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Resumen

Durante los últimos años el interés por los sistema de predicción avan-
zada de trayectorias de vehículos y de intenciones ha crecido notable-
mente. Inicialmente la predicción tanto de trayectorias como de manio-
bras se ha centrado en observaciones realizadas desde puntos estáticos
tales como la infraestructura. Esto se ha debido a la falta de bases de
datos adecuadas para la predicción desde un punto de vista centrado
en el vehículo.

Esta tesis aborda el problema de la predicción de maniobras y
trayectorias en entornos de autopistas con un enfoque basado en apren-
dizaje máquina. Ante la ausencia de bases de datos apropiadas para su
desarrollo se tomó la decisión de realizar una base de datos específica
para la predicción tanto de trayectorias como de maniobras. Así nace
The PREVENTION dataset. Una base de datos grabada desde la per-
spectiva de un vehículo que incluye cerca de 6 horas de grabaciones.
Cuenta con 2 cámaras, un láser rotativo y 3 radares, además de un sis-
tema de localización diferencial y una unidad de medida inercial. Esta
base de datos incluye numerosas anotaciones manuales que permiten
identificar vehículos y cambios de carril además de las posiciones de
los vehículos.

El sistema de predicción de maniobras se basa en un arquitectura de
redes neuronales convolucionales que clasifica una imagen de entrada
en tres posibles categorías correspondientes con las acciones de cambio
de carril a la izquierda y a la derecha y la acción de continuar en el
carril actual. La imagen de entrada consta de tres canales en los que
cada uno cumple una función. El canal rojo representar el entorno,
la apariencia de la escena. El canal azul se emplea para seleccionar el
objetivo de la predicción, del cual se dibuja el contorno actual y los
pasados con diferentes niveles de intensidad creando una especie de
estela que muestra la dinámica del vehículo. El canal verde se emplea
para dibujar las estelas del resto de vehículos que actúan como elemen-
tos condicionantes de la acción realizada por el vehículo representado
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en el canal azul. Esta representación no limita el numero de vehículos
en la escena y el numero de muestras que se pueden representar es de
255.

Para poder comparar el rendimiento del sistema de predicción de
intenciones con la capacidad humana de predicción se ha realizado un
estudio que evalúa la capacidad de predecir o detectar cambios de car-
ril, así como la tasa de acierto de estos. Las métricas usadas para
comparar el desempeño tanto de las personas como del sistema de
predicción son la tasa de acierto y la anticipación. f El sistema de
predicción de trayectorias adapta una red neuronal convolucional de-
sarrollada para la clasificación de células en imágenes clínicas. Esta
red extrae características a diferentes niveles de profundidad para fi-
nalmente generar una imagen de salida. La red ha sido modificada
para tomar a la entrada una imagen 3D que codifica una secuencia de
imágenes de un solo canal. La salida es similar a la entrada solo que
codifica la misma secuencia en el futuro. Los vehículos son represen-
tados sobre una vista de pájaro que genera una representación gráfica
de la escena. Además, los elementos como las líneas dibujadas en la
carretera se pueden añadir en esta representación. La red es capaz de
aprender la mecánica subyacente de las interacciones entre vehículos y
el entorno para generar las posiciones de esos mismos vehículos en el
futuro.

Para poder comparar los resultados obtenidos se ha implementado
un sistema de predicción básico basado en un filtro de Kalman con un
modelo de velocidad constante como línea de partida. La predicción
de trayectorias se ha evaluado utilizando varias métricas comunes en
la literatura, tales como el RMSE, MAE, ATE y el FTE.

Palabras clave: PREVENTION, Predicción de Maniobras, Predic-
ción de Trayectorias, Aprendizaje Máquina, Factores Humanos.



Abstract

During the last years, the interest in advanced vehicle trajectory and
intention prediction systems has grown remarkably. Initially, the pre-
diction of both trajectories and maneuvers has been focused on ob-
servations made from static points of view, such as the infrastructure
because of the lack of appropriate vehicle-centered datasets.

This thesis addresses the problem of predicting maneuvers and tra-
jectories in highway environments with a machine learning approach.
A specific database for the prediction of both trajectories and maneu-
vers was created because of the lack of appropriate ones. Thus, The
PREVENTION dataset was born. A database recorded from an on-
board perspective that includes almost 6 hours of recordings. It has 2
cameras, a rotating laser, and 3 radars, as well as a differential localiza-
tion system and an inertial measurement unit. This database includes
several manual annotations that allow the identification of vehicles and
lane changes as well as the positions of the vehicles.

The maneuver prediction system is based on a convolutional neural
network architecture that classifies an input image into three possi-
ble categories corresponding to left and right lane-change actions and
the lane-keeping action. The input image consists of three channels,
each one has a specific purpose. The red channel represents the en-
vironment, the appearance of the scene. The blue channel is used to
select the prediction target, from which the current and past contours
are drawn with different intensity levels creating a kind of trail that
shows the dynamics of the vehicle. The green channel is used to draw
the trails of all the surrounding vehicles that actuate as conditioning
elements for the vehicle represented in the blue channel. This repre-
sentation does not limit the number of vehicles in the scene and the
number of samples that can be represented is 255.

To compare the performance of the intention prediction system with
the human prediction capacity, a study was carried out to evaluate the
capacity to predict or detect lane changes, as well as the lane change
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accuracy rate. The metrics used to compare the performance of people
and the prediction system are the accuracy rate and the anticipation.

The trajectory prediction system adapts a convolutional neural net-
work developed for the classification of cells in clinical images. This
network extracts features at different depth levels to finally generate
an output image. The network has been modified to take a 3D in-
put image that encodes a single-channel image sequence. The output
is similar to the input, but it encodes the same sequence in the fu-
ture. The vehicles are represented on a bird’s eye view that generates
a graphic representation of the scene. Besides, elements such as road
markings can be added to this representation. The network learns
the underlying mechanics and interactions between vehicles and the
environment to generate the positions of those vehicles in the future.

A Kalman filter with a constant speed model has been implemented
as a baseline to compare with the obtained results. Trajectory predic-
tion has been evaluated using several common metrics in the literature,
such as RMSE, MAE, ATE and FTE.

KeyWords: PREVENTION, Maneuver Prediction, Trajectory Pre-
diction, Machine Learning, Human Factors.
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Chapter 1

Introduction

1.1 Context Analysis

The transport sector brings many benefits to society and the econ-
omy. It is a critical sector in the economic and social development of
countries. The European Commission estimates the transport sector
accounts for about 5% of Gross Domestic Product (GDP). The trans-
port sector accounts for 5,6% in the US, achieving a more than $1
trillion in GDP. However, the transport sector is also responsible for
many fatalities as well as massive emissions of Greenhouse gas (GHG).

Mobility demand is continuously growing; in 2018 it reached 4.7
trillion kilometers only in the US. This number is expected to grow up
to 5,6 trillion kilometers in 2050. Freight transport demand is expected
to grow by 52% from 397 billion in 2018 to 967 billion kilometers in
2050 as a result of economic development according to [1]. According
to the World Health Organization [2], with current levels of mobility,
approximately 1.35 million people died in 2018 as a result of road
traffic crashes. Developed countries with high-incomes own 40% of the
world’s vehicles, but only 7% of the world’s fatalities take place in these
countries.

In contrast, low-income countries own 1% of the world’s vehicles
and 13% of total deaths caused by traffic accidents. This data reveals
how access to technologies can help save lives. Road traffic crashes also
cause economic losses equivalent to 3% of the gross domestic product
on property damage. In the EU, the number of fatalities in highways
represents only 8%, but an accident on a highway usually ends with
disastrous consequences.

Worldwide GHG emissions by the transport sector represent 20%
of the world’s emissions. In the Euro area, this fraction rises to 29%

1
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Figure 1.1: EU CO2 emissions by sector 1990 - 2014. * Transport includes inter-
national aviation but excludes international maritime. ** Other include fugitive
emissions from fuels, waste management and indirect CO2 emissions.

according to [3]. The US Department of Energy’s Office of Energy Effi-
ciency and Renewable Energy estimates that light vehicles and medium
and heavy trucks and buses consume more than 80% of the energy
used by the transport sector. This consumption represents more than
20 quadrillions of British Thermal Unit (BTU) equivalent to 1,7 Gt
of CO2 only in the US. Transport emissions reached 1.1 Gt of CO2 in
the EU in 2017. Figure 1.1 shows the evolution of greenhouse emis-
sions by sector in the EU zone relative to 1990 levels. All sectors
have experienced a significant reduction except for the transport sec-
tor. Transport sector emissions were growing until the global financial
collapse in 2008 when it fell to the 1999 level. The current level of
economic development is pushing the transport sector emissions up.

On the other hand, the climate crisis has set the focus on GHG. The
Paris agreement set an ambitious and global plan with the objective to
reduce GHG emissions and achieve average global warming below 2 ◦C
to the preindustrial level. The level of GHG must achieve a reduction
between 80% and 95% in 2050 in the EU area [4]. Figure. 1.2 shows
EU GHG emissions since 1990. The emissions have been decreasing
continuously since 1990. 2020 objective with 20% reduction is currently
accomplished but, 2030 target with 40% reduction seems challenging
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Figure 1.2: EU total CO2 emissions 1990 - 2050.

with the current trend. An important effort reducing GHG emissions
needs to be made by all the involved parts; governments, industries,
services, and users.

The number of vehicles on the planet has reached 1.3 billion in
2016, according to [5]. These have doubled with respect to 2003 levels.
Economic development, especially in developing countries, has brought
vehicles to as many people as never before. This fact has produced a
dramatic increase in traffic jams in almost all cities around the world.
This problem cost $305 billion in the United States alone, where every
American lost 97 hours in traffic jams in 2018, according to [6]. The
cost of road congestion in Europe is estimated to be e110 billion a
year in 2012, according to [7].

The area of Intelligent Transportation Systems and Intelligent vehi-
cles has a vital role to play building tomorrow’s automotive paradigm
facing the problems stated before. Autonomous vehicles are close to
being a reality on the road in the next years. Autonomous vehicles have
the capacity and the obligation to address the problems created by the
transport sector. Autonomous vehicles can drive efficiently by remov-
ing any irrational motivation from the decision-making process, unlike
humans. They can sense precisely the environment and act accord-
ingly in a fraction of a second. They can drive continuously, needing
no stops to rest, are not affected by distractions, and eliminating fa-
tigue. Autonomous vehicles can communicate between themselves and
the infrastructure using Vehicle to Vehicle (V2V) or Vehicle to Infras-
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Figure 1.3: SAE - Automation levels definition.

tructure (V2I) communications, being able to know the state of the
traffic at virtually everywhere, outperforming sensor ranges, and even
human perception.

The capacity of autonomous vehicles is determined by a convention
based on a reasoned agreement that logically describes the taxonomy
of the autonomous vehicle at five different levels. This SAE J3016TM
definition is not a specification and does not impose requirements, fig-
ure 1.3 shows a description of each automation level.

The reference case for automation is level 0, which is a non-
automated manual driven vehicle.

• Level 1 - Driver Assistance. Enables driver assistance on lat-
eral or longitudinal control using some environment information.
The human driver and the assistance system works together to
complete the driving action. Examples of level-1 automation are
lane-keeping or adaptive cruise control systems.

• Level 2 - Partial Automation. Characterized by assistance in both
longitudinal and lateral control. The human driver monitors the
environment and supervises the driving task. Examples of level-2
automation are lane-keeping and adaptive cruise control.

• Level 3 - Conditional Automation. The vehicle is driven in an
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automated way performing lateral and longitudinal control. The
human driver must be ready to take control as requested by the
system. Level-3 automation example is traffic jam chauffeur.

• Level 4 - High Automation. The system performs all the driving
functions under certain conditions. The possibility of removing
driving actuators characterizes this level. The driver may have
the option to control the vehicle if actuators do exist. Examples
of level-4 are driverless taxis in restricted areas.

• Level 5 - Full Automation. The automated driving system is ca-
pable of performing all the driving tasks under all conditions.
Human attention or intervention is not required.

