of P . An example of matrix P is given in Figure 3.25.
Each row r of P is called the characteristic function of the preference set of the edge εn:
the mth entry is 1 if vm and εn are consistent.

Figure 3.25: Example of Preference matrix for N=100 edges and M=500
vanishing point hypothesis.

The J-Linkage algorithm is based on the assumption that edges corresponding to the
same vanishing point tend to have similar preference sets. Indeed, any non-degenerate
choice of two edges corresponding to the same vanishing point should yield solutions
with similar, if not identical, consensus sets. The algorithm represents the edges by
their preference set and clusters them as described below. Note that at this point, the
hypothesized vanishing points are completely ignored by the algorithm. The algorithm
defines the preference set of a cluster of edges as the intersection of the preference sets
of its members. It also uses the Jaccard distance between two clusters, given by:

dj(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
(3.20)

where A and B are the preference sets of each of them. It equals 0 if the sets are
identical and 1 if they are disjoint. The algorithm proceeds by placing each edge in
its own cluster. At each iteration, the two clusters with minimal Jaccard distance are
merged together. The operation is repeated until the distance between all clusters is
equal to 1. Once clusters of edges are formed, a vanishing point can be computed for
each of them and refined by the RANSAC-based method used in this thesis.
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Figure 3.26 shows the orthogonal lines extracted in a structured scenario to compute
the three orthogonal vanishing points.

Figure 3.26: Extracted lines in a structured scenario to obtain three orthogonal
vanishing points automatically.

3.4.9 Manual vanishing point extraction

In some cases, it is not possible to extract the necessary vanishing points
automatically and the user’s interaction is needed. For these situations, an interactive
tool has been developed to draw the lines to get the orthogonal vanishing points in any
cases. The user draws a set of parallel lines and the system computes the intersection
with the method explained in Section 3.3.2. It is important to emphasize that this option
is still an advantage against other methods, due to the chance to calibrate the camera
in a short time and without needing extra information or calibration patterns, in spite
of the user interaction.

The examples depicted in Figure 3.6 and 3.9 were taken with the interactive tool.
The drawn blue and green lines correspond to the ground plane and set of red lines to
the vertical plane.

3.5 Experimental results

In the next section, the results of the auto-calibration stage are presented. There
are no public useful databases to compare the developed method with previous works,
therefore the calibration based on the manual vanishing point extraction (the method
which best fits the vehicles into prisms) is considered the groundtruth of the system.

From the total amount of videos, two different representative scenes have been
selected to show the performance of the proposed methods. It is described through
two tables, which include all the information obtained from the experiments (Tables 3.2
and 3.3) and a list of conclusions. Finally, a comparative table summarizes the average
error of each hierarchical tree case, to demonstrate if the assumed hierarchy is correct.
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3.5.1 Auto-calibration results table legend

For the sake of clarity, the information of each row and column of the tables is
explained in the following paragraphs:

• Case: the different possible cases of the hierarchical tree:

– Case 1: zoom and crosswalk.

– Case 2: zoom, pedestrians and main motion direction of vehicles.

– Case 3: zoom and perpendicular intersection.

– Case 4: zoom and structured scene.

– Case 6: crosswalk and pedestrians.

– Case 7: crosswalk and OC assumption.

– Case 8: pedestrians and perpendicular intersection.

– Case 9: pedestrians, main motion direction of vehicles and OC assumption.

– Case 10: perpendicular intersection and OC assumption.

– Case 11: structured scene.

– Cases 5 and 12: manual input of lines (represented as Case 12/5).

Two more cases have been created after testing all videos, with a different
combination of the explained methods, because of an improvement of the results.
These new cases are represented with the number of the original method and a
subindex (12 and 112):

– Case 12: takes the principal point through zooming process, one ground plane
vanishing point from the main direction of a crosswalk, and the vertical
vanishing point from the pedestrians and vertical structures. This option
is better than case 1 because the vertical vanishing point extraction is the
most reliable of all.

– Case 112: assumes the principal point as the center of the image and computes
two vanishing points due to two sets of parallel lines of the structured scene.
This option improves the results of case 11 because in many situations is easy
to find two orthogonal sets of parallel lines, but not three.

• VPi: coordinates of the computed vanishing points for each case. VP1 and VP2

are the horizontal vanishing points and VP3 is the vertical one.

• OC: coordinates of the computed or assumed principal point of the image.

• Focal, pitch and roll: values of the computed intrinsic and extrinsic camera
parameters. Yaw is not considered because its variation does not modify the
ground plane and does not have impact into the 3D projection.

• distA, distB, distC: 3D depth distance from the camera to three selected points
of the image. The distance is computed as explained in Subsection 3.5.2, and
compared to the one obtained by Google Maps [44] (in the last row of the table).

• vol1, vol2, vol3: volumes of the projected prisms over three different vehicles.
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3.5.2 Distance estimation

The distance from the camera to several points of the scene is one of the parameters
used to evaluate the performance of the developed method. Due to the loss of depth
information, monocular systems need a perspective projection from the 3D world to the
image, using the general pin-hole camera model, represented in Figure 3.1 and Equation
(3.3).

The focal distance (f), rotation matrix (R3×3) and camera height (H) are known
variables, as explained in previous sections. With two image coordinates (u, v), only
two expressions are available to isolate the X and Z world coordinates. Therefore, the
Y component has to be assumed as 0, and the distances computed from points located
in the ground plane.

Therefore the resultant pin-hole equation for a point located on the ground plane
has the following form:

 λu
λv
λ

 =

 fR11 + u0R31 fR12 + u0R32 fR13 + u0R33 0
fR21 + v0R31 fR22 + v0R32 fR23 + v0R33 fH

R31 R32 R33 0



X
Y
Z
1

 (3.21)

The final system to isolate X and Z, assuming Y = 0 is:

{
(fR11 + (u0 − u)R31)X + (fR13 + (u0 − u)R33)Z = 0

(fR21 + (v0 − v)R31)X + (fR23 + (v0 − v)R33)Z = −fH

}
(3.22)

And the distance is computed from:

distance =
√
Z2 +X2 (3.23)

The distance computed by these equations is compared with the one obtained by
Google Maps. Figure 3.27(b) shows an example of how this distance is extracted from
the website.

3.5.3 Experiments

The tests presented in this thesis are performed in two sequences recorded from the
top of a tower located in the city center of Alcalá de Henares, and called Torre de Santa
Maŕıa (Figure 3.27(a)).

Both sequences provide a zoom change, so zoom-based cases (1 to 4) can be covered.
Moreover the scenes have apparently enough structured elements to cover cases 4 and 11.
Finally, the first scenario contains an intersection that can be considered perpendicular,
therefore cases 3, 8 and 10 are studied.
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(a) (b)

Figure 3.27: (a) Torre de Santa Maŕıa, where the camera was located.
(b) Example of distance extraction from the tower, with Google Maps.

Test 1

The first scene is presented in Figure 3.28, where three points are selected to measure
their distance from the camera. Their values from Google Maps are: A = 39m, B = 50m
and C = 29m. The numbers correspond to the vehicle indexes for the volume of the
projected prisms comparison.

(a) (b)

Figure 3.28: Scenario of test 1 and selected points to measure their distance from
the camera (located in the tower). (a) Image points and vehicle indexes.

(b) Corresponding points from Google Maps.

To analyse the results obtained in this test, Table 3.2 summarizes all the values
extracted and computed by the system. Figure 3.29 shows the graphic result of the
vehicle prism projection for the manual vanishing point extraction case, and Figure 3.30
depicts the graphic results for the rest of cases.
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Figure 3.29: Graphic result for the manual vanishing point extraction case.

The partial conclusions after analysing the graphical and numerical results are
explained below:

• Due to the strong vertical component of the scene and the presence of pedestrians,
the vertical vanishing point is more reliable than the second vanishing point from
a crosswalk. Accordingly, although both options are valid, case 12 is closer to the
groundtruth than case 1.

• Similarly, case 112 improves the result of case 11 due to the difficulties to find 3
orthogonal sets of parallel lines automatically. A ground plane vanishing point and
the vertical one are extracted correctly, but the second vanishing point computed
from the ground plane is not orthogonal. The focal distance of case 1 is pretty
similar to the groundtruth one, but the principal point and roll have a considerable
error. That situation makes the solution unavailable for this scenario. On the other
hand, assuming the principal point as the center of the image and taking only two
orthogonal sets of parallel lines, the result becomes more acceptable.

• The assumption of perpendicularity in the intersection is not very accurate. As
observed in Figure 3.27(b), the geometry of the scene is more or less perpendicular,
but the road lanes, where the vehicles drive, are not exactly perpendicular. Cases
3, 8 and 10 demonstrate deviations in both intrinsic and extrinsic computed
parameters. However, it does not have a big impact in the graphical results shown
in Figure 3.30.

• Related to the measured distances, it is important to point that the error
introduced by Google is unknown, so the groundtruth is an approximation. In this
context, the computed results except for the cases of perpendicular intersection are
very close to the values provided by the website, which validates the calibration
process.

• In terms of 3D prisms projections, only case 11 can be considered erroneous,
because of the reasons explained above. As can be seen graphically, the rest of the
cases are pretty similar and acceptable.

• In general, the methods that extract the principal point through zooming process
are more accurate. The extraction process is very reliable and provides the system
strong versatility.
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(a) Case 1 (b) Case 12 (c) Case 2

(d) Case 3 (e) Case 4 (f) Case 6

(g) Case 7 (h) Case 8 (i) Case 9

(j) Case 10 (k) Case 11 (l) Case 112

Figure 3.30: Graphic results of Test 1.

Test 2

The second scenario is presented in Figure 3.31, where three points are also selected
to measure their distance from the camera. Their values from Google Maps are A = 24m,
B = 33m and C = 29m. The numbers correspond to the vehicle indexes for the volume
of the projected prisms comparison.

To analyse the results obtained in the test, Table 3.3 summarizes all the values
extracted and computed by the system. In this scenario, there is no perpendicular
motion component, so the cases related to a perpendicular intersection (3, 8 and 10)
are discarded. Figure 3.32 shows the graphic result of the vehicle prism projection for
the manual vanishing point extraction case (groundtruth), and Figure 3.33 depicts the
graphic results for the rest of available cases.

The partial conclusions after analysing the graphical and numerical results are
explained in the following paragraphs:
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Figure 3.31: Scenario of test 2 and selected points to measure their distance from
the camera (located in the tower).

Figure 3.32: Graphic result for the manual vanishing point extraction case.

• In a similar way to the Test 1, the new case 12 improves the results obtained by
the original version for the same reasons explained before.

• There are not three strong orthogonal sets of parallel lines, so case 11 is not
available. However, it is possible to extract two sets of lines and assume the
principal point as the center of the image to calibrate the system (case 112). In
this case the result is acceptable.

• Related to the measured distances, the computed results are very close to the values
provided by Google Maps, which validates the calibration process. Curiously, the
groundtruth calibration fits better the 3D prisms but has a higher distance error
to the selected points, due to its smaller pitch angle computed.

• In terms of 3D prisms projections, and as can be observed graphically, all the cases
are pretty similar and acceptable. The height of the prisms is a little bit higher
than desired, but due to the high pitch values it does not affect in case of severe
occlusions.

• Once again, the methods that extract the principal point through zooming process
are more accurate. It is a small numerical and graphical difference, but the zooming
option provides robustness against unexpected situations of the scene in case one
vanishing point is unavailable.
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• In the two experiments, three points and three volumes have been analysed,
covering as many possible cases. The location is similar in both situations, avoiding
the center of the image because it is less affected by the extrinsic parameters.
Instead of that the challenging positions were taken. The good results demonstrate
the effectiveness of the algorithm.

(a) Case 1 (b) Case 12

(c) Case 2 (d) Case 4

(e) Case 6 (f) Case 7

(g) Case 9 (h) Case 112

Figure 3.33: Graphic results of Test 2.
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3.6 Analysis of vanishing point sensitivity

In this section, a sensitivity study of the vanishing points is presented. For this
purpose, an example of auto-calibration is done (see Figure 3.34) and the coordinates
of each vanishing point are modified in ±200 pixels to appreciate the impact over the
computed parameters. The pixel variation is represented by the violet squares around
each vanishing point. As the smaller vanishing point is located in VP1 = (−123,−132),
±200 pixels means a variation of 162% and 151% respectively.

Figure 3.34: Calibration example to analyse the VP sensitivity.

The graphics represented on Figures 3.35 have been obtained varying the horizontal
coordinate of VP1 in ±200 pixels. After that, Figure 3.36 represents the results of
varying the vertical coordinate the same amount of pixels. All charts have a symmetrical
component around VP±0, so the effect of the positive and negative variation of the
vanishing point is almost similar.

The conclusions for each graph are described in the next paragraphs:

• OC. error: is the Euclidean distance (in pixels) between the principal points with
and without coordinate variation. The effect is similar in horizontal and vertical
changes, but stronger for the vertical ones.

• Focal error: is the percentage error in focal distance against the original value.
The effect is significantly stronger for the vertical changes.

• Pitch error: is the angle difference between the pitch before and after varying the
coordinates of the point. The effect is almost the same in both axes.
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Figure 3.35: Horizontal sensitivity analysis in VP1.

Figure 3.36: Vertical sensitivity analysis in VP1.

• Roll error: is the angle difference in degrees between the roll obtained after varying
the coordinates of the point and the original value. The equation to compute the
roll angle is defined by:

roll = tan−1

(
u3 − u0

v3 − v0

)
(3.24)

Therefore the effect of varying an horizontal vanishing point is caused only through
the principal point variations. In the case of an horizontal variation, the vanishing
point has a vertical influence over the principal point and u0 remains practically
unaltered. Hence, the numerator of the equation does not vary, and as the vertical
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component of VP3 is very high (1646 pixels) the variations of v0, and consequently
the roll, are not too significant.

In contrast, in the case of a vertical variation, the vanishing point has a horizontal
influence over the principal point and v0 remains practically unaltered. Hence, the
numerator of the equation has a considerable change, reflected in the computed
angle. These effects are clearly represented in the corresponding graphics.

• Volume error: is the percentage error committed in the projected volume of a
vehicle. Figure 3.37(a) depicts an example of volume projection over a vehicle
with the groundtruth calibration parameters. Figures 3.37(b) and 3.37(c) show
a combination of all projected volumes for the variations studied. The images
demonstrate graphically the impact of the coordinate variations with a violet area.

(a)

(b) (c)

Figure 3.37: Volume vehicle projection comparative in an horizontal vanishing
point variation. (a) Groundtruth volume projection by manual calibration.
(b) Volume projections due to horizontal coordinate variations. (c) Volume

projections due to vertical coordinate variations.

The case of VP2 is almost the same than VP1 but horizontally less sensitive, because
its horizontal coordinate is very large (1550 pixels) and the impact of a 200 pixels
variation is smaller. And the case of VP3 is pretty similar to VP2, but exchanging the
influences as a vertical vanishing point, i.e. a small influence in vertical variations and
a big influence in horizontal variations.

The selected vanishing point VP1 is the most sensitive to a change of its coordinates,
so it will stablish the variation limits. If a 25% of volume error is considered the
maximum acceptable variation, the ranges are VPx ± 180 and VPy ± 30 pixels. This
maximum range is represented on Figure 3.38 by the transparency around the car.
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Figure 3.38: Projected vehicle volume under maximum VP range variations.

3.7 Conclusions

In this chapter, an auto-calibration camera approach has been proposed through an
hierarchical algorithm based on the scene. It is an important step for the final goal
of the thesis, because it provides very useful information to compute the object sizes,
necessary for the algorithm proposed in the next chapter.

The performance of the method has been described through the results obtained by
two selected videos. 30 more sequences from different scenarios and conditions have
been used to test the developed auto-calibration methods. As a result, a comparative
table (Table 3.4) has been constructed with the average errors of the main intrinsic and
extrinsic parameters extracted (focal distance, pitch and roll).