Nowadays, commercial vehicles have reached automation level 3.
Manufacturers have developed different systems to perform automated
driving tasks. Tesla launched the autopilot system in October 2014,
offering semi-autonomous driving and parking capabilities, the cur-
rent version of autopilot has unexpectedly reduced its original capabil-
ities. Toyota launched the Safety Sense system as part of its strategy
to develop high-end safety systems in March 2015. Nissan’s models
equip the ProPilot system, which develops lane-keeping and Adaptive
Cruise Control (ACC) with hands-on-wheel. Hands-off functions are
only available in Japan since May of 2019. In February 2017, Volvo
introduced hands-off ACC and lane-keeping functions in some of their
high-end models under the label PilotAssist. VW group enabled the
Traffic Jam Assist system in July 2017. This system performs ACC
and lane-keeping under 55 kph with hands-off-wheel. Mercedes’ au-
tonomous assistance pack is denominated Driving Assistance Plus and
performs hands-off lane-keeping and ACC at no speed limits.

Autonomous vehicles will share the road with human-driven vehicles
for a long period of time. During this period autonomous vehicles
will take advantage of V2V communications sharing their information
and trajectories between them. However, human-driven cars with no
predefined trajectories will be a source of uncertainty.
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1.2 Motivation

Automated vehicles became a reality in the ’80s with two research
projects: the EUREKA project and the Autonomous Land driven Ve-
hicle project. Both bring automated cars that can drive at limited
speed, using a sort of sensors in restricted areas. At that point, inter-
actions with non-automated vehicles did not represent a real challenge.
Nowadays, commercial vehicles have reached automation level 3 and
have become part of our lives. They will replace human-driven vehicles
in a distant future, but both will coexist for a long period.

In the meanwhile, automated vehicles will share the road with man-
ually driven cars. In this scenario, different behaviors and interaction
will take place between automated and non-automated vehicles. Auto-
mated vehicles could share their trajectories between them and actu-
ate in a coordinated manner. However, non-automated vehicles cannot
share their trajectories or intentions because they are self-generated at
the moment the driver reveals them.

In this scenario, automated vehicles need to deal with uncertainties
relative to manually driven vehicles while planning their trajectories.
Prediction becomes a pivotal ability to understand what other traffic
agents will do even if they do not communicate their intentions. Hu-
mans also make predictions and incorporate them into their decision
making. Human drivers are affected by some limitations such as dis-
tractions, reaction time, and tiredness, or fatigue. However, humans
still are the best driving machines.

Graphics Processing Unit (GPU) computation has reached levels
that enable complex image processing in real-time. The possibility
to understand images, even video sequences faster and better than
humans, brings the opportunity to predict the evolution of traffic scenes
overcoming human reasoning. Automated vehicles can take advantage
of their prediction capabilities by anticipating conditioning situations.
Driving performance can be enhanced in terms of efficiency and safety,
resulting in smoother traffic flow and fewer blocking situations. For
this reason, a novel trajectory and maneuver prediction system based
on image sequences and sensor data is presented. This new ability
brings higher standards of safety and efficiency to automated vehicles.

1.3 Applications

The proposed models can be applied to predict trajectories and ac-
tions on highway scenarios. The scope of these models is not only
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autonomous vehicles but also human-driven vehicles.
Autonomous vehicles can improve their trajectories by using pre-

dictive motion or action models. Moreover, automated vehicles below
automation level 4 must be in contact with the driver all the time.
Providing the proper information to the driver is of utmost importance
to reduce the driver’s stress. Representation of future actions or tra-
jectories of surrounding vehicles would help the driver to understand
ego-vehicle behavior.

Non-automated vehicles can take advantage of these models using
them as an input of their Advanced Driver Assistance System (ADAS),
such as collision warning, collision avoidance, or ACC.

In both cases, these models help to improve safety and driving ef-
ficiency through higher fuel efficiency and higher traffic flow. This
contribution helps to reduce the three main problems generated by the
transport sector: traffic congestion, GHG, and injuries or fatalities.

1.4 Document Outline

After the introduction in Chapter 1, Chapter 2 reviews in depth the
most relevant works and datasets that address the trajectory or ma-
neuver prediction problem.

Chapter 3 presents The PREVENTION Dataset, a dataset explic-
itly built to develop the work presented in this Ph.D. dissertation and
fulfill identified shortages in this research area. Sensor setup, calibra-
tion, and synchronization mechanisms are detailed in this chapter, as
well as the generated metadata information.

Chapter 4 presents a social study conducted to evaluate human
capacity to anticipate lane changes in sequences extracted from The
PREVENTION Dataset. This study sets a baseline based on human
capabilities.

Chapter 5 describes the two learning-based predictive models devel-
oped. One focuses on lane change prediction based on vehicle motion
and prediction target integration in an RGB image. The other one
focuses on surrounding vehicles’ trajectory prediction by integrating
vehicle detection and road information as image sequences in a Bird
Eye View (BEV) representation.

The results of the proposed algorithm are presented and discussed
in Chapter 6. Finally, Chapter 7 contains the conclusions, main con-
tributions and future research lines.





Chapter 2

State of the Art

In this chapter, the state of the art is reviewed in detail. This includes
a review of the vehicle trajectory and maneuver prediction works as
well as the available datasets employed to develop these works.

In the first section, the available datasets are reviewed analyzing
three aspects: the acquisition point of view, sensor setup, and avail-
ability of data. An important distinction must be done regarding the
location of the sensors, which can be on board a vehicle or from an
extrinsic point of view. The first type has the disadvantage of be-
ing affected by occlusions. However, the results achieved when using
these datasets do not change at deploy time. The second type is very
valuable for understanding and evaluating the motion and behavior of
vehicles and drivers under different traffic scenarios. However, they
cannot be fully applied to onboard applications.

The second section reviews vehicle trajectory and vehicle intention
prediction work with a special emphasis on the prediction target. The
prediction target could be the ego vehicle or surrounding vehicles.
Datasets that provide measure from an exterior point of view, such
as infrastructure acquisition systems or drones have special considera-
tion. The ego vehicle does not exist, consequently there is not a clear
distinction between ego vehicle and surrounding vehicles’ predictions.
The main difference is that the data is not affected by occlusions as it
is when recording with onboard sensors. They cannot be considered
strictly ego vehicle centered because data are not recorded from this
point of view, but according to the availability of surrounding vehicle
information. This could be the most similar definition.

9
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2.1 Datasets

This section reviews the available datasets on which most of the vehicle
trajectory research or action-based predictions are based. Some of
them are publicly available but others were developed for a specific
purpose and the authors did not consider publishing them openly to
the scientific community.

• NGSIM I80 dataset [8]
The NGSIM program was launched by the U.S. Federal Highway
Administration in 2005 to provide a knowledge base for developing
micro and macroscopic driving models for traffic flow optimiza-
tion.

The researchers collected detailed data on the vehicle’s trajecto-
ries along I-80 in the San Francisco Bay Area. The study area was
approximately 500 meters long and consisted of a six-lane high-
way, including a high occupancy lane and an entrance lane. Seven
synchronized cameras, mounted on top of an adjacent building,
recorded vehicles passing through the area. The vehicle routes in
the images are converted into coordinates in the road reference
system, providing accurate positioning of the lane level and loca-
tions relative to other vehicles with a sampling rate of 10 Hz. This
dataset has a total duration of 45 minutes, divided into three 15-
minute parts. These periods represent the build-up of congestion
and total congestion during the peak period.

In addition to vehicle trajectory data, the I-80 dataset also con-
tains computer-aided design and GIS files, aerial orthorectified
photos, highway loop detector data in and around the study
area, raw and processed video, signal synchronization settings
on adjacent arterial roads, traffic signal information and loca-
tions, weather data, and aggregate data analysis reports. The
full I-80 dataset is freely available at the NGSIM Web site at
http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

• NGSIM HW101 dataset [9].
The NGSIM HW101 is the second part of the NGSIM program.
Following the same goal, on June 15, 2005, researchers collected
detailed vehicle trajectory data on US 101, also known as the
Hollywood Freeway, in Los Angeles, CA.

The study area was approximately 640 meters long and consisted
of a five-lane highway. An entry/exit lane was also present in
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Figure 2.1: NGSIM I80 and HW101 Recording Areas.

Figure 2.2: Tracking examples of KITTI Tracking Dataset.

the experiment area. Eight synchronized digital video cameras,
mounted from the top of the 36-story building next to the highway
(as shown in figure 2.1), recorded vehicles passing through the
study area. The trajectories of the vehicles in the images are
transformed into lane-level trajectories with precise positioning
and relative location to the vehicles. The dataset is built with
three 15-minute parts from 7:50 a.m. to 8:35 a.m. The available
data is the same as the NGSIM I80 dataset.

• KITTI dataset [10], [11]
The KITTI benchmark suite has provided different types of
datasets for many research purposes. The object tracking bench-
mark can be used for trajectory prediction. There are eight differ-
ent classes labeled, but only cars and pedestrians are used for this
benchmark. A total of 50 sequences compose the whole dataset,
which has 21 training sequences and 29 test sequences. For each
sequence, 2D and 3D bounding boxes of pedestrians and vehicles
are labeled in the image plane and in the point cloud. The goal of
this dataset is to solve the tracking problem between frames, but
the ground truth can be used to predict vehicles or pedestrians’
trajectories.
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Figure 2.3: RobotCar data example.

• Oxford RobotCar dataset [12]
The Oxford RobotCar dataset contains over 100 repetitions of a
consistent route through Oxford city over a period of a year. The
dataset captures many different combinations of weather, traffic
status, vehicles, and pedestrians along the time with long-term
changes such as construction and roadworks. The recording plat-
form is a vehicle equipped with six cameras, Light Detection and
Ranging (LiDAR), GPS, and Inertial Navigation System (INS).
The primary purpose of this dataset is the development of long-
term localization algorithms. This dataset provided a vast amount
of data that could be used for trajectory prediction in urban sce-
narios. However, there is no information beyond the raw data.

• PKU dataset [13]
The dataset published by the University of Peking contains data
recorded on Beijing’s fourth ring road for 97 minutes and over
69 km. The mobile platform has a GPS-IMU system for global
location tasks and four HOKUYO LiDAR sensors (two long and
two short-range) to measure the position of the surrounding ve-
hicles and the road boundaries. The LiDAR range is 40 and 20
meters for the long and short-range, respectively. Positioning and
environment measuring have different data rates, the ego vehicle
location has a frequency close to 20 Hz, and the data coming from
the LiDAR is approximately 10 Hz. The data set presents four
types of records. The ego-motion log contains orientation (roll,
pitch, and yaw), global positioning (north and east), and speed
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Figure 2.4: LISA-A testbed.

(north and east). Surrounding vehicle detections include posi-
tion (x and y in local and global), speed (x and y in local and
global), and dimensions (width and length). Road boundaries are
recorded as 2D points (x and y) defining the limits of the road in
local and global reference systems. Also, the ego lane changes are
recorded, including the type (left or right), the start and end time
of the maneuver, and the initial condition of the ego vehicle in the
maneuver (x, y, and heading). There is no lane level information
in this dataset.

• LISA-A dataset [14]
The LISA-A dataset is a dataset with more than 100 hours of
real-world recordings including a mobilEye sensor, eight cameras,
six LiDARs, five radars, and GPS/acIMU sensors. The mobilEye
sensor provides parameters of the lane structure. The raw data is
available for all of the sensors. The metadata extracted from the
raw measures consists of labels that identify each vehicle in each
camera with a bounding box. No information about maneuvers or
road positioning of vehicles is available. The actual downloadable
file of the dataset includes only four sequences 100 seconds length
approximately. The biggest part of the 100 hours dataset is not
publicly available at present.

• ApolloScape dataset [15]
The ApolloScape dataset was released in 2018, and it has been
adding content since its release. The ApolloScape includes some
datasets for different research topics. One of them is oriented to
trajectory prediction problems.
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Figure 2.5: Scenes example of Apollo Trajectory Prediction dataset.