CASE FOCAL (%) PITCH (◦) ROLL (◦)

12/5 0.00 0.00 0.00

1 3.85 2.08 0.52

12 2.29 1.68 0.30

2 4.69 2.83 0.34

3 8.14 3.55 0.65

4 6.68 3.05 0.67

6 3.52 1.46 0.51

7 3.88 2.05 0.51

8 4.05 2.25 0.69

9 4.40 2.57 0.26

10 7.47 3.11 0.64

11 9.20 2.46 2.11

112 7.18 3.16 0.65

Table 3.4: Auto-calibration errors comparative table.

As can be seen, case 1, and its improvement above all (case 12), are the best solutions
due to the strong parallel component of their orthogonal elements and the zooming
chance. Near them, cases 6 and 7 have similar results. It was expected because they
are the relative cases to the first one, but without zoom. On the other hand, the worst
options (although graphically acceptable in most situations for the system proposed),
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are cases 3, 4, 10 and 11, based on perpendicular intersections (not always available
or strictly perpendicular), and structured scenes (not always with strictly orthogonal
components).

The obtained results are really satisfactory: the low error of the 3D prisms
projections and distance measurements proves the strength of the system, and the
multiple options of the hierarchical tree provide high versatility to cover most of the
possible traffic scenarios. Furthermore, the system is able to adapt the calibration
parameters in case of PTZ camera displacements without manual supervision.

Even if there is no chance to auto-calibrate the camera (due to absence of orthogonal
components), the manual input of lines remains as a valid option which allows the user
to control the system in a short time.

Finally, the acceptable variation ranges of the vanishing points coordinates (studied
in the sensitivity analysis), give the algorithm a tolerance of at least 30 pixels, which
means that small errors are not critical.





Chapter 4

Target detection and tracking

4.1 Introduction

After calibrating the camera, an approximate size of pedestrians and vehicles in the
image can be obtained using a standard size for them in world coordinates. This step
will give the system a notion of how big are the searched elements. In this chapter, a
multilevel framework to detect and track pedestrians and vehicles is presented. Figure
4.1 illustrates the flowchart of the proposed framework, which consists of 4 levels: 1)
Image segmentation level, to create and handle a background model and to obtain the
foreground objects; 2) features level, which extracts and follows features of the foreground
objects; 3) clustering level, which is in charge of managing occlusions and create object
clusters; and 4) tracking level, which tracks all the segmented objects.

Figure 4.1: Flowchart of the proposed framework.

85
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4.2 Image segmentation

Traffic surveillance systems consist on detecting and tracking targets by a static
camera. In this context, background subtraction reveals as the best solution to segment
the moving objects of the image. However, although pedestrians and vehicles are
generally the only objects which are moving in the field of view, the algorithm is
susceptible to instabilities of the camera and both global and local illumination changes,
so a detection of these problems is needed to achieve satisfying results. Therefore,
the complete object segmentation algorithm consists of the following steps: background
subtraction, image stabilization and cast shadows and illumination changes detection.

4.2.1 Background subtraction

The basic idea of background subtraction is to subtract the current image from a
reference image that models the background scene. Rather than explicitly modelling the
values of the pixels as one particular kind of distribution, each pixel is modelled by a
mixture of K Gaussian distributions (Gaussian Mixture Model or GMM), whose mean
and variance is adapted over time.

The probability that a certain pixel has a value Xt at time t can be written as:

P (Xt) =

K∑
i=1

ωi,tη(Xt, µi,t,Σi,t) (4.1)

where the mean µi,t, covariance Σi,t and weight ωi,t, are the parameters of the ith gaussian
component, and η is the gaussian probability density function described by:

η(X,µ, σ) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2

(X−µ)T Σ−1(X−µ) (4.2)

For computational reasons the covariance matrices are isotropic. This assumes that
the red, green, and blue pixel values are independent and have the same variances σ2

i,t.
While this is certainly not the case, the assumption allows to avoid a costly matrix
inversion at the expense of some accuracy:

Σi,t = σ2
i,tI (4.3)

Given a new data sample Xt, the recursive equations to update the model are: [17]

ωi = ωi + α(θi − ωi) (4.4)

µi = µi + θi(
α

µi
)δi (4.5)

σ2
i = σ2

i + θi(
α

µi
)(δTi δi − σ2

i ) (4.6)

where α is the learning rate and δi = Xt − µi. For a new sample the ownership θi is set
to 1 if the sample matches with a component of the mixture (sorted by the value of ω

σ )
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and 0 for the remaining models. The matching is defined by the Mahalanobis distance
between the sample and the gaussian component of the mixture and a threshold. If
there is no matching, a new component is generated with ωi+1 = α, µi+1 = Xt and
σi+1 = σ0, where σ0 is a predefined initial variance. If a predefined maximum number
of components has been reached, the component with the smallest weight is discarded.

Figure 4.2 shows the result of this step: the original image, the modelled background,
and the extracted foreground. Usually, the intruding foreground objects are represented
by gaussians with small weights. Therefore, it is possible to approximate the background
model by the component with largest weight. In the case of the foreground extraction,
although there are no strong shadows, they are labelled as foreground due to the light
change they produce in the asphalt.

(a) (b)

(c)

Figure 4.2: Background subtraction result on a tested sequence. (a) Original
image. (b) Modelled background. (c) Extracted foreground.

To manage new elements in the image and background model, the adaptation process
is straightforward. For example, if a new object comes into a scene and remains static
for some time, it will be temporally presented as an additional gaussian component.
Since the old background is occluded, the weight of the new gaussian will be constantly
increasing and the old one decreasing. If the object remains static long enough, its
weight becomes larger and it can be considered to be part of the background.

One of the significant advantages of this method is that when something is allowed
to become part of the background, it does not destroy the existing model. The original
background color remains in the mixture until it becomes the kth most probable gaussian
component and a new color is observed. Therefore, if an object is stationary just long
enough to become part of the background and then it moves, the distribution describing
the previous background still exists with the same µ and σ2, but with a lower weight,
and will be quickly reincorporated into the background.
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4.2.2 Image stabilization

Most of the traffic monitoring systems entail the use of cameras in outdoor
environments. Because of that, they are exposed to vibrations and shaking due to wind
and other inclemencies, which can cause visible frame-to-frame jitter and associated
foreground errors. To avoid the mentioned problems, an image stabilization module
has been developed. It captures the movement of static feature points, extracted and
matched with SURF [45], between the current image and the background model, to
estimate the camera displacement. After extracting these points, the neighbourhood of
each one is represented by a feature vector and matched between the images, based on
Euclidean distance. In case of erroneous measurements or incorrect hypotheses about
the interpretation of data, RANSAC is used to filter the outliers. After RANSAC, SURF
feature pairs are used to compute the homography matrix between both images. Finally
a perspective transformation based on this homography matrix is applied to the current
image to compensate the movement. The result of the image stabilization step can be
seen in Figure 4.3.

(a) (b)

(c) (d)

Figure 4.3: Result of image stabilization. (a) Original image with camera shake
and SURF points. (b) Modelled background. (c) Extracted foreground without

stabilization. (d) Extracted foreground after stabilization.

After checking the good results provided by this technique, the idea was extrapolated
to detect camera motion in case of using a PTZ camera. As a result, if the detected
motion is bigger than a simple shaking (experimentally established with a threshold),
the movement is classified as yaw, pitch, roll or zoom displacement and the background
model is restarted. To differentiate between angle and zoom variations it is enough to
analyse the direction of the motion vectors. In the case of angle variations the vectors
are parallel while for zoom variations they are concurrent.
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Figure 4.4 illustrates the effect of a yaw (pan) angle change, with parallel and
horizontal motion vectors. In this case, the calibration parameters remain constant
and it is not necessary to recalibrate. However background subtraction needs to be
restarted.

Figure 4.4: Example of detected yaw change. (a) Source image before the yaw
variation. (b) Image after yaw variation and motion vectors. The purple line

represent the average motion.

Figure 4.5 represents the effect of a pitch (tilt) angle change, with parallel and vertical
motion vectors. In this case, background subtraction also needs to be restarted, and the
calibration parameters are not constant so it is necessary to recalibrate. However, if the
pitch equation is analysed, reminded in Equation (4.7), the only parameter that changes
in a pitch variation is the vanishing point Vy. Therefore, to recalibrate the camera, a
search of the vertical vanishing point is enough.

pitch = tan−1

(
− f sin γ

uvy − u0

)
(4.7)

where f is the focal length of the camera, γ is the roll and uvy and u0 are the
horizontal coordinates of the vertical vanishing point and principal point respectively.

Figure 4.5: Example of detected pitch change. (a) Source image before the pitch
variation. (b) Image after pitch variation and motion vectors.

Figure 4.6 represents the effect of a zoom change with its concurrent motion vectors.
In this case as well, background subtraction needs to be restarted and, as the calibration
parameters are not constant, camera recalibration has to be done. However, the
parameter which changes with a zoom variation is the focal length, so not all the variables
need to be computed. If its expression, reminded in Equation (4.8), is analysed, only
the vanishing points Vy and Vx vary. Therefore, to recalibrate the camera, a search of
these two vanishing points is enough.
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The principal point is intrinsic of a zoom variation, as explained in Subsection 3.4.3,
and with the proposed technique it is possible to extract this parameter. The vectors are
projected into lines and the same algorithm developed for the vanishing point estimation
(based on RANSAC) is used to compute the intersection point.

f =
√

(sin γ(uvx − u0) + cos γ(vvx − v0))(sin γ(u0 − uvy) + cos γ(v0 − vvy)) (4.8)

where γ is the roll, (uvx , vvx) and (uvy , vvy) are the two necessary vanishing points
and (u0, v0) is the principal point of the image.

(a) (b)

(c)

Figure 4.6: Example of detected zoom change. (a) Image before zooming.
(b) Image after zooming and motion vectors. (c) Principal point extraction.

As explained in Subsection 3.3.2, red lines are the outliers and green lines are the
inliers, concurrent into the searched principal point.

To summarize the information previously described, Table 4.1 depicts which changes
or parameters are necessary in each particular case of a camera displacement. 2 VP’s
means any two orthogonal vanishing points of the image and OC stands for the principal
point.

Yaw Pitch Zoom Pitch + Zoom

Background Restart Restart Restart Restart

Calibration None Vy 2 VP’s + OC 2 VP’s + OC

Table 4.1: Summary of necessary changes after camera displacement.
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4.2.3 Cast shadows and illumination changes detection

Background subtraction step detects all the moving objects that do not belong to any
component of the mixture. Despite the robust detection in good illumination conditions,
the algorithm suffers with the presence of shadows and sudden illumination changes. For
this reason, a shadow and highlight detection algorithm is needed.

As described in the state of the art chapter, there is no single robust shadow detection
technique and it seems better for each particular application to develop its own algorithm
according to the nature of the scene. The objective of this thesis is not finding the final
shadow detection method, therefore, the developed algorithm has been chosen to work
correctly with the author’s dataset and the generalization for all possible situations and
conditions has been discarded. Considering this idea, the principle used for the technique
is based on the fact that a shadow or a highlight changes color properties of the objects,
but not their surface properties such as texture. The method is characterized by a
region-level analysis in spite of a pixel-level, hence decreasing the sensitiveness to image
noise. The technique used is the normalized cross correlation, and particularly Color
Normalized Cross Correlation (CNCC). The algorithm uses this method to compare the
texture of every foreground pixel, by a neighbourhood window, with the correspondent
one in the background model.

Let B be the background image and I an image of the video sequence. Then, con-
sidering for each foreground pixel a (2N + 1) window, the NCC between the image
and the background is given by Equation (4.9). In the case of a color image, template
summation in the numerator and each sum in the denominator is done over all of the
channels, with separate mean values used for each channel.

NCC =
Et

EBEI
(4.9)

Et =

N∑
n=−N

N∑
m=−N

B(n,m)I(n,m) (4.10)

EB =

√√√√ N∑
n=−N

N∑
m=−N

B(n,m)2 (4.11)

EI =

√√√√ N∑
n=−N

N∑
m=−N

I(n,m)2 (4.12)

For a pixel with an illumination change but similar texture, correlation is very close
to 1. Otherwise it is close to 0, so the threshold parameter is not critical. Moreover, in
the case of shadows, the energy EI has to be lower than EB. After removing pixels with
the NCC thresholding, a closing operation is done to fill small holes in the contour.

Two different space colors are chosen together to compute the correlation. On the
one hand, RGB is used for soft shadows and sudden illumination changes; and on the
other hand, for strong shadows the international standard CIE 1931 XYZ color space
has been tested empirically with better results; so two different matching analysis are
done. Figures 4.7 and 4.8 show the result of removing soft shadows in dusk conditions
and strong shadows in a sunny day. Finally Figure 4.9 depicts the result of removing a
sudden illumination variation.



92 Target detection and tracking

(a) (b)

(c) (d)

Figure 4.7: Soft shadow removal. (a) Original image with shadows.
(b) Background model. (c) Initial foreground. (d) Foreground after shadow removal.

(a) (b)

(c) (d)

Figure 4.8: Hard shadow removal. (a) Original image with shadows.
(b) Background model. (c) Initial foreground. (d) Foreground after shadow removal.
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(a) (b)

(c) (d)

Figure 4.9: Global illumination change managed. (a) Original image with
highlight. (b) Background model. (c) Initial foreground. (d) Final foreground.

Avoiding the problems of this technique due to the absence of imaging scale, rotation,
and perspective distortions, the method works fairly good in every tested situations,
under different illumination conditions. However, sometimes the algorithm falsely labels
pixels with lower luminance value than the background but similar chromaticity. To
solve this problem, a similar solution that the one applied in the background subtraction
stage is adopted. Rather than explicitly classifying the pixels with one particular kind
of distribution, a multidistribution statistical learning process is used [28].

The appearance of a shadowed surface shows a certain regularity even in scenes with
complex illumination conditions. This regularity is caused by several factors: the light
sources are generally stable and fixed, the foreground objects moving in the scene have
a similar scale factor, and they move following physical constraints like walls, ground,
roads, hallway, etc. Since different foreground objects block light sources in a similar
way, the shadows cast on the background surfaces are relatively similar at the pixel level.
This phenomenon is particularly strong in busy hallways or highways where different
people or different vehicles induce the same intensity variation on a surface when blocking
a light source. The repetitiveness of the appearance of cast shadows is exploited to learn
shadowed surface values. This is done by parametrizing probability density functions
representing these shadowed surfaces.

First, a weak classifier based on the normalized cross correlation explained before
is used. After that, all pixels considered as shadow are added to a multidistribution
learning algorithm, once again the Gaussian Mixture Model. In this implementation it
is called Gaussian Mixture Shadow Model (GMSM). The GMSM is composed of learned
distributions representing background surfaces when shadows are cast on them. This
continuous learning process is quite similar than the background subtraction one. For
each frame of the image sequence, a pixel is labelled as a moving cast shadow if its value
can be associated with one of the distributions stored in the GMSM at that time.
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4.3 Feature extraction and tracking

After extracting the image foreground and removing the shadow and highlight effects
and camera displacements, a new step to distinguish between different objects is done.
Due to partial and global occlusions, the detected objects could be fragmented, joined
with a close one or even lost. Therefore, the foreground blobs are not valid without a
high level object extraction and a tracking stage.

Feature-based tracking gives up the idea of tracking objects as a whole, after
obtaining the different regions through background subtraction. Even in the presence of
partial occlusion, some of the features of the moving objects remain visible, so it gives
a chance to overcome the occlusion problem. Furthermore, the same algorithm can be
used for tracking in daylight, twilight or night-time conditions, as well as different traffic
conditions, camera positions and shape changes, being able to consistently track objects
over long sequences. It is self-regulating because it selects the most salient features
under the given conditions. The idea of the algorithm is to extract and track foreground
features and cluster them into objects using proximity, motion history, speed, orientation
and the size constraints provided by the calibration.

The proposed method is called flock of features and it is based on the work of Kölsch
et al. [46]. The concept comes from natural observation of flocks of birds or fishes. It
consists of a group of members, similar in appearance or behaviour to each other, which
move congruously with a simple constraint: members keep a minimum safe distance to
the others; but not too separated from the flock. This concept helps to enforce spatial
coherence of features across an object, while having enough flexibility to adapt quickly
to large shape changes and occlusions.