This dataset contains trajectories manually labeled using cam-
era and LiDAR sensors. The data was collected in the city of
Beijing in urban-scenarios mostly. They offer a sample of ap-
proximately 100 minutes of data with highly complicated traffic
scenarios mixing vehicles, riders, and pedestrians. The frame rate
of the provided annotations is at 2 Hz, which is insufficient to de-
pict precisely the motion of vehicles in nonlinear trajectories such
as lane changes or turn maneuvers.

The trajectory files are represented as 1-minute sequences, which
include annotations for each frame with a unique id for each ve-
hicle, object type, position, size, and orientation. This dataset is
focused on trajectory prediction only, and action-oriented predic-
tions such as lane changes cannot be applied due to the lack of
road or lane structure information.

• Berkeley DeepDrive BDD100K [16]
Berkeley DeepDrive is a video-based dataset with more than
100,000 sequences of videos recorded in many different hours,
weather conditions, and traffic scenarios. This dataset was
recorded for more than 50,000 drivers, making it useful to de-
velop models with a variety of ego-vehicle behaviors. The images
are 720p at 30 Hz complemented with Global Positioning Sys-
tem (GPS) location and Inertial Measurement Unit (IMU) data.
This dataset provides high-level information such as lane mark-
ings, drivable area, and object detections on 100,000 images, one
for each sequence. Additionally, instance segmentation is pro-
vided for a tenth of them. As far as only one image is labeled
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Figure 2.6: DeepDrive dataset features representation.

in each sequence, this dataset cannot be used for time-based al-
gorithms until they provide fully labeled sequences. However, it
has a huge potential to develop vision-based algorithms due to
the vast amount of data.

• Honda Driving Dataset (HDD) [17]
The HDD is a challenging dataset to enable research on learn-
ing driver behavior in real-life environments. Three cameras
and one LiDAR are employed to sense the environment generat-
ing all-around 3D information and a visual representation of the
middle front of the vehicle. A GPS with Real Time Kinematic
(RTK) capability and an IMU complete the sensor setup. More
than 100 hours of data were recorded in the San Francisco Bay
area. The dataset is oriented to develop action-based predictions.
Events are labeled in four different dimensions, goal-oriented ac-
tion, stimulus-driven action, cause, and attention. However, the
scope of these annotations is limited to the ego vehicle.

The Honda 3D Dataset (H3D) [18] is an extension from the HDD
with 3D tracking information, more than 1 million of 3D bounding
boxes are labeled in 160 scenes representing more than 27,000
frames with pedestrians and interactive traffic. The labels are
annotated at a rate of 2 Hz and linearly propagated to generate
10 Hz labels. This data rate is not enough to develop trajectory or
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Figure 2.7: Tracking examples of HDD.

Figure 2.8: Recording Area HighD dataset.

maneuver prediction algorithms as it happens with ApolloScape
dataset.

• HighD dataset [19]
The highD data set is a new set of naturalistic vehicle trajec-
tory data registered on German highways. Using a drone, the
typical limitations of established traffic data collection methods,
such as occlusions, are overcome by aerial perspective. Traffic was
recorded in six different locations and includes more than 110500
vehicles. The trajectory of each vehicle, including its type, size,
and maneuvers, is automatically extracted. Using state of the art
computer vision algorithms, the positioning error is typically less
than ten centimeters. Although the data set was created for the
safety validation of highly automated vehicles, it is also suitable
for many other tasks such as traffic pattern analysis or parame-
terization of driver models.

The data available in the HighD dataset are positions of 110500
equivalent to 44500 kilometers traveled with a standard error
below 10 centimeters and maneuvers conducted, such as lane
changes. Positions, speed, and statistics such as time headway
and Time to Collision (TTC) are also provided.

• Argoverse dataset [20]
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Figure 2.9: Example of Argoverse motion forecasting dataset.

The Argoverse dataset is a dataset recorded in the cities of Mi-
ami and Pittsburgh. High-definition digital maps of the involved
area are available providing precise lane level information, driv-
able area, and ground height. The sequences were recorded with
a vehicle equipped with 2 LiDARs, GPS, a 7 cameras rig with
360 degrees coverage running at 30 Hz, and a stereo camera sys-
tem running at 5 Hz. Labels of 3D detections are provided for
113 sequences with more than 10,000 tracked objects. This data
is oriented to develop tracking algorithms but can be also used
to develop trajectory and maneuver predictions. The Argoverser
motion forecasting is a collection of more than 320,000 sequences
each 5 seconds long. Each sequence consists of a 2D bird-eye view
position of each tracked object sampled at 10 Hz. The sequences
represent lane changes, pass through intersection and vehicles tak-
ing left and right turns.

• Waymo dataset [21]
The dataset contains independently-generated labels from LiDAR
and camera data. LiDAR 3D bounding boxes are provided for ve-
hicles, pedestrians, cyclists, and traffic sings. The detections are
represented as 7-DOF bounding boxes in the vehicle’s reference
frame. Each detection has a unique ID identifier. The same ob-
jects are also labeled in the camera images providing 2D bounding
boxes with a unique ID without correspondence with LiDAR IDs.
This dataset provides 1000 segments, each one with 20 seconds
of driving with 3D bounding boxes labels. Camera 2D bounding
box labels are only provided for 100 of those segments.
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Figure 2.10: Waymo dataset example.

The datasets presented in this section are summarized in table 2.1.
Regarding the perspective from which the data was recorded, two types
can be distinguished basically: in-vehicle and third point of view such
as infrastructure or drones. Ego and Top labels denote the in-vehicle
and third point of view, respectively. The sensor setup is marked using
a tick mark (X) or an asterisk symbol (∗). The tick mark represents
that the sensor data is available. The asterisk symbol shows that
the sensor data is not available but has been used to compute some
information.

Static recording systems from a top view perspective have many ad-
vantages over in-vehicle recording systems. They are unaffected by oc-
clusions and provide a complete understanding of the scene. Drivers do
not know they are being recorded, and their behavior is not altered. A
static recording system captures more vehicles than mobile platforms,
but the vehicles travel a shorter distance and are visible for a shorter
period. The most challenging problem when an algorithm is developed
using this type of dataset is implementing it on in-vehicle applications.
Datasets recorded from onboard sensor have the advantage of being
directly deployed, and there is not a gap between development and
deployment. On the contrary, the data are affected by occlusions, and
there is a level of uncertainty that is not present in datasets recorded
from heights.

If we take a look at the sensors used to build these datasets and
consequently used in the autonomous vehicles that will develop au-
tonomous tasks, we can find three types: camera, LiDAR, and radar.
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The most common are cameras, followed by LiDARs, and lastly, radars.
However, radars are the most common sensor in nowadays vehicles.
NGSIM and Berkeley Deep Driver datasets are only based on image
systems. Others, such as Honda 3D and PKU are based on LiDAR.
Most of them use a combination of camera-based system and LiDAR
solutions. However, only the LISA-A dataset provides radar detec-
tions, which are one of the best choices between expensive LiDARs
or complex stereo camera systems for object detection, in spite of its
robustness. Nowadays, brand new cars are commonly equipped with
radar sensors as an essential element for proactive security systems
such as Automatic Emergency Braking (AEB) or Collision Avoidance
System (CAS). Also, low-autonomy tasks such as speed planning are in
charge of radars in the ACC systems. Datasets recorded from a mobile
platform are usually equipped with a GPS system for global positioning
tasks, and they are often complemented with an IMU. On the opposite
side, the HighD and the NGSIM datasets are both recorded from an
external and static point of view. Their measurements are referred to
a static road reference system, and it does not need global positioning.

Datasets are built to fulfill a shortage in a specific field or research
topic. For some fields or research topics, a massive amount of raw
sensor data is enough, but the most valuable part of a dataset is the
metadata or annotations generated by experts to label a specific cir-
cumstance. The metadata of each dataset has been carefully reviewed
to establish the useful information they provide to develop predictive
trajectory and action works. The Oxford RobotCar only provides raw
sensor data because its primary purpose is the long-term vision and
LiDAR-based localization. Berkeley Deep Drive is based only on a
monocular camera system that is not able to generate range measure-
ments; for this reason, trajectories cannot be generated. All the other
datasets provide trajectories in a cartesian-metric reference system.
Some such as KITTI, H3D, ApolloScape, and LISA-A provide trajec-
tories in the ego-vehicle reference system, others such as NGSIM or
HighD provide trajectories in the road reference system due to their
specific point of view. The Argoverse dataset provides trajectories in
a semi-global map-based reference system with an arbitrary origin of
coordinates. Finally, the PKU dataset provides trajectories in both
local and global reference system.

Lane level information is necessary for a precise scene understanding
in urban and highway scenarios. Lanes establish dependencies between
vehicles, especially in highway scenarios, by creating virtual walls that
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can be crossed or not, depending on the situation. Lane level infor-
mation endows driving relationships between vehicles establishing roles
such as lane following, overtaking, or cut-in and cut-out. The lane-level
information allows for an easier understanding of vehicle trajectories
by simplifying curved trajectories to straight ones in the lane reference
system. KITTI, PKU, ApolloScape, H3D, and Waymo datasets do
not provide lane-level information. NGSIM and HighD datasets nei-
ther provide lane-level information, but they were recorded in straight
stretches of highways, and the trajectories are intrinsically referred to
the lane reference system. Argoverse dataset does not provide lane
detections but provides a detailed map of the recording area built with
the lane’s axes.

Only HDD and HighD datasets have event labels. HDD labeled the
events made by the ego vehicle and the cause of this event, i.e., a stop-
action caused by congestion. The events present in the HighD dataset
are the number of lane changes developed for each vehicle during the
time while crossing the recording area. More complex event annota-
tions such as maneuver classification are promised to be available soon.
Potentially, lane-change maneuvers can be easily computed if the lane
information and the trajectories are available. The lane change event
takes place when the center of the vehicle crosses the line between two
lanes. The beginning of the lane change is much more relevant than
the lane change event, and it is harder to define.

The most extended dataset is the Oxford RobotCar dataset with
more than 200 hours of recordings. However, there are no detections
nor annotations. The Argoverse motion forecasting dataset presents
more than 300,000 sequences 5 seconds length of surrounding vehicle
positions. However, 5 seconds of data are sometimes not long enough
for motion recognition and long-term predictions. Following this line,
Waymo dataset provides fewer samples but with a longer duration.
H3D, Berkeley Deep Drive, and Apolloscape present trajectories la-
beled at an insufficient frame rate, 2 Hz in the best case. LISA-A and
KITTI dataset has appropriate frame rates (10 Hz), but they have a
minimal amount of data. Finally, the PKU dataset has an appropriate
data rate and length but, lane-level information is not available. We
can highlight HighD between the top-view datasets for its length com-
pared with NGSIM datasets. These static datasets can be affected by
an underlying problem. The area covered by them varies from 420 to
640 meters. This area could be driven at highway speed in between 12
and 25 seconds, depending on the length and the road congestion.
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NGSIM I80 Dec 2006 3 seq @ 15 min 10 Hz Top X X X

NGSIM HW101 Jan 2007 3 seq @ 15 min 10 Hz Top X X X

KITTI June 2013 50 seq 10 Hz Ego X X RTK X

Oxford RobotCar Nov 2016 100 seq @ 2 h 33/10 Hz Ego X X GPS

PKU Jan 2017 97 min 10 Hz Ego ∗ GPS X

LISA-A Sept 2017 4 seq @ 100 sec 30/10 Hz Ego X X X GPS X X

ApolloScape Mar 2018 100 min 2 Hz Ego X X GPS X

Berkeley DeepDrive May 2018 100K @ 1 frame 30 Hz∗ Ego X GPS X

H3D June 2018 160 seq 2 Hz Ego X GPS † X

HighD Oct 2018 16 h 25 Hz Top ∗ † X X

Argoverse Motion Forecasting June 2019 320K seq @ 5 sec 10 Hz Ego ∗ GPS X X

Waymo Aug 2019 1000 seq @ 20 sec 10 Hz Ego X X RTK X

PREVENTION∆ Oct 2019 11 seq @ 30 min 10 Hz Ego X X X RTK X X X

Table 2.1: Datasets Overview

(∗) represents the sensor data is not available but has been used to compute some information.
(†) represents features that are not provided but can be computed from existing data.
(∆) PREVENTION dataset is part of the contributions of this thesis.
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2.2 Trajectory and Lane Change Prediction

In this section, state of the art related to trajectory and maneuver
prediction problems is reviewed in detail. There are several essential
points to take into account to understand the evolution and differences
between different algorithms and models. Table 2.2 shows the topology
analysis followed in this review attending to their most differential
advances.