FAST feature extractor [47] combined with pyramid-based KLT feature tracking is
chosen as the main tracker where the flock constraints are applied. This combination has
been chosen experimentally for its performance and better results against other methods.
Features are extracted from the foreground regions and tracked individually frame to
frame. Moreover each feature is analysed over time increasing or decreasing a level of
life in case of finding or not a matching in the following frames. If this level reaches 0,
the feature is removed or reallocated inside the object depending on the constraints of
the flock. When a feature has a match in the background image, it is considered invalid
and removed. Figure 4.10 depicts an example of a traffic scenario and the FAST features
extracted from the foreground image. Figure 4.11 shows a feature tracking example of
the same scene over time.

Figure 4.10: FAST features extracted from an image. (a) Source image.
(b) Extracted features.
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Figure 4.11: Feature tracking sequence.

Finally, the motion of the features (speed and angle) is measured for posterior
analysis. The previous feature position and the one estimated by optical flow construct
a motion vector. To avoid problems with similar directions but different angles, like
359◦ and 1◦, these vectors are considered as color in the HSV space (Hue=direction,
Saturation=speed, Value=1), and then converted into RGB space. Therefore the motion
is described by three components. The color associated to the motion vectors of the
previous example and the corresponding RGB wheel are shown in Figure 4.12. Table
4.2 depicts four examples of motion conversion to RGB space to clarify the effects.

Figure 4.12: Motion vectors considered as color features.

Speed (pix) Angle (◦) RGB code RGB color

6 1 [255, 4, 0]

6 359 [255, 0, 4]

6 153 [0, 255, 140]

2 153 [171, 255, 217]

Table 4.2: Examples of motion conversion to RGB space.
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4.4 Clustering

Usually, feature grouping works associating features directly into objects using
proximity and motion history. However, the distance between two features that belong
to the same object can be much larger than two features that belong to two nearby
objects, which can confuse the system. To efficiently deal with the problem, a multilevel
grouping algorithm is presented. First, an occlusion reasoning step is done in order
to split foreground blobs from different objects. After that, the individual features are
associated to a blob and grouped into“small”clusters depending on their motion. Finally
these clusters are grouped into object-level ones depending on the 3D sizes and motion.

4.4.1 Partial occlusion reasoning

In computer vision, an occlusion refers to the visual obstruction that an object causes
into another due to the perspective view of the camera. It is partial, if some parts of the
object remain visible, or global, if the object is not visible. In this section only partial
occlusions are studied. Further tracking steps will focus on resolving the global ones.

The first step when considering this problem is to observe the shapes of the objects
involved in an occlusion. Figure 4.13 depicts some examples of partial occlusions.

Figure 4.13: Object occlusion examples.

A common characteristic extracted from these images is that the shapes generated
by an occlusion are not uniform: non-occluded objects are generally convex, whereas
the shape of partially occluded objects become concave. An example of non-occluded
and occluded objects is given by comparing their convex hull in Figure 4.14.

Figure 4.14: Object convex hull examples before and after occlusion. The convex
hull is represented in white and the foreground blob in gray color.
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It can be seen that non-occluded objects can reach a good fit by their convex hull,
which does not hold for occluded objects. Accordingly, if there is an approximate idea of
the searched objects sizes, an occlusion can be figured out by studying the blob shapes
and their convex hulls. The analysis and description of the object shapes are important
topics in pattern recognition and computer vision, and in particular one simple shape
descriptor has been widely used in these tasks: the shape compactness. It is an intrinsic
characteristic of the object shapes defined by:

C =
P 2

A
(4.13)

where C is the value of shape compactness, A is the shape area and P is the shape
perimeter or boundary length. This way to measure shape compactness is taken from
the isoperimetric inequality [48]. The next step to evaluate if a blob is the result of an
occlusion is to compare the shape compactness of the object (Co) and the one of its
convex hull (Ch). Obviously Co is always greater than Ch, because the area of an object
is smaller than the one of its convex hull, whereas the boundary length of an object is
greater. Therefore, for non-occluded objects Ch is close to Co, and for occluded ones
Ch is smaller than Co. The ratio between both descriptors is used to discriminate both
situations. It is called compactness ratio and it is defined by:

CR =
Ch
Co

(4.14)

Another parameter used to detect an occlusion is the convexity, and it is determined
by the ratio between the areas of the blob and its convex hull as:

RA =
Ao
Ah

(4.15)

where Ao and Ah represent the area of the object and the area of the object’s convex
hull respectively. Since the denominator is always greater than the numerator, RA is
always less than one. For a non-occluded object its shape is convex and RA is close to
1, whereas for occluded objects RA is far less than 1.

The third estimator to consider a blob as an occlusion is its size. After calibrating the
camera, the relationship between measures in the 3D world and the image are known.
Therefore the approximate sizes of the pedestrians and vehicles located in the ground
plane are known. In case of occlusions these sizes will be considerably increased. If the
three parameters described above indicate an occlusion, the occlusion reasoning method
is run as described in the flowchart of Figure 4.15.

Figure 4.15: Flowchart of the occlusion reasoning method.
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An useful way to understand the shape of an object contour is to compute its convex
hull and convexity defects. Figure 4.16 illustrates these concepts using the image of a
vehicle occlusion. The gray area corresponds to the foreground blob and the coloured
areas represent the different defects of the convex hull. Finally, the red marks correspond
to the farthest points from the convex hull within each defect, also called defect points.

Figure 4.16: Blob, convex hull and convexity defects in an occlusion example.

The distance between the farthest defect point and the convex hull is taken and this
point is selected as the first cutting point. The next objective is to find an optimum
second cutting point to create a cutting line which separates the blob into two different
objects. To extract the second point, the occluded object is sequentially cut by segments
that join the cutting point with the rest of defect points. For every line, the area and
compactness ratios for each new blob are computed. The chosen cutting line is the one
that brings the maximum ratio given by the Equation (4.16). Figure 4.17 shows an
example of the process to split two occluded vehicles. Each subfigure corresponds to a
cutting line and the corresponding ratios are depicted below the images.

Ratio =

2∑
i=1

RAi + CRi
2

(4.16)

(a) (b) Ratio = 1.74 (c) Ratio = 1.54 (d) Ratio = 1.62

(e) Ratio = 1.66 (f) Ratio = 1.69 (g) Ratio = 1.77 (h) Ratio = 1.95

Figure 4.17: Example of computing a cutting line to manage an occlusion.
(a) Initial blob and convex hull. (b)-(h) Different cutting lines and ratios obtained.
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Figure 4.18 depicts some examples of occlusion reasoning using the method explained
before. As can be seen, vechicle-to-vechicle occlusions, pedestrian-to-pedestrian
occlusions and vehicle-to-pedestrian occlusions are correctly managed. This procedure
does not require prior knowledge but the known measures from camera calibration. By
using this method, most partial occlusions can be effectively handled.

Figure 4.18: Examples of occlusion management by the proposed algorithm

The algorithm is run multiple times for each frame through the whole image until
the number of blobs remains constant. Therefore occlusions with more than two objects
involved can also be handled as can be seen in Figure 4.19, with 3 cars and 3 pedestrians.

Figure 4.19: Example of occlusion management of multiple objects.
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4.4.2 Feature clustering

To group all the features from the same object, a 2-stage 3D clustering algorithm is
used. First the individual features are associated to a blob (after the occlusion reasoning)
and grouped into ”small” clusters depending on their motion. Finally these clusters are
grouped into object-level ones depending on the 3D sizes and motion.

Blob clustering

In case of the previous algorithm fails, and an occlusion is not correctly handled,
there is another chance to separate different objects by clustering the features based on
their motion. Therefore, if a blob corresponds to a single object, all its features will have
a similar RGB motion component and will be grouped together. Otherwise, the features
will be clustered into multiple objects associated to different motion characteristics.
As an unsupervised stage, it is necessary to identify the number of clusters and the
correspondence of the samples automatically. Hence, Mean Shift [49] is used as a non-
parametric method which does not require prior knowledge of the number of clusters,
and does not constrain their shape.