Prediction problem Trajectory / Maneuver

Prediction target Ego vehicle /Surrounding vehicles

Sensors Camera / LiDAR / Radar

Variables Vehicle State Context

Position Road structure

Speed Lanes

Acceleration Lane marking

Heading Appearance

Yaw rate

Width

Length

Interaction Surrounding Vehicles

Free space

Time domain Past / Present / Future / Recurrent

Table 2.2: Key Variables of Analysis in Prediction Works

Prediction problems are clearly divided into two kinds of predic-
tions: trajectories reviewed in subsection 2.2.1 and maneuvers in sub-
section 2.2.2. However, sometimes trajectories are used as a basis to
predict maneuvers and vice versa, and they contribute in both fields.

Another distinction can be made attending to the prediction tar-
get. Some works addressed ego predictions problems such as [22], [23],
and [24]. These works are valid to develop simple models using ego
spatiotemporal variables only but also complex models with a huge
amount of information such as ego and surrounding trajectories and
precise context information. However, the prediction of ego trajecto-
ries or maneuvers is useless, and these models need to be extrapolated
to other traffic participants. The information used in these models is
usually extremely accurate, but the same information computed from
other vehicles is commonly poorer or simply unavailable. This kind
of problem happens when the quality and nature of measures changes
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from the development set to the deployment one. The same problem
arises when the non-onboard sensor’s information (i.e., infrastructure)
is used to develop models.

Sensors represent another differentiation point. Conventional sen-
sors such as cameras and LiDARs generates world representations that
need to be processed to extract information. Others, such as radars,
provide a kind of discrete representation of the world which can be used
directly. Visual or graphic information such as images and even point
clouds are commonly used to extract high and low-level information,
but they can also be used as raw inputs thanks to the development of
GPUs and Convolutional Neural Networks (CNNs).

The mainstream data used in vehicle prediction problems are ve-
hicle state variables such as position, speed, acceleration, orientation,
and yaw rate. These variables define the kinematic and dynamic state
of a vehicle, and they are useful to understand past, present, and fu-
ture self-evolution. The vehicle’s width and length, together with its
state, define the occupation of the road space. Contextual variables
are sometimes considered with the aim of focusing predictions. This
variable tries to represent in a numeric way the scene. As far as roads
are defined by human agreements to use them, they can be described
by parameters such as lane marking, the number of lanes, lane width,
lane curvature, type of lines, entries, and exits. Context can also be
represented as images that contain all previous context variables in a
non-numeric way.

Vehicles use to share the road with other traffic agents such as cars,
motorcycles, buses, and trucks. Ego actions, and consequently, ego
trajectories, are caused and affected by these other traffic participants.
The same mechanism takes place in the opposite direction, being the
ego vehicle a source of change for other vehicles. The road is an inter-
connected place where all agents are directly or indirectly affected by
the behavior of each other. This is a crucial point to develop vehicle
prediction algorithms. These interactions can be taken into consider-
ation by using free space representations or the surrounding vehicles’
state.

Time is an essential element for predictions. Predictions must be
based on past and/or present information and must describe an element
in the future such as positions or maneuvers. The kind of prediction
can be considered as a single-point prediction when a model generates
some information at a specific and fixed time in the future. Other
models can generate a few samples of prediction at different but fixed
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time horizons; this can be defined as multi-point predictions. A spe-
cial kind of prediction can be performed with recurrent models. They
can iteratively perform a single-point prediction being able to perform
virtually unlimited multi-point predictions.

2.2.1 Trajectory Prediction

Trajectory prediction problem addressed the forecasting of one or vari-
ous future positions of an analyzed vehicle or a group of them. Trajec-
tories denote a set of positions with a corresponding timestamp, but a
single predicted position combined with the current position can build
a trajectory. Positions are used to define a precise location, sometimes
in 2D or 3D reference systems, sometimes in local or global frameworks.
Independently of the reference system used, positions are described by
numbers. It is not odd to think that positions or trajectories predic-
tions are tackled from numeric approaches.

Almost all of the works analyzed are based on the use of variables
that describe the motion history of the vehicles ussing their state rep-
resentation in a numeric way [25], [26], [27], [22], [28], [29], [30], [31],
[32], [33], [34], [35], and [36]. Only one approach addressed the trajec-
tory prediction problem from a graphical perspective [37] generating
predictions directly over images.

The state of the art is reviewed following these three categories:
data used as input and how it is structured, type of generated data,
and databases used to develop the models.

2.2.1.1 Input Data

Input variables come from simple position sequences to complex road
representations. Attending to the nature of the data, it can be classified
into three main groups.

• Kinematic and dynamic variables. Variables such as position,
speed, acceleration, heading, and yaw rate define the state vec-
tor in a detailed manner. Early works made use of this vehicle
representation (total or partially) considering only the prediction
target by itself [25], [26], [22]. These approaches learn simple
physical-based motion models that cannot anticipate any maneu-
ver until it has been explicitly observed in the input sequence.
Usually Kalman Filter (KF), Gaussian Mixture Models (GMM),
Artificial Neural Network (ANN), and Recurrent Neural Network
(RNN) are commonly used in these approaches.
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• Contextual variables. Next-level features, such as lateral and lon-
gitudinal positions, lateral speed and acceleration, or heading er-
ror represents the combination of the vehicle state and the lane
parameters. This transformation includes lane information indi-
rectly, which allows models to learn road-based vehicle trajecto-
ries [30], [32]. Lane-keeping trajectories are denoted by a centered
position on the lane; however, lane change trajectories will aban-
don the central part of the lane and generally end up in the central
area of the adjacent lane.

• Interaction variables. Vehicles interactions are even more condi-
tioning than lane or road configurations, but its integration can
be considered in many different ways. The main problem adding
interactions is that the number of involved vehicles varies.

A simple method to include interactions was addressed in [32]
where the TTC is appended to the vehicle state input. TTC
represents in a single number if one vehicle is approaching others
and raises the necessity of a lane change or a speed reduction.
However, the decision to change to the left or right lane depends
on many factors, such as the availability of the adjacent lanes or
social agreements (i.e., overtaking is only allowed by one of the
lanes).

A fixed spatial configuration is proposed in [31] to incorporate
all the existing vehicles into the algorithm. Ther road space is
divided into small and equal areas to define a lattice where the
state vector (position and speed) of each possible existing vehicle
is incorporated together with the ego vehicle state vector. This
approach is limited in the number of vehicles, but divisions are
small enough to represent all the possible vehicles. However, this
approach aims to model how surrounding vehicles’ trajectories are
affected by the ego vehicle but do not model interaction between
surrounding vehicles.

In [33] the same approach is followed, dividing the road area into
smaller rectangular divisions. The state vector of each vehicle is
represented in each corresponding division. The difference arises
with the use of a so-called Convolutional Social Pooling block.
This block learns spatial interdependencies of the existing motion
histories and tries to assess how the surrounding vehicle config-
uration affects the prediction target. In contrast with [31], this
approach is centered on the prediction target. However, it can be
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applied to any other traffic participants, but the availability or the
quality of the measures will change. In [36] a simple vehicle-centric
structure is proposed to integrate adjacent vehicle interactions at
six tentative positions around the centered prediction target.

Other proposals [28], and [29] store road configuration examples
generating a knowledge database using trajectory stretches and/or
the road occupancy configuration. This approach does not need
a fixed representation structure as information can be stored in-
dependently of the number of vehicles present in the scene.

Vehicles’ state, road configuration, interactions, and context infor-
mation are clustered under appearance in images. In [37], video se-
quences are used to generate future vehicle locations at the image ref-
erence system by means of Generative Adversarial Network (GAN).
This approach avoids dealing with the problem to codify or model
context or interactions; on the other hand, predictions are limited to
the image domain.

2.2.1.2 Output Data

Prediction models are clearly conditioned by road structure and the
vehicle configuration. Based on this, different kinds of trajectories can
be predicted, attending to the nature of the used algorithms.

Attending to the number of trajectories predicted them could be
classified into two categories:

• The first category is the single-vehicle trajectory prediction, where
the prediction is focused only on one vehicle and surrounding vehi-
cles act as conditioning factors. These approaches need to repeat
the prediction process for each existing vehicle; however, this is
the common approach.

• The second category is multi-vehicle trajectory predictions, where
all considered vehicles are predicted at the same time. This prob-
lem approach was developed in [34].

Attending to the type of trajectories generated they can be classified
into two categories:

• Discriminative models. These models generate fixed trajectories.
These kinds of trajectories are the most common, and they are
generated usually by ANN, KF, RNN, and CNN models.
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• Generative models. This kind of model learns probability distri-
bution functions from data. Predicted trajectories are generated
according to these probability distribution functions. The benefit
of these kinds of models is that uncertainty is intrinsically mod-
eled. In [34] and [37] this kind of trajectories are generated by
means of Conditional Variational Autoencoder (CVAE) and GAN
respectively.

2.2.1.3 Datasets

The databases used to develop the reviewed works are limited to some
private custom datasets and two public datasets. Some works such
as [25], [22], [31] use their own datasets which are not publiciy available.
In these cases all this datasets were recorded from onboard sensors.
The main public dataset used for trajectory predictions is the NGSIM
dataset, it has been used in a wide of works [27], [30], [32], [33], [34],
and [36]. A small minority [28] and [29] made use of the PKU dataset.
As it can be observed the development of prediction trajectory systems
uses massively the NGSIM dataset. This dataset offers precise and
non occluded data from an infraestructure point of view in a highway
straight stretch.

Finally, table 2.3 presents in a simple view a comparison between
the reviewed works. Note that references to ego are related to works
that addressed the ego trajectory prediction problem. In the case of
works based on non-onboard sensors (NGSIM), the label single is used
to denote single trajectories that could be considered equivalent to ego
trajectories. Reference to center are relative to a vehicle considering
all their surrounding vehicles, which are abbreviated with notation
surr. The prediction type is denoted with the letters D and G for
discriminative and generative models, respectively.
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Authors Year Dataset Kinematics Context Interaction Model Type Target

Hermes et al. [25] 2009 Own Ego - - ANN-RBF D Ego

Ammoun et al. [26] 2009 Own Ego - - KF D Ego

Ranjeet et al. [27] 2010 NGSIM Single X - NN D Center

Wiest et al. [22] 2012 Own Ego - - GMM G Ego

Houenou et al. [28] 2013 PKU Ego - All surr. CYRA D Ego

Yao et al. [29] 2013 PKU Ego - All surr. Database D Ego

Yoon et al. [30] 2016 NGSIM Single - - ANN D Center

Altché et al. [32] 2017 NGSIM Single X TTC LSTM D Single

Kim et al. [31] 2017 Own Ego + surr X 36X21 Grid LSTM D Surr

Deo et al. [33] 2018 NGSIM Center + surr X 3X13 Grid LSTM + CSP G Center

Hu et al. [34] 2018 NGSIM Center + Surr X SIMP CVAE G All

Benterki et al. [36] 2018 NGSIM Center X 3X2 Grid LSTM-GRU D Center

Roy et al. [37] 2019 VISDRONE Single X Appearance GAN G Single

Table 2.3: Trajectory Prediction State Of the Art Summary
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2.2.2 Lane Change Prediction

The definition of vehicle trajectory prediction is precise, to know where
the vehicle will be some time into the future; there are no discrepancies
about that. However, the lane change prediction can be understood in
two ways. The literature refers to a lane change prediction as to the
detection of a lane-change maneuver before the center of the vehicle
crosses the lane markings. However, the lane change is a maneuver
developed over time with a lane crossing event approximately in the
middle. A prediction strictly means to state something before it hap-
pens. According to this definition, a lane-change maneuver is only
predicted if it is stated before it has started. Some works intend to
predict lane changes before they have started by labeling a few sam-
ples before its beginning. However, the results of these works do not
evaluate the performance in terms of predictions. We will adopt the
literature definition in this document, assuming a prediction as a de-
tection before the lane change event.

Lane change or maneuver prediction problem is very similar to the
trajectory prediction problem. The differences are only differences in
the output of the problem. While trajectories are mainly numerical
problems, maneuver predictions are treated as a classification prob-
lem. The basis of both problems are correlated, and it is common
to find works that addressed the trajectory prediction problem with a
previous maneuver prediction and vice versa. Future trajectories can
be better predicted if the maneuver is known in advance, as well as
maneuvers can be better predicted if the trajectories are known. Mo-
tion representations are the ground of predictions, either trajectories
or actions. They can be complemented with context information, wich
is mandatory since maneuvers are related to road structure, especially
in highway scenarios. Interactions between vehicles are also a determi-
nant factor for the analysis of vehicle maneuvers. A study conducted
to analyze the most relevant features to predict lane changes [38] con-
cludes that the lateral offset and the lateral speed w.r.t the lane axis
together with the relative speed to the preceding vehicle are the three
most relevant features. These three variables are a combination of
kinematic variables (position and speed), context (lane structure), and
interaction (relative speeds).

Similarly, we will follow a review of the state of the art analyzing
input variables, type of generated outputs, and the dataset used to
develop these models.
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2.2.2.1 Input Data

The input variables represent the information used to classify or predict
actions or maneuvers of analyzed vehicles. These can be classified into
three main groups attending to its nature:

• Kinematic and dynamic variables. Most of the works that ad-
dresed the lane change or maneuver prediction problem do it by
using kinematic and dynamic vehicle state variables [39], [40], [41],
[38], [42], [43], [44], [45], [46], [47], [33], [48], [49], [50], [51]. There
are only two exceptions that are not directly based on this vehi-
cle state representation. In [52] the parameters of the vehicle’s
bounding box are used to classify the action developed by the ve-
hicle. These parameters can represent somehow the vehicle state.

• Context information. Context represents road structure, and ac-
tions or maneuvers are road-based actions. Lane changes are
specifically related to the change from one lane to another, so
lane level information is mandatory at least to be able to gener-
ate action labels and highly recommendable as input. The most
common way to include context information is by using kine-
matic and dynamic vehicle variables at the lane reference sys-
tem [30], [44], [48], and [50], or include variables such as the dis-
tance to the lane markings [38].

• Interaction variables. Interactions arise the need for maneuvers.
They can be incorporated in many different ways, from simple
ones such as relative speeds [38], to complex scene representa-
tions. The most used representation model is by using a fixed
vehicle configuration which commonly is a 3x2 grid representing
the front and rear vehicles on the prediction target lane and the
two adjacent lanes [51], [50], [49], and [33], and a small variation
of 3x3 grid such as in [39], and [42]. Special consideration is made
in [39] where a 3-agent model is proposed, including ego vehicle,
prediction target on an adjacent lane, and the preceding vehicle
of the prediction target. This specific configuration is a simpli-
fication of the 3x2 or 3x3 configuration for cut-in lane-change
maneuvers. Each element of the grid is filled using different vari-
ables, usually relative positions and speeds. These representations
are vehicle-centric approaches. However, in [53], vehicle positions
are used to generate an occupancy map over a road scheme rep-
resentation. This approach is road-centric, and the number of
interacting vehicles is not limited nor their spatial distribution.
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2.2.2.2 Output Data

Prediction algorithms can differ in their output in three different ways.
One difference is the number of predicted actions. None of the works
addressed this problem from a multi-target prediction problem. All
the models are focused on a single vehicle to perform predictions. This
prediction can be extended to all the traffic participants by repeating
the prediction process taking each vehicle as the prediction target.

Attending to the type of predictions, this can be generative or dis-
criminative.

• Discriminative models. These models produce maneuver proba-
bilities evaluating how the input data is similar to each proposed
maneuver. This type of output is generated by Case-Base Rea-
soning (CBR), Radio Frequency (RF), Support Vector Machine
(SVM), ANN, or CNN models.

• Generative models. These models produce maneuver probabil-
ities evaluating how the input data looks like data generated
from each type of maneuver. This type of output is generated
by Bayesian Network (BN), Dynamic Bayesian Network (DBN),
GMM, Gaussian Process Neural Network (GPNN), and Long
Short-Term Memory (LSTM) encoder-decoder models.

Attending to the prediction time horizon, predictions can be classi-
fied into two categories:

• Detections. Detections refer to the classification problem. A lane-
change maneuver is a time-consuming action that concludes when
the vehicle arrives at its destination lane. The lane change event
is considered as the point when the center of the vehicle crosses
the divisor line between the lanes. Classifying the lane change’s
ongoing action before the lane change event takes place is also
considered a prediction. Most of the works addressed the lane
change prediction problem from this perspective.

• Predictions. Prediction term refers to point out the lane change
some time in advance with respect to the starting point of the lane-
change maneuver. Some works such as [42], [44], [49], and [50] con-
sider the lane change prediction problem in this manner. However,
their results are provided in terms of classification accuracy in-
stead of lane change anticipation. Since the complete lane change
is labeled as a positive detection, the system’s actual performance
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to predict lane changes in terms of anticipation is masked. A
deeper analysis of the results would reveal if these models can
predict lane changes before they started.

Attending to the predicted maneuvers them can be classified into
two categories:

• Lateral maneuvers. Two choices are possible in direction; left
or right lane changes. However, the lack of left and right lane
changes represents the third state, which means a lane-keeping
status. More complex actions such as cut-in, cut-out, merge,
incorporation, or exit are particular cases of left and right lane
changes that involve the road configuration and the viewpoint.

• Longitudinal maneuvers. These are defined in [33] as a combina-
tion with the lateral maneuvers. The stop maneuver represents a
reduction from its original speed. This kind of longitudinal classi-
fication is oriented to generate previous knowledge of multimodal
trajectory prediction systems.

2.2.2.3 Datasets

The datasets used for the maneuver or lane change prediction problem
are wider in variety concerning the trajectory prediction case. The
use of public datasets is limited to two of them. Some works such
as [30], [33], [48], [50] use of the NGSIM, one more time, this dataset
has demonstrated to be a reliable source of data for vehicle prediction
algorithms. The second public dataset used was the PKU dataset, and
the works based on it [46] and [47] are based on the public and private
part of this dataset. Most of the works [39], [40], [41], [38], [42], [44],
[53], [49], and [51] are based on private onboard datasets. This effort
to create datasets to address the lane change prediction problem from
onboard perspective reveals the interest from the automotive industry.

Finally, table 2.4 presents a comparison between the reviewed works.
Note that references to ego are related to works that addressed the ego
lane change prediction problem. The label single denotes an isolated
vehicle analysis for works based on NGSIM. Reference to center are
relative to a vehicle considering all their surrounding vehicles, which
are abbreviated with notation surr. The prediction type is denoted
with the letters D and G for discriminative and generative models. P
label differentiates predictive works from purely classification ones.
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Work Input Prediction

Authors Year Dataset Kinematics Context Interaction Model Type Target

Kasper et al. [39] 2012 Own Ego + surr X 3x3 Grid BN G Surr

Graf et al. [40] 2013 Own Ego + 2 veh X 3 Veh model CBR D Surr

Kumar et al. [41] 2013 Own Surr X - SVM D Surr

Schlechtriemen et al. [38] 2014 Own Ego + surr X Rel. speed GMM G Surr

Schlechtriemen et al. [42] 2015 Own Ego X All surr. RF+GMM G-P Ego

Yoon et al. [30] 2016 NGSIM Single X - ANN D Single

Bahram et al. [44] 2016 Own Ego + surr X Game Theory BN G-P Surr

Yao et al. [46], [47] 2017 PKU Ego + surr - All surr SVM D Ego

Lee et al. [53] 2017 Own Ego + surr X BV Grid CNN D Surr

Deo et al. [33] 2018 NGSIM Center + surr X 3X2 Grid LSTM G Center

Deo et al. [48] 2018 NGSIM Center + surr X 3X2 Grid LSTM CSP G Center

Patel et al. [49] 2018 Own Center + surr X 3X2 Grid SRNN D-P Center

Li et al. [50] 2019 NGSIM Center + surr X 3X2 Grid DBN G-P Center

Li et al. [52] 2019 DBNet Ego + surr - Bounding Box PCA+SVM D Ego

Kruger et al. [51] 2019 Own Ego + surr X 3X2 Grid GPNN G Center

Table 2.4: Lane Change Prediction State Of the Art Summary
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2.3 Conclusions

Previous sections have introduced existing public databases and several
algorithms and methods to predict future vehicle states in two different
dimensions, maneuvers, and trajectories. The conclusions extracted
from this in detail review are exposed below:

• There are many pubic datasets available for the development of
different Intelligent Transportation System (ITS), even vehicle
prediction models. However, none of them is thought with this
main purpose. There is a lack of datasets to develop specific ma-
neuver prediction and trajectory prediction systems. Maneuver
predictions need specific human work labeling actions. Precise
labeling, defining actions in time, is critical. Humans can under-
stand the scene and figure out or measure these action boundaries.

• Top-view datasets are massively used to develop predictive sys-
tems due to their quality and absence of misinformation. Real-
world driving scenarios do not provide this kind of information,
and future deployable systems must be developed from onboard
sensor databases. Lane change prediction technology is closer to
the real-world due to its significant interest by ADAS. For this rea-
son, many works are developed using their own onboard datasets,
which are private.

• Most of the reviewed works are limited regarding their input data
structure. Some are limited in the number of vehicles, others in
vehicle configurations, and others are limited to a collection of
experiences.

• Road level information is widely used. The acquisition of this
kind of information is hard, and it could not be precise when it is
retrieved from onboard sensors.

2.4 Main Contributions

After the review of the state of the art, and considering the discussion
presented before, the main contributions of this thesis are:

• Development of the PREVENTION dataset. An onboard sensor
dataset with the aim to provide specifically designed data for tra-
jectory and lane change prediction models. This dataset is open
and free access to the scientific community.
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• A social study has been conducted to evaluate human performance
to predict lane changes. This study evaluates the PREVENTION
scenes to set the basis for further comparisons between new re-
search works. This study has proved that humans react to ongoing
lane changes instead to predict them. This fact proves that there
is room for improvement over human driving.

• Two novel CNN based models without input restrictions regarding
the number of surrounding vehicles are presented in this thesis.
The maneuver prediction approach is based on a CNN model and
uses appearance to include context and interactions between traf-
fic participants. The trajectory prediction approach is based on
a CNN model and uses vehicle graphic representations to pattern
interactions. The trajectory prediction system is able to predict
trajectories for all the vehicles at a single prediction operation
instead of one-by-one predictions.





Chapter 3

Dataset

This chapter describes the PREdicion of VEhicle inteNTION (PRE-
VENTION) dataset. This dataset has been created in the context of
this thesis to fulfill identified shortages for the development of vehi-
cle intention and trajectory prediction models. In contrast with many
other works, this dataset has been made publicly available. The PRE-
VENTION dataset has been used to conduct a study to evaluate the
human performance predicting lane changes and to develop trajectory
and maneuver predictive models. The study and the developed models
will be detailed in chapters 4 and 5 respectively.

The content of this chapter is structured as follows: section 3.1.1
provides detailed information of the recording platform and the sensor
setup, metadata and manual labels are presented in section 3.2, and
finally, the dataset details are described in section 3.3.

Conclusions derived from the creation of this dataset are summa-
rized in section 5.3.

3.1 Recording Platform

In this section, all the low-level aspects of the PREVENTION dataset
are carefully detailed, including a description of the recording plat-
form, sensor setup, calibration procedures, and time synchronization
mechanisms.

The recording platform is an automated Citroën C4 equipped with
a sort of sensors and hardware. Figure 3.1 shows the mobile platform
with the sensor setup on top of it.

37
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Figure 3.1: Mobile platform and sensors setup.

3.1.1 Sensor Setup

The image acquisition system consists of two Grasshopper3 cameras
mounting a 12.5 mm fixed focal length lens. The cameras cover a
Field Of View (FOV) of 48◦ in the front and the back. The sensor is a
SONY CMOS Bayer array with WUXGA (1920×1200) resolution that
can be triggered up to 163Hz.