The main idea behind mean shift is to treat the points in the d-dimensional feature
space as an empirical probability density function where dense regions in the feature
space correspond to the local maxima or modes of the underlying distribution. For each
data point in the feature space, one performs a gradient ascent procedure on the local
estimated density until convergence. The stationary points of this procedure represent
the modes of the distribution. Furthermore, the data points associated with the same
stationary point are considered members of the same cluster. The quality of the output
is controlled only by a kernel bandwidth, and it is not critical due to objects moving with
different angles or velocities generate RGB features with a strong different component.
Figure 4.20 depicts the clustering result of the features extracted in Figure 4.11.

Figure 4.20: Examples of feature clustering represented by coloured features.
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3D model fitting

As mentioned before, an approximate size of vehicles is known thanks to the
information provided by the camera calibration. Therefore, a vehicle which has been
split into several blobs due to errors in the foreground extraction or a misclassified
occlusion can be merged. If the clusters fits into the 3D size of an standard vehicle in
the corresponding 2D coordinates and have similar motion, the clusters are merged into
a final object, represented by an ellipse. Figure 4.21 shows an example of blob merging
after splitting the initial blob due to an occlusion with a tree.

(a) (b) (c)

(d) (e) (f)

Figure 4.21: Examples of cluster merging. (a-d) Source image. (b-e) Blob feature
clustering. (c-f) Cluster merging by 3D model fitting.

4.5 Tracking

After detecting consecutively a cluster several times, a tracking stage combined
with a multi-frame validation process takes place. This final step is used to reinforce
the coherence of the detected objects over time, obtaining a more stable position,
avoiding occlusions in case the previous methods fail, and minimizing the effect of both
false-positive and false-negative detections. The multi-frame validation and tracking
algorithm relies on the Kalman filter theory in 2-D space (image plane). For this purpose,
a dynamic state model is defined considering the following state vector:

ski = {cxki , cyki , w1ki , w2ki , α
k
i , ċx

k
i , ċy

k
i , ẇ1

k
i , ẇ2

k
i , α̇

k
i }T (4.17)

where i and k correspond to the instant and number of candidate respectively, cx
and cy are the respective horizontal and vertical image coordinates for the centroid of
the cluster, w1 and w2 are the respective major and minor axis of the cluster ellipse,
and α is the motion angle. Moreover, the velocity change of the previous parameters
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is included as (ċxki , ċy
k
i , ẇ1

k
i , ẇ2

k
i , α̇

k
i ) to facilitate the prediction of the object ellipse in

the next frame. The model used to set up the transition between states is defined as:
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ẇ1
k
i−1

ẇ2
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where ∆t is the sampling time, needed to predict the position, size and angle of the
ellipses, and ~ns is the noise vector associate to the system dynamics. The prediction
stage of the filter is used to extrapolate the position of the objects in a new frame
based on a constant velocity constrain. The prediction can be associated with new
measurements or can be used to trigger detectors. A correction step uses the detection
as measurement and updates the filter state with the following measurement vector:

mk
i = {cxki , cyki , w1ki , w2ki , α

k
i }T (4.19)

Finally, Equation 4.20 represents the expression which links the measurements with
the system state, where ~nm is the noise vector associate to the measures. It is assumed
that the random variables which describe the mentioned noises are independent and
with normal distributions (~ns ∼ N(0, Q) and ~nm ∼ N(0, R)).
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After explaining the dynamic model used for the filter, the next step is to manage
the problem of the data association, one of the main issues to solve in tracking methods.
Nevertheless in this work, the developed feature tracking is very useful for this purpose.
The diagram of Figure 4.22 illustrates the proposed idea. The motion vectors in the
current frame (black lines) contain information of the current ellipse (red) and also of
the ellipse of the previous frame (blue). Therefore the association of ellipses between
frames is intrinsic of the feature tracking process. In case of some features are grouped
into a different cluster, or came from different clusters, the vote of the majority is used
for the data association.
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Figure 4.22: Diagram of data association for tracking.

Figure 4.23 depicts a sequence of images where tracking reveals fundamental. Due
to an occlusion between a vehicle and a pedestrian, a very small part of the last one
is visible and is not detected as an occlusion. However, as the objects were previously
taken into tracking, they are kept separated.

(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Example of object tracking advantages. (a-b) before the occlusion.
(c-d) during the occlusion. (e-f) after the occlusion.

At the same time, the tracking stage is able to manage two common problems of
background subtraction: the ghosts effect and the stationary objects.

The ghosts problem is associated to background regions misclassified as a foreground
object. This is due to a sudden change of the scene, that differs from the modelled
background, mainly produced by stopped objects included in the background model
which change their position. Therefore two new objects are extracted, the moving object
and the area where it was located and totally unknown for the GMM. The solution is
based on the features motion history and the ellipse tracking as follows: if a new object is
created and its position does not change from the initial one, the object is reconsidered
as background. The effect and the solution are illustrated in Figure 4.24. Since the
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beginning of the video the vehicle was stopped in the initial position. Once it changes
its position, it is detected as foreground and tracked, but not as well as the area where
it was placed, although it is also considered as foreground. After the updating time, the
ghost is absorbed by the background model.

(a) (b) (c)

(d) (e) (f)

Figure 4.24: Example of a ghost management. (a) Source image before ghost
effect. (b) Background model. (c) Foreground image before ghost effect.

(d) Source image during ghost effect. (e) Foreground image during ghost effect.
(f) Detected object with ghost managed.

On the other hand, stationary objects are moving objects considered as foreground
that stop and remain quiet longer than the background updating rate. Hence, they are
absorbed by the model as background. Tracking stage keeps them into analysis during
a certain time, until considering the object part of the background like a parked vehicle.

4.6 Experimental results

To analyse the performance of the developed approach, the algorithm has been tested
on over 2 hours of traffic videos with more than 2000 objects between vehicles and
pedestrians. The sequences include different camera views, illumination effects, shadows,
etc., in order to evaluate the method in a wide range of situations. Some examples of
the testing scenarios used are shown in Figure 4.25 and described in Table 4.3.

Video # frames Resolution Conditions Source

video1 16402 640x480 Cloudy Own sequence
video2 5244 640x480 Dusk (dark) Own sequence
video3 3332 640x480 Dusk (bright) Own sequence
video4 18296 640x480 Sunny Lunds Univ. [50]
video5 15921 640x480 Cloudy Own sequence
video6 3585 640x480 Sunny Own sequence
video7 630 768x576 Fog/rain Karlsruhe Univ. [51]
video8 4290 352x288 Cloudy Candela [52]

Table 4.3: Description of testing videos.
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(a) video 1 (b) video 2 (c) video 3 (d) video 4

(e) video 5 (f) video 6 (g) video 7 (h) video 8

Figure 4.25: Samples of testing scenarios.

Firstly, as a complement of the study of the object occlusion reasoning described in
Subsection 4.4.1, the performance of the proposed framework has been quantitatively
evaluated on the analysed sequences. From a total of 532 occlusions, the results are
summarized in Table 4.4, separated by occlusion class (pedestrian-to-pedestrian, car-
to-car, car-to-pedestrian or full occlusion) and depending on the level of the algorithm
where they were detected and managed (occlusion level, clustering level or tracking
level). Detected columns stand for the number of occlusions detected by each level, and
handled is the number of occlusions correctly managed by each level. Occlusion level
always takes part in the process and only if it can not detect or handle the occlusion, the
algorithm passes through the next level. Because of that, the numbers of the clustering
and tracking levels are smaller.

Occlusion level Clustering level Tracking level Together

Detected Handled Detected Handled Detected Handled Detected Handled Total Rate

Ped&Ped 226 213 11 11 18 15 255 239 267 0.89
Car&Car 124 115 19 18 5 4 148 137 147 0.93
Car&Ped 53 51 29 26 9 8 91 85 94 0.90

Full 0 0 0 0 22 22 22 22 24 0.91
Result: 403 379 59 55 54 49 516 483 532 0.91

Table 4.4: Quantitative evaluation of the occlusion reasoning framework.

From the results represented in the table, several conclusions can be extracted:

• Its lower ratio shows that pedestrian-to-pedestrian occlusions are the most
problematic ones. This result was expected due to the small size and motion
variability of the objects. On the other hand, and for the opposite reasons car-to-
car occlusions have the highest ratio.

• Car-to-pedestrian occlusions generate a small area an convexity hull that
sometimes does not fit with the requirements of the occlusion reasoning algorithm.
Because of that this ”detected” value is so low. However the rest of levels can deal
with the situation and are able to manage the occlusion.
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• As a single frame analysis, full occlusions can not be detected by the two first
levels. Only a multi frame algorithm as the tracking one can handle them.

• The global occlusion management ratio (91.4%) is very reasonable. It is important
to emphasize that this analysis is single frame. Therefore an error due to an
occlusion in a particular frame is not important in the whole path of an object.
The advantage of the system is the use of a multi-level framework that allows to
solve an occlusion from 3 different and complementary points of view.

Next, the global results of the application are depicted in terms of object detection
rate, recall and precision. The Detection Rate (DR) is the percentage of correctly
detected objects, the Recall (R) measures the system’s ability to identify positive
samples, and the Precision (P) is the fraction of retrieved instances that are relevant.
These two last indicators are defined as:

Recall =
TP

TP + FN
(4.21)

Precision =
TP

TP + FP
(4.22)

where TP stands for the number of true positives (objects correctly detected at
least the 80% of their path), FP stands for the number of false positives (unexpected
detections or object splits) and FN is the number of false negatives (missing detections).
These parameters are manually extracted with the final tracking results. In order to join
all indicators into one, the F-measure (F) is defined as a measure of the test’s accuracy
by:

F = 2 · precision · recall
precision+ recall

(4.23)

For a better understanding and comparison of the results, the mentioned indicators
have been computed for each object class (pedestrian, car, van, etc.) and each sequence
class (sunny, cloudy, rainy, etc.), and divided into two tables (Table 4.5 and 4.6).

Object class N TP FP FN DR R P F

Car 1105 1081 91 24 0.978 0.978 0.922 0.949
Pedestrian 877 801 5 76 0.913 0.913 0.994 0.952

Bicycle 25 23 0 2 0.920 – – –
Motorbike 17 16 0 1 0.941 – – –

Van 149 134 0 0 0.899 – – –
Bus 53 28 0 0 0.528 – – –

Truck 43 33 0 0 0.767 – – –

Total 2269 2116 96 103 0.933 0.954 0.957 0.955

Table 4.5: Results obtained by object class. N: number of samples.
DR: detection rate. TP: number of true positives. FP: number of false positives.

FN: number of false negatives. R: recall. P: precision. F: F-measure.

From a total amount of 2269 objects, the system has obtained a detection rate of
93.3%. However, this value can be considered higher if the following considerations are
taken into account:
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• Pedestrians usually have a very small image size. Because of that, pedestrian-
to-pedestrian occlusions can not be always managed by the system, and a small
group of pedestrians (commonly 2, rarely 3 or more) sometimes are considered as
a single pedestrian. This issue decreases the DR and increases the FN, but is not
considered crucial, because at least the system detects one pedestrian. R, P and F
are affected by the same reason. Figure 4.26 depicts an example of this situation.

Figure 4.26: Example of non detected occlusion by two pedestrians.

• Bicycles and motorbikes produce a detection rate of 92% and 94.1% respectively.
However only 3 of these objects were missing, again due to an occlusion with a
car with similar motion. Similarly, for a counting system, considering one object
instead two is a mistake, and the DR is decreased, but the error is acceptable. An
example is shown in Figure 4.27.

Figure 4.27: Example of non detected occlusion by a car and motorbike.

• The low detection rate obtained for vans, buses and trucks, is caused by their
size. Comparing an standard 3D size of a car with a bigger vehicle can derive into
blob splitting if the occlusion reasoning detects any substantial convexity defect.
Therefore it does not mean they are not detected; they are detected twice and it
is considered a detection error. The good point is that they are the less common
vehicles. Nevertheless this is a future line to improve the system. Figure 4.28
represents an example of correct and wrong detection cases due to the mentioned
effect.

Figure 4.28: Example of correct and wrong detection with big vehicles.
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• There are no false negatives in vans, buses and trucks rows. This effect is caused
because all of them are always detected, although incorrectly due to the reason
explained in the previous paragraph. Consequently, the value of false positives
index in the case of cars is high, and the value on R, P, and F rates is unitary for
vans, buses, and trucks.

• The good detection rate is supported by the rest of high obtained ratios, all over
95%.

Scenario N TP FP FN DR R P F

Sunny (shadows) 901 832 39 32 0.923 0.963 0.955 0.959
Cloudy 885 841 23 43 0.950 0.951 0.973 0.962
Dusk 312 291 17 15 0.933 0.951 0.945 0.948

Rain/snow 171 152 17 13 0.889 0.921 0.899 0.910

Total 2269 2116 96 103 0.933 0.954 0.957 0.955

Table 4.6: Results obtained by scenario. N: number of samples.
DR: detection rate. TP: number of true positives. FP: number of false positives.

FN: number of false negatives. R: recall. P: precision. F: F-measure.

The results obtained by scenario show a more stable detection rate, what means
that the system is more sensitive to the object type than the sequence conditions. This
effect is represented in Figure 4.29, where the dispersion of values around the global
one is smaller in the sequence-type classification. Special interest has the ability of the
system to reliably detect vehicles with adverse weather conditions, with a detection rate
of 88.9%. The system is also able to work with different types of perspectives, since it
computes the calibration of the camera and thus considers the 3D volume of vehicles
instead of just 2D silhouettes. Therefore the scenario characteristics are not crucial for
the system, and the single ratio values are not representative by scenario.

(a) By object class (b) By scenario

Figure 4.29: Recall and precision graphs for the tested sequences represented in
Tables 4.5 and 4.6. Blue dots are associated to the single values obtained and Red

dots represent the total values.

To conclude this section, some results are graphically depicted from the sequences
described previously.
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The first sequence shows a zoom change and how the system behaves before, during
and after this process. Figure 4.30 represents the background model before the zoom
change and shows some object detections.

(a) (b)

Figure 4.30: Sequence 1 before zoom change. (a) Background model.
(b) Object detection.

Suddenly a camera zoom is detected by the image stabilization module so the
background model is restarted and the principal point computed (Figure 4.31).

(a) (b)

Figure 4.31: Sequence 1 during zoom change. (a) Image stabilization detects
zoom change. (b) Principal point detection.

Next, as a zoom change, two new vanishing points are needed to recalibrate the
camera. Figures 4.32 and 4.33 depict the search of these vanishing points.

(a) (b)

Figure 4.32: Sequence 1 after zoom change. (a) Searching vertical lines to
compute the vertical vanishing point. (b) Vertical vanishing point extraction.
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(a) (b)

Figure 4.33: Sequence 1 after zoom change. (a) Searching crosswalk parallel lines
to compute the ground plane vanishing point. (b) Ground plane vanishing point

extraction.

Finally, the new background model is recomputed, as shown in Figure 4.34 and new
detections are performed.

(a) (b)

(c) (d)

Figure 4.34: Sequence 1 after zoom change. (a) New background model.
(b-d) Object detection.

The next pages represent some samples of graphical results for other 7 sequences.
As can be seen, they provide different illumination conditions, camera positions, etc. to
cover as many possible scenarios.
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Figure 4.35: Graphic results of video 2. Samples in dusk conditions with some
occlusions.
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Figure 4.36: Graphic results of video 3. Samples in dusk conditions with some
occlusions.
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Figure 4.37: Graphic results of video 4. Samples in sunny conditions with a bus
detection.
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Figure 4.38: Graphic results of video 5. Samples in cloudy conditions with
occlusions and a truck detection
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Figure 4.39: Graphic results of video 6. Samples in sunny conditions with
representative shadows.
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Figure 4.40: Graphic results of video 7. Samples in foggy conditions
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Figure 4.41: Graphic results of video 8.