A Velodyne HDL-32E generates point clouds at a constant rate of
10 Hz. Each cloud is defined by an array of 3D points with 32 vertical
and more than 2000 horizontal samples with all-around coverage and
+10◦ to -30◦ vertical FOV. The detection range of the LiDAR is up to
100 m with an error lower than 2 cm.

Three radars complete the perception system. A Continental
ARS308 long-range radar is located centered on the front bumper with
a detection range up to 200 m and a FOV up to 56◦. Real-time scan-
ning of tracked objects is provided at 16 Hz. Two Continental SRR208
blind-corner radars are installed in both corners of the front bumper
with a detection range up to 50 m and a FOV up to 150◦. Tracked
objects’ information is provided at a rate of 33 Hz approx.

A Differential Global Navigation Satellite System (DGNSS) Trimble
Net R9 Geospatial performs the localization task with RTK capabil-
ity. Geographical coordinates are generated at 20 Hz with differential
corrections received through the 3G/4G network and a Bluetooth con-
nection.
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The Controller Area Network (CAN) bus of the vehicle is monitored
continuously, and many variables such as steering position, braking
pressure, throttle position, speed, acceleration, and gear are available
and logged.

Finally, an IMU MPU6050 complements the localization task. This
low-grade IMU in combination with the CAN bus and the DGNSS data
enables better localization and ego-state estimations by means of an
Extended Kalman Filter (EKF) [54] and a dynamic vehicle model [55].

3.1.2 Data-logging

Data-logging is carried out by three different computers. The central
computer is the control computer of the vehicle, which oversees reading
data coming from CAN bus, radars, IMU, and DGNSS. This computer
generates the ego-vehicle log with the raw data and the time when it
was received. A second computer stores the images coming from both
cameras. The data flow can reach up to 6 Gbps when the cameras are
triggered at their maximum rate. However, in this application, they are
triggered at the LiDAR spinning rate, close to 10 Hz generating a data
flow of 360 Mbps, which can be supported for continuous operation.
The last computer is dedicated to read the LiDAR input and generates
the trigger for the cameras. The custom cloud video file with the
LiDAR measures is stored on this computer. The log files with the
triggering and acknowledgment timestamps of each image are recorded
on the same computer.

3.1.3 Ego-Position Estimation

An EKF has been used to fuse the information coming from the
DGNSS, the IMU, and the CAN bus of the vehicle. The state vec-
tor x̂ is estimated using the measure vector z, the non-linear process
model f , and the observation model h according to the eqs. described
in [56], where E and N are the easting and northing (world) coor-
dinates respectively, φ is the heading or forward direction, v is the
longitudinal speed and v̇ is the longitudinal acceleration.

x̂ =
[

E N φ v φ̇ v̇
]T

(3.1)

z =
[

E N v φ̇ v̇
]T

(3.2)

x̂k = f (x̂k−1) + wk, ẑ = h (x̂k) + vk (3.3)
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3.1.4 Extrinsic Sensor Calibration

Spatial calibration between sensors has been carried out in order to
enable sensor fusion capabilities. The ego-vehicle reference system is
in the middle of the vehicle over the rear axis, where the DGNSS is
placed. The x-axis and y-axis match with ego-vehicle’s forward and
left movement directions. Consequently, the z-axis points up according
to a Cartesian right-handed system. Three groups of sensors: radar,
camera, and LiDAR have been calibrated to put together all the avail-
able information coming from the environment in a common reference
system. Figure 3.2 shows all the reference systems defined in the vehi-
cle.

Figure 3.2: Sensor reference systems in the vehicle frame. All the reference sys-
tems are Cartesian right-handed systems.

Cameras are intrinsically calibrated and extrinsically w.r.t the Li-
DAR according to the procedure described in subsection 3.1.5. Radars
are extrinsically calibrated w.r.t the vehicle reference system with a
procedure based on a Digital Map with known high-sensitive radar
elements such as traffic signals and light poles. This procedure is de-
scribed in subsection 3.1.6. Extrinsic calibration between LiDAR and
vehicle reference system is defined by a constant transformation matrix
composed with a translation vector. The LiDAR is mounted in a fixed
position over a structure built in parallel to the vehicle axes.
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Figure 3.3: LiDAR and cameras reference systems.

3.1.5 Camera and LiDAR Calibration

The extrinsic camera-LiDAR calibration process is based on plane
alignment, and it consists of three steps. The first step calibrates
the intrinsic parameters of the camera and generates the pattern cal-
ibration planes ΠC from the camera point of view. The second step
generates manually the same planes ΠL in the LiDAR point cloud. Fi-
nally, the last step finds the best extrinsic calibration matrix C

TL in
a Singular Value Decomposition (SVD) fashion and a posterior non-
linear optimization algorithm.

The camera-LiDAR calibration process estimates a homogeneous
transformation matrix C

TL, which allows the transformation of points
pL from the LiDAR reference system SL to points pC in the camera
reference system SC , and vice versa according to eq. 3.4.

pC =C
TL · pL (3.4)

Matrix C
TL can be expressed as a rotation matrix R3×3 and a trans-

lation vector t3×1, as it is shown in eq. 3.5.

C
TL =

[

R3×3 t3×1

01×3 1

]

(3.5)

In order to avoid ambiguities regarding the orientation of the cali-
bration pattern planes, its equation has been defined in eq. 3.6. Sub
index X represents the sensor point of view, C, or L for the camera
and LiDAR. The second sub index refers to the image-cloud pair i.
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ΠX,i : ax + by + cz = dd ≤ 0||(a, b, c)|| = 1 (3.6)

The extrinsic camera-LiDAR calibration process is based on plane
alignment, and it consists of three steps. The first step calibrates
the intrinsic parameters of the camera and generates the pattern cal-
ibration planes ΠC from the camera point of view. The second step
generates manually the same planes ΠL in the LiDAR point cloud. Fi-
nally, the last step finds the best extrinsic calibration matrix C

TL in
an SVD fashion and a posterior non-linear optimization algorithm.

3.1.5.1 Camera Plane Equation Extraction

The camera intrinsic calibration process estimates the intrinsic matrix
K and the lens distortion coefficients. For this purpose, the Matlab R©

Computer Vision System ToolboxTMhas been used. Knowing the pa-
rameters that model the sensor, the calibration pattern plane ΠC can
be found. Figure 3.4 shows a sample used to calibrate the camera,
which is one of the planes used for the extrinsic calibration.

Figure 3.4: Automatic pattern detection in the camera calibration procedure.
Green points represent points used to calibrate the camera, and the yellow area
represents the plane ΠC

3.1.5.2 LiDAR Plane Equation Extraction

The equation of the calibration pattern, unlike the camera, is not au-
tomatically generated for the LiDAR. It is necessary to select the cali-
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bration pattern manually in the point cloud for each camera-cloud pair
i. This process has three stages:

• Firstly, the corners of the calibration pattern are manually se-
lected; these points are denoted as PM,i.

• Secondly, a basic geometric segmentation is performed over the
entire cloud to isolate the calibration pattern. The centroid of
the calibration pattern CM,i is computed using the manually se-
lected points PM,i. An Euclidean-distance based segmentation is
performed using the semi-diagonal length of the calibration pat-
tern dCP/2 as it is shown in eq. 3.7. Afterward, the manually
selected points are used to estimate a plane ΠM,i in an RMSE
fashion. The points pj in the cloud i are filtered out if they do
not satisfy a certain distance threshold dΠ w.r.t. ΠM,i. After this
process, the cloud is pruned out, and the remaining points mostly
belong to the calibration pattern.

d(CM,i, Pj) ≤ dCP/2 ∩ d(ΠM,i, Pj) ≤ dΠ (3.7)

• Finally, a plane ΠL,i is fitted using the remaining points pj. A
closed-form robust method has been used to fit the plane (see alg.
1). Firstly, a tentative plane is computed in an RMSE fashion
using all the available points. In every iteration n ≤ N the dis-
tances to the plane dj are computed and sorted, then the points
pj, which their distances are under the percentile Pα are removed,
and a new plane is estimated with the remaining points.

Result: ΠL

ΠL = f(PJ );
for n ≤ N do

for j ≤ J do
dj = d(pj , ΠL);

end
sort(pj , based on dj);
PJ = p1, · · · , pJ·Pα

;
ΠL = f(PJ);

end
Algorithm 1: Plane Estimation

Figure 3.5 shows a graphic representation of the calibration pattern
plane extraction. Figure 3.5a shows the whole point cloud around
the calibration pattern in which the manual corner annotations are
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represented with red dots. Figure 3.5b represents a plane cross-view of
the segmented points around the calibration pattern. Blue and green
points represent points that satisfied eq. 3.7. Green points represent
inliers after the fitting procedure described in algorithm 1.
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(a) LiDAR calibration scene example.
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Figure 3.5: LiDAR calibration pattern estimation.

3.1.5.3 Camera-LiDAR Transformation Matrix Computation

The final step computes a homogeneous transformation matrix C
TL

according to the description in eq. 3.5.
The camera-camera extrinsic calibration process uses a set of point

pairs as input. However, the corners of the calibration pattern cannot
be detected in the LiDAR point cloud, and consequently, the point
correspondence cannot be established. An alternative calibration pro-
cess based on the alignment of the calibration plane pairs has been
implemented.

The n plane pairs ΠC and ΠL are used to compute matrices θC and
θL and vectors αC and αL which represents the normal plane vectors
(a, b, c), and the distances to the system reference origin d.

θC =







a1 · · · an

b1 · · · bn

c1 · · · cn





 , αC =
[

d1 · · · dn

]

(3.8)

θL =







a1 · · · an

b1 · · · bn

c1 · · · cn





 , αL =
[

d1 · · · dn

]

(3.9)

With this notation, the plane equations can be rewritten as:

θC · pT
C = αC (3.10)

θL · pT
L = αL (3.11)
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The aligning process firstly estimates the translation vector t. Eq.
3.4 can be rewritten as:

pC = R · pL + t (3.12)

The only point which is not affected by the rotation is 0L = (0, 0, 0).
Applying eq. 3.12 to 0L we have pC = t. Replacing pC by T and pL

by 0L, and subtracting eq. 3.11 to eq. 3.10 the result is:

θC · t
T = (αC − αL) (3.13)

Eq. 3.13 can be solved now in a Root Mean Squared Error (RMSE)
fashion to find the translation vector t.

The second step computes the rotation matrix R in an SVD fashion.
The rotation matrix must align the director vectors of the plane pairs,
as it is shown in eq. 3.14.

θC = R · θL

θLθ
T
C = USV

T

R = VU
T

(3.14)

Finally, a non-linear optimization algorithm finds the minimum of
an unconstrained multivariable function using a derivative-free method
[57]. R is transformed into an unconstrained vector using a quaternion
transformation. The translation vector t is appended to the quater-
nion. The cost function for the optimization routine is the mean abso-
lute distance for each image-cloud pair from PM,i to the plane ΠC,i.

When K and C
TL are computed, pL can be transformed to SC and

then into SI according with eq. 3.15






uw
vw
w







I

= K
C

T
∗
L







x
y
z







L

(3.15)

where C
T

∗
L is the simplified transformation matrix (last row is re-

moved). Figure 3.6 shows the projection of the color image over the
LiDAR scans.

3.1.6 Radar Calibration

The radar calibration procedure tries to estimate the transformation
matrix V

TR that transforms points pR from the radar reference system
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Y

Z
X

Figure 3.6: Image reprojection over the LiDAR scans after calibration.

SR to points pV in the vehicle reference system SV according to eq.
3.16. In the case of multiple radars, the transformation matrix allows
transforming points from one radar to each other in a common frame,
thus generating continuous trajectories.

pV =V
TR · pR (3.16)

Figure 3.7 shows a representation of the radar distribution and their
reference systems together with the vehicle reference system.

Radar-vehicle calibration is like camera-LiDAR calibration, but
radars have the particularity to be a 2-dimensional sensor, so the trans-
formation matrix V

TR can be split into two basic spatial operations,
a rotation R2×2 and a translation t2×1.

T =

[

R2×2 t2×1

01×2 1

]

(3.17)

The calibration procedure splits the estimation of the transforma-
tion matrix in two steps. The first one estimates the rotation matrix,
and the second one, the translation vector. The rotation matrix es-
timation is based on movement properties, but the translation vector
needs to be estimated using points correspondence. The challenge
here is to find the corresponding pair of points in the vehicle and the
radar reference system. The calibration can only be carried out in
a well-known environment. In the next subsections, the calibration
environment and the radar error propagation are described to finally
estimate the rotation and translation parameters.
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Figure 3.7: Vehicle and Radars reference systems.

3.1.6.1 Calibration Environment

The calibration method exploits the detection of high radar-sensitive
structural elements that are static, and their location is fixed in a global
reference system. The calibration environment consists of a two ways
road with two lanes per way with a roundabout at each end. There is
a sidewalk with streetlights and traffic signs on both sides of the road.
The streetlights and the traffic signals positions have been used as
ground truth in the calibration procedure. Their positions have been
measured with a DGNSS with an error lower than 2 cm. The recorded
positions are surrounding the vertical pole axis, so the pole axis po-
sition is estimated to be the centroid of the measures. The latitude-
longitude coordinates are transformed into an easting-northing refer-
ence system according to the transverse Mercator projection to get a
flat and orthonormal representation reference system. Figure 3.8 shows
the position of some of the streetlights and the traffic signals in a high
definition digital map representation of the environment.

The position of the calibration elements is transformed from the
world reference system SW to the vehicle (local) reference system §V .
A transformation V

TW is performed according to the vehicle state
vector x̂ defined in 3.1.3.



48 Dataset

Figure 3.8: Radar calibration targets on a digital map. Red spheres represent the
GPS coordinates of the calibration elements.

pV =V
TW · pW (3.18)

where V
TW is the inverse of W

TV , and it is defined as:

W
TV =







cos (φ) − sin (φ) E
sin (φ) cos (φ) N

0 0 1





 (3.19)

where φ, E, and N are ego-vehicle state variables.

3.1.6.2 Radar Measures Error Propagation

The quality of the radar measures varies from close to far detections,
from centered to lateral measures. The measurement uncertainty is a
parameter to consider in the calibration process. The radar detection
accuracy is, in general, provided in a polar reference system just like
the measures are. On many occasions, the positions are transformed
into an orthonormal reference system, according to eq. 3.20, where ρ is
the detection range, α is the direction of the detection and x and y are
the orthonormal coordinates. The error of the orthonormal coordinates
is propagated as follows:

x = ρ cos(α), y = ρ sin(α) (3.20)
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∂x

∂ρ
= cos(α),

∂y

∂ρ
= sin(α) (3.21)

∂x

∂α
= −ρ sin(α),

∂y

∂α
= ρ cos(α) (3.22)

Assuming the range error ερ and the direction error εα are indepen-
dent variables the errors εx and εy can be computed as it is shown in
eqs. 3.23 and 3.24.

εx =

√

√

√

√

(

∂x

∂ρ
ερ

)2

+

(

∂x

∂α
εα

)2

(3.23)

εy =

√

√

√

√

(

∂y

∂ρ
ερ

)2

+

(

∂y

∂α
εα

)2

(3.24)

In our case, the position accuracy is limited due to the CAN bus
communication protocol. The objects’ position has a resolution of 0.1
m, which limits the position error to a minimum value, as expressed in
eq. 3.25.

εx = max {0.1, εx} , εy = max {0.1, εy} (3.25)

When two detections i, j are used to compute the direction of the
vector formed by them by using the arctan function, the errors of both
detections are involved in the error of the resulted direction. Eqs. from
3.26 to 3.30 describe the computation of the direction error based on
the points errors.

θ = arctan (∆y/∆x) (3.26)

∂θ

∂∆x
=

−1

∆y + ∆x2/∆y
(3.27)

∂θ

∂∆y
=

1

∆x + ∆y2/∆x
(3.28)

Assuming ε∆x and ε∆y are independent variables the direction error εθ

can be computed as follows:

εθ =

√

√

√

√

(

∂θ

∂∆x
ε∆x

)2

+

(

∂θ

∂∆y
ε∆y

)2

(3.29)

ε∆x = εxi
+ εxj

, ε∆y = εyi
+ εyj

(3.30)

The error analysis of each position and the angle formed by two of
them set the basis to formulate the rotation and translation estimation
in a scoring fashion.
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3.1.6.3 Radar Rotation Estimation

The rotation calibration process estimates the radar rotation angle θR

that aligns the vehicle reference system §V and the radar reference sys-
tem SR. The matrix R is a two-dimensional rotation transformation,
according to eq. 3.32 and depends only on the parameter θR.

pV = R · pR (3.31)

R =

[

cos (θR) − sin (θR)
sin (θR) cos (θR)

]

(3.32)

As far as the relation between the radar detections and the targets
is unknown, the traditional calibration approaches based on pairs of
points cannot be conducted. An alternative methodology based on
the relative movement properties of static objects has been developed.
The trajectory described by a static object is seen from the sensor ref-
erence system as the opposite of its trajectory. If the mobile reference
system (vehicle) performs a trajectory in a straight line, the trajectory
of the static object is seen as a straight line in the opposite direction in
the sensor reference system. The angle of the trajectory in the sensor
reference system reveals the rotation angle θR needed to align both ref-
erence systems virtually. Figure 3.9 illustrates the trajectory of a static
object from the radar point of view, while the vehicle is performing a
straightforward trajectory.

Figure 3.9: Trajectory of a static object from the radar point of view while the
vehicle preforms a straightforward trajectory.

Trajectories generated by the objects are a sequence of points in the
radar reference system §R. A single trajectory P is formed by a set of
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n points p as it is defined in eq. 3.33, where the sub index represents
the time-order of the points.

P = {p1, p2, . . . , pn} (3.33)

If the trajectory represents a straight line, the orientation can be easily
computed as the arctan function of the extreme points. However, due
to the radar detection accuracy, this way is not the best. The end-
points of the trajectory are commonly in the limits of the detection
area, where the detection error is high. A set of tuples of points TP
associated with the trajectory P is defined in eq. 3.34, which generates
all the possible combinations of points in the trajectory P in a forward
time sense.

TP = {(pi, pj) | (pi, pj) ∈ P, pi 6= pj, i < j} (3.34)

The trajectory direction θ is computed for each tuple of points in
TP according to eq. 3.26. The error associated to each computed
direction εθ depends on the individual point errors. The orientation
error formula is described in eqs. from 3.26 to 3.30.

Many rotations and their associated errors have been computed for
each trajectory P. The trajectories described by many detections must
be commonly evaluated to achieve the most reliable value of θ̂. The
scoring function proposed to evaluate the set of rotations and errors
in a scoring fashion is a normal distribution N (µ, σ2) with mean value
µ = θ and standard deviation σ = εθ. The shape of the scoring
functions is shown in figure 3.10.

s1(θ̂, θ, εθ) = N
(

θ, εθ
2
)

(3.35)

Figure 3.10: Radar rotation scoring function.

The global score is computed as the sum of each score distribution,
according to eq. 3.36, where n is the total number of scored angles.
The total score distribution is normalized in order to be treated as a
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probability density function and to provide a confidence interval of the
estimation.

S1(θ̂) =
n
∑

i=1

s1(θ̂, θi, εθi
) (3.36)

Finally, the radar rotation angle θR is minus the θ̂ value with the
highest cumulative score according to eq. 3.37 due to the opposite
direction of the relative object’s movement.

− θR = argmax
θ̂ ∈ (−2π,2π]

S(θ̂) (3.37)

3.1.6.4 Radar Translation Estimation

Once the rotation between the vehicle and the radar reference systems
is known, and they are virtually aligned, the position difference be-
tween targets and detections is the translation that is being looked for.
Figure 3.11 shows a representation of the relation between the radar
measures and the world objects after the alignment process.

Figure 3.11: Radar detection and calibration target representation. The world po-
sition of the calibration targets can be computed as the sum of the ego-vehicle
localization, the radar translation vector, and the radar measure.

Translation estimation has three stages. Firstly, the world points
are transformed into the vehicle reference system, according to eq.
3.18. In order to avoid time delays between the radar detection and
the ego-estimation, static sequences are used to compute the transla-
tion vector. Secondly, the radar detections and their errors are rotated
to be aligned with the vehicle reference system, according to eq. 3.31.
Finally, the vehicle-radar translation is achieved by scoring each indi-
vidual detection-target translation.
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A two-dimensional translation vector t defined in eq. 3.38 is needed
to transform calibration targets to detections in the common vehicle
reference system and vice-versa. The parameters that need to be found
are tx and ty, which are the translation along the x and the y axis of
the vehicle, respectively.

t =

[

tx

ty

]

(3.38)

The translation vector t has been limited by using basic information
of the vehicle dimensions. The translation vector limit tL is defined in
equation 3.39 where W and L are the width and length of the vehicle
and δx and δy a safety gap to avoid possible exclusions due to the radar
detection errors.

tL =

[

L + δx

H + δy

]

(3.39)

The set of translation vectors TV is defined in eq. 3.41 as all the
combinations of translation vectors ti,j for each radar detection di to
each calibration target ctj. The translation vector is computed as it is
shown in eq. 3.40. If ti,j exceeds tL the pair di and ctj is assumed as
a wrong matching and consequently is excluded from the translation
estimation process.

ti,j = ctj − di (3.40)

TV = {ti,j | − tL ≤ ti,j ≤ tL} (3.41)

The error associated to each translation ti,j is defined as the error
vector εti

= (εxi
, εyi

) which is the result of the detection error rotation.
A similar bi-dimensional scoring function has been used to find out

the translation vector. The score function is a normal distribution
N (µ, σ2) with mean value µ = t and standard deviation σ = εt as it
is defined in eq. 3.42. The shape of the scoring functions is shown in
figure 3.12.

s2(t̂, t, εt) = N
(

t, εt
2
)

(3.42)

Finally, the global translation score is computed as the sum of each
single translation score function, as it is shown in eq. 3.43 where n is
the total number of valid detection-target translations.

S2

(

t̂

)

=
n
∑

i=1

s2

(

t̂, ti, εti

)

(3.43)



54 Dataset

Figure 3.12: Radar translation scoring function.

The estimated radar translation vector t is achieved finding the
translation vector t̂ with the highest S2 score inside the translation
limits tL according to eq. 3.44.

t = argmax
−tL≤t̂≤tL

S
(

t̂

)

(3.44)

Figure 3.13 shows an example of the radar detections after the cal-
ibration process. Detections of the three radars are commonly repre-
sented in the vehicle reference system.
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Figure 3.13: Radar reconstruction. Black circles are calibration targets, blue x are
ASR308 detections, red x are SRR-L detections, and green x are SRR-R detections.
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3.1.7 Time Synchronization

The perception system is composed of sensors of three different types;
camera, LiDAR, and radar. They are recorded on three different com-
puters. Spatial-temporal relations between measures are critical when
sensor fusion techniques are applied. Focused on this, time synchro-
nization mechanisms are deployed.

Some sensors such a radar, LiDAR, IMU, or CAN bus produce a
non-controllable data output. Others, like cameras, are actively trig-
gered, and the data output is known and expected. Two different
approaches have been used as a time synchronization mechanism to
cover both kinds of data streams.

• Uncontrollable data sources. The clock of the recording com-
puters is synchronized in a common time reference employing a
GPS Pulse Per Second (PPS) signal and a Network Time Proto-
col (NTP) server. Thus, different recording computers can add
a common time stamp to data coming from different sensors at
different locations.

• Controllable data sources. Cameras must be externally triggered,
and consequently, the data output is actively generated. Cameras
are individually triggered when the LiDAR points in the same
direction where each camera is pointing to. This guarantees min-
imum point cloud distortion in the area covered by the cameras.
A dedicated computer develops the triggering task and stores the
timestamps when the cameras were triggered and when they ac-
cepted the trigger signal, which means that the images have been
captured.
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3.2 Manual Labels and Metadata

This section describes the manual annotations and metadata gener-
ated from raw data to enrich the PREVENTION dataset. This ef-
fort focuses on providing useful high-level information from raw data.
Ground plane coefficients and lane markings are provided as comple-
mentary context information. Vehicles have been segmented in the
image and temporarily tracked, providing unique IDs for each one.
Improved vehicle trajectories are computed fusing image and LiDAR
information. Furthermore, finally, manual annotations of observed ac-
tions such as lane changes are provided.