4.7 Conclusions

In this chapter, a multilevel framework for target detection and tracking has been
presented. Through four levels (image segmentation, feature analysis, feature clustering
and object tracking) the system is able to detect and track pedestrians and vehicles
with satisfactory results. The performance of the system has been described through
the results obtained by analysing over 2 hours of traffic videos with more than 2000
objects.

The main problems associated to background subtraction are managed through
a high level image analysis to detect camera vibrations and illumination changes.
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Moreover feature analysis provides useful information about moving objects (velocity,
motion direction, etc.) without any prior information or model, just two consecutive
frames. It makes the motion estimation process less sensitive to different weather
conditions, fragmented objects, etc. Even although it was not an objective of this
thesis, as can be seen in Figure 4.42, the system has very interesting results with low
artificial illumination, which give the chance to extend and improve the system for night
conditions. As demonstrated in the previous section, the system is fully adaptable to
the scene, so results are mostly independent of it.

Figure 4.42: Feature extraction in night conditions.

As shown by Table 4.4 the global occlusion management ratio is very reasonable, in
spite of being a single frame ratio. Furthermore, the good detection rates and indicators
for the global application, and the versatility of the algorithms to multiple conditions
prove that the proposed approach is a good basis for an automatic traffic surveillance
system.



Chapter 5

Conclusions and future work

A number of strategies and algorithms have been devised and described in this
work, with special interest in the camera auto-calibration process. The following
paragraphs present the global conclusions and discuss the main contributions introduced
and developed along the chapters of the thesis, pointing out the achieved enhancements,
and also addressing their limitations. This discussion guides the future work section, in
which potential evolutions of the presented work are summarized.

5.1 Conclusions

As the main objective of the thesis, a monocular system has been developed to
detect and track vehicles and pedestrians for applications in the framework of Intelligent
Transport Systems. The algorithm requires no object model or prior knowledge (only
an approximate size of the searched objects in world coordinates) and it is robust
to illumination changes, shadows and occlusions. Therefore it can work indoor and
outdoor, in different conditions and scenarios. Moreover, due to a hierarchical camera
auto-calibration process based on vanishing point extraction, the system is completely
autonomous (“plug&play”), independent of the position of the camera and able to
manage pan-tilt-zoom changes in fully self-adaptive mode.

Auto-calibration

A novel hierarchical self-calibration procedure based on vanishing points has been
presented and discussed. Depending on which elements appear in the scene and the
chance of using camera zoom, 5 levels have been established to determine the hierarchy
of each developed method and the priority of the solution adopted. It is an important
step for the final goal of the thesis, because it provides very useful information to compute
an approximate size of the searched objects, necessary for the target detection a tracking
algorithm proposed.

To test the performance of the approach, 30 sequences from different scenarios and
conditions have been used. The obtained results are really satisfactory: the low error of
the 3D prisms projections and distance measurements proves the strength of the system,
and the multiple options of the hierarchical tree provide high versatility to cover most
of the possible traffic scenarios and possible configurations without any restriction in
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terms of constraints or the need of prior knowledge. Furthermore, the system is able to
adapt the calibration parameters in case of PTZ camera displacements without manual
supervision. In case that there is no chance to auto-calibrate the camera (due to absence
of orthogonal components), an interactive tool has been developed to manually input
the sets of orthogonal lines, to allow the user to control the system in a short time.

Finally, the acceptable variation ranges of the vanishing points coordinates (studied
in the sensitivity analysis), give the algorithm a tolerance of at least 30 pixels, which
means that small errors are not critical.

Image segmentation

The proposed approach is based on the background subtraction technique. Rather
than explicitly modelling the values of the pixels as one particular kind of distribution,
each pixel is modelled by a mixture of K Gaussian distributions (Gaussian Mixture
Model), whose mean and variance is adapted over time. The use of an adaptive method
makes the system flexible to changes in the scene. Moreover the Gaussian Mixture Model
allows to work with multi-layer backgrounds, where objects with repetitive movements
that belongs to the background, like trees, are incorporated into the model.

The main problems associated to the background subtraction technique are managed
through a high level image analysis to detect camera vibrations and illumination changes.
The implemented image stabilization module neutralizes the possible camera shake and
it is able to detect PTZ camera displacements to reset the background model and restart
the auto-calibration if necessary. Moreover this module is used to compute the principal
point of the image through camera zooming for camera calibration.

In case of cast shadows and sudden illumination changes, a module to detect and
remove these foreground distortions has been implemented based on Color Normalized
Cross Correlation and Gaussian Mixture Shadow Model. It works fairly good in all
tested sequences, however, as a deterministic approach it probably will fail representing
really strong shadows where color and chromaticity information are totally lost. It is a
general problem with many proposed works but no satisfactory results, so a complete
thesis could be dedicated entirely to this topic.

Feature analysis

Foreground features are extracted and tracked using FAST and KLT techniques with
flock of features constraints. This methodology can provide useful information about
moving objects without any prior information or model. The idea of the algorithm is
to extract and track foreground features to further clustering them into objects using
proximity, motion history, speed, orientation and the size constraints provided by the
calibration. The algorithm can be used in daylight, twilight or night-time conditions,
as well as different traffic conditions and camera positions. It is self-regulating because
it selects the most salient features under the given conditions. Therefore this module
also provides a strong adaptability to the scene, to make the system as independent as
possible to external conditions.

Finally, the motion of the features is represented in a novel RGB-motion space in
order to avoid problems with similar directions but different angles, and to facilitate the
posterior clustering step.
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Occlusion reasoning and clustering

One problem associated to traffic surveillance is the high probability of occlusions,
due to the camera perspective, and the derived difficulties to extract the different targets
of the scene. To efficiently deal with the problem, a novel multilevel clustering algorithm
is presented. First an occlusion reasoning step is done in order to split foreground blobs
from different objects, based on convexity defects of the occlusion blob. After that, the
individual features are associated to a blob and grouped into “small” clusters depending
on their motion using Mean-Shift. Finally, these clusters are grouped into object-level
ones depending on the 3D sizes and motion.

The global occlusion management ratio (91.4%) is very reasonable. It has been
obtained after testing a total of 532 occlusions. Moreover it has been extracted in a
single frame analysis, hence the results in the whole path of an object are better. The
strength of the system is the use of a multi-level framework that allows to solve an
occlusion from 3 different and complementary points of view.

Tracking

After detecting consecutively a cluster several times, a tracking stage, based on
Kalman filter techniques, combined with a multi-frame validation process takes place.
This final step is used to reinforce the coherence of the detected objects over time,
obtaining a more stable position, avoiding occlusions in case the previous methods fail,
and minimizing the effect of both false-positive and false-negative detections. At the
same time, the tracking stage is able to manage two common problems of background
subtraction: the ghosts effect and the stationary objects.

Over 2 hours of video sequences were recorded and the algorithms tested on very
different situations. In general, the results depicts satisfactory detection rates and
demonstrate the effectiveness of developing every module of the approach adaptive and
self-regulating. The objectives proposed for the thesis have been widely achieved.

5.2 Future work

From the results and conclusions of the present work, several future lines for each
treated topic are devised. They correspond to aspects that have not been solved or that
need a further analysis to improve the performance of the system.

• With respect to the camera auto-calibration, an interesting improvement is related
to the recalibration process in case of PTZ displacements. The idea is to develop a
segment tracking, to use the same set of orthogonal lines to find the new position
of the previously used vanishing points.

• About shadows, a further analysis has to be done to find a general method. Testing
new ideas like probabilistic approaches are necessary to manage a problem that it
has not been solved during decades.

• For the occlusion reasoning method, an online classifier with different object
models could improve the results significantly.
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• Due to the high diversity of camera views, operating conditions and observation
objectives in traffic surveillance, there is an important lack of a common framework
and most authors use their proprietary sequences. This condition has generated
a large diverse body of work, where it is difficult to perform direct comparison
between the proposed algorithms. It would be very important to generate a public
traffic database, with a wide range of scenarios and conditions, to be able to make
these comparatives.

• Talking about commercial applications, it would be a good showcase to extend the
approach to night conditions or with an automatic counting system or an incident
detection system.

• Finally, longer experiments under new different conditions should be performed to
test the robustness of the system.
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