3.2.1 Ground Coefficients

The LiDAR points are used to determine the principal plane of the road
structure. The plane model is fitted using a fixed region around the
ego-vehicle. A cube with 20 meters edges is defined to select the points
used to segment the plane. The ground plane coefficients have been
computed using a RANdom SAmple Consensus (RANSAC) algorithm.
The ground model is used to remove ground points and to generate
top-view representations.

3.2.2 Vehicle Detections and Tracking

Focusing on vehicle intention and trajectory prediction tasks, vehicle
detections are segmented and labeled with a unique ID. The segmen-
tation of the relevant actors is automatically generated using the De-
tectron framework [58]. To do so, the top-class state-of-the-art Mask-
R-CNN [59] model with a ResNet-101 [60] backbone is used as in-
stance segmentation engine. The raw output detections are provided
as bounding boxes and contours. Moreover, the temporal integration of
the detections is provided. First, the detections with a confidence value
lower than 0.5 are filtered out and considered as false positives. Then,
a non-maximal suppression algorithm is applied. Figure 3.14 shows an
example of automatic vehicle detection after the filtering process.

Finally, detections are temporally associated using a Hungarian Ma-
trix algorithm [61]. The parameter used as the distance between el-
ements is the inverse of the modified Intersection over Union (IoU).
Eq. 3.45 presents the modified IoU, where A1 and A2 are the evalu-
ated contour areas. The vehicle shape could change along frames being
affected by perspective, becoming bigger or smaller. There is no case
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Figure 3.14: Vehicle detection example.

where the intersection of two areas can be greater than the largest of
the areas, and this can happen when two shapes of the same object
are evaluated at a different time. This formula tries to adapt the IoU
to this time-varying representation problem.

mIoU = A1 ∩ A2/ min {A1, A2} (3.45)

If the two detections are linked, the new detection adopts the ID of
the previous one, creating a sequence of detections for the same ID.

3.2.3 Precise Trajectory Generation

LiDAR has an extremely accurate range detection. However, the an-
gular resolution is limited by its turning rate. For our configuration,
spinning at 10 Hz, the LiDAR angular resolution is 0.179◦. This num-
ber could seem small, but it is amplified by the detection range when
a polar to cartesian transformation is applied. In contrast, the camera
has a much higher angular resolution. A 1920 pixel width with a 12,5
mm focal length lens, the camera angular resolution is 0.027◦ . Table
3.1 shows how the angular resolution affects the horizontal error versus
the detection distance. The camera is much better than the LiDAR
regarding the horizontal resolution and the corresponding lateral error.
Despite the camera goodness, it does not provide range measures, so
the camera cannot produce 2D or 3D detections. Improved position-
ing, and consequently, improved trajectories can be generated fusing
LiDAR range and horizontal camera detections.

An image point (u, v) cannot be transformed directly into the 3D
camera reference system. The pin-hole camera model generates a 3D
straight line equation for each given point (u, v) in the image plane,
according to eq. 3.15. This means that multiple solutions are possible
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Target Distance 10 20 50 100 [m]

Camera Resolution 2.2 4.4 10.9 21.9 [mm]

HDL-32E Resolution 15.6 31.2 78.1 156.2 [mm]

Table 3.1: Horizontal Positioning Resolution.

but knowing one of the coordinates of the point xC , yC , or zC , the
others are fixed. Making use of the camera-LiDAR extrinsic calibra-
tion described in 3.1.5, the LiDAR detections can be transformed into
the camera reference system and be used to solve the indeterminacy
problem. The key is to select the most accurate measure from each
sensor as it was exposed above. The x and y coordinates are generated
using the precise grid representation of the camera. The z coordinate,
also called depth, comes from the LiDAR. The z camera coordinate
is mostly related to the x coordinate of the LiDAR according to the
sensor configuration (see figure 3.3). Eq. 3.46 shows the transforma-
tion from polar to cartesian LiDAR coordinates where ρ is the range,
φ is the elevation angle, and θ is the azimuth angle. Note that lateral
resolution affects yL mostly because of the sin(θ) term, however, xL is
affected by the cos(θ) term which is much less sensitive to the change
in the area where θ resolution and ρ takes relevance. This happens at
far distances in the front and the back of the vehicle.

xL = ρ cos(φ) cos(θ)

yL = ρ cos(φ) sin(θ)

zL = ρ sin(φ)

(3.46)

Combining the camera and the LiDAR, the measurement range is
extended virtually to 100 meters. However, due to the LiDAR layers
distribution, the maximum detection range over the ground plane is
reduced to 75 m. Figure 3.15 shows the relevant LiDAR layer dis-
tribution regarding this limitation. The first tilted down layer has an
elevation of −1.33◦, this layer intersects with the ground plane approx-
imately at 85 m. However, the vehicles are not in contact with the road
on the front or back bumper. Assuming a maximum clearance of 0.3
m w.r.t the ground plane, the maximum detection distance decreases
to 72 m. The horizontal layer can detect vehicles with heights above
the LiDAR location (2 meters), such as vans, trucks, and buses, and
the detection range is not reduced.

For a precise trajectory reconstruction fusing image and LiDAR
data, two things are needed: an image coordinate (u, v) and the cor-
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Figure 3.15: LiDAR detection range.

responding depth. The depth is provided as a LiDAR measure with a
very precise xL coordinate.

3.2.3.1 Image Labeling

Manual labeling of all the vehicles in all the frames is a monotonous
time-consuming task. A state-of-the-art Median-Flow tracker algo-
rithm has been used in order to semi-automate the labeling process.
Initially, the tracker is set up with a Region of Interest (ROI) con-
taining the desired key point to be tracked and consecutively updated.
This supervised tracking reduces the labeling time, and the labeler
can always change the points and reinitialize the tracking if the per-
formance is not good enough. It is important to note that the tracked
key point will be used to determine the vehicle location, so it must be
laterally centered on the vehicle.

Figure 3.16 shows an example in which the vehicle center is labeled
a single time, and it is correctly tracked for more than 30 frames with-
out modifications. The green rectangle represents the area tracked by
the algorithm, and the red plus symbol is the ground truth for the
corresponding key point. Commonly the band logo is used as the key
point for the tracking because it is commonly placed in the middle of
the front and rear bumper. Other times the license plate is used as the
key point as well.
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Figure 3.16: Vehicle key point tracking using Median-Flow tracking algorithm.
From left to right, tracker initialization and key points after 1, 2, and 3 seconds
of tracking. Different zoom levels are applied in each image, 1, 2, 4, and 8 zoom
factor respectively.

3.2.3.2 Depth Estimation

Once the vehicles or a part of them are labeled, it is necessary to
assign a depth value or z coordinate to this region. The z coordinate
is computed using the LiDAR point cloud. This process has four steps:

• First, the LiDAR points under 0.2 m from the ground plane are
removed for better depth estimation.

• Second, the LiDAR point cloud is projected over the image plane.

• Third, the points that fit inside a vehicle detection are associated
with that vehicle.

• Finally, the closet point of each vehicle is used as a depth estima-
tion for that vehicle detection.

The vehicle’s 3D coordinates can be computed in the camera ref-
erence system using the image coordinate and the depth value. Fig-
ure 3.17 shows an example of the trajectory reconstruction using the
Median-Flow tracking algorithm and the depth estimation. This rep-
resentation shows two trajectories, one in the back of the vehicle (with
negative longitudinal values) and other in the front of the vehicle (with
positive longitudinal values). The red trajectory was generated select-
ing the points manually in the point cloud. The low lateral resolution
of the LiDAR produces lateral jitter coordinates. The green trajectory
uses the manually selected points in the LiDAR as depth value and
manual annotations on the image. This trajectory is the best that can
be achieved fusing LiDAR and camera data but with a high manual
effort. Note that even using jitter LiDAR points, the lateral coordi-
nate does not jitter because of the camera lateral resolution. The blue
trajectory is computed using the semi-automatic procedure described
above. This method outcomes LiDAR trajectories and reduces manual
labeling effort.
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Figure 3.17: Camera and LiDAR-based trajectory reconstruction.

3.2.4 Maneuver Registration

The essential feature when addressing the lane change and trajectory
prediction problem is the lane change annotations. These annotations
record the events and actions that take place on the road. Events or
actions can be classified into two categories attending to its duration.
They can be instant actions, such as the blinker’s trigger, the activation
of the braking light, or the moment when the vehicle crosses the divisor
line between two lanes, or actions developed over the time, such as lane
changes. Regarding the type of action or event, the most common in
highway scenarios are the lane changes. A lane change can be a left
or a right lane change. This set can become more complicated if the
ego-lane is included in the classification. There could be cut-in and
cut-out maneuvers combined with left or right lane changes. Merging
actions from entry ramps or leaving actions to exit ramps can be also
combined with the primary type of lane changes.

All the lane changes and relevant observed actions have been care-
fully labeled. The lane-change maneuvers are meticulously reviewed;
images are visualized in forward and backward sense to establish pre-
cisely the starting frame of the lane changes, the frame when the vehicle
crosses the divisor line between lanes, and the moment when the action
has finished. The following criterion is used to set the beginning of the
lane change: the earlier from the beginning of the lateral movement or
the blinker’s activation. Note that the blinker’s activation could take
place a few seconds before the vehicle begins its maneuver.

Figure 3.18 shows an example of a lane change labeling. Figure
3.18a is the first frame when the turn indicator is seen activated. This
frame sets the beginning of the lane-change maneuver. Figure 3.18b
shows the first frame when the lateral movement of the vehicle is ob-
served, 24 frames later of the blinker activation. Figure 3.18c shows the
frame corresponding to the Lane Change Event (LCE). Finally, figure
3.18d shows the end of the lane change, when the lateral movement of
the vehicle has ended up.
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(a) Activation of turn indicator. (b) Starting of lateral displacement.

(c) Lane change event. (d) End of lane-change maneuver.

Figure 3.18: Vehicle lane change sequence.

3.2.5 Lane Detection

The road configuration is of paramount importance to understand the
context situation. The relative positioning of surrounding vehicles
w.r.t. the road lanes enhances the scene understanding. A custom
lane detection system [62] detects and tracks each road lane marking.
The images are analyzed into a BEV perspective. The original image
is converted to a BEV representation according to the ground plane co-
efficients. A BEV mask is also created including the vehicle detections
(see figure 3.19a) to support the lane extraction process. A median
filter operation processes the original input image. The median filter
image is subtracted to the original one, and the result is thresholded
using an adaptive threshold. The contours generated after this process
are shown in figure 3.19b. Finally, the contours are filtered by size
and shape to remove some noise. The remaining contours are used to
fit the lane models. Figure 3.19c shows how easy the lane models fit
over the lane markings in the BEV representation. Figure 3.19d shows
the same lane models over the perspective image. It can be observed
that the vehicle occlusion does not alter the lane estimation in the
right-most lane.

Lanes are modeled as a 2nd order polynomial according to eq. 3.47
where c0 is the lateral distance to the line, c1 is the angular misalign-
ment and c2 represents the lane curvature.

y = c2x
2 + c1x + c0 (3.47)
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(a) BEV Mask. (b) BEV lane contours. (c) BEV lane detections.

(d) Lane detection on the original image.

Figure 3.19: BEV lane detection process.
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3.3 Dataset Structure

The PREVENTION dataset contains thousands of examples recorded
on real driving conditions and different environments to provide spe-
cialized data for the prediction of vehicle intentions and trajectories.
The PREVENTION dataset presents the following characteristics:

• Data from 6 sensors of different nature (laser, radar, and vision)
are provided, contributing to redundancy and fault-tolerant devel-
opment. Measurements from the 6 sensors are time-synced and
cross-calibrated [63] [64].

• Surrounding data are provided in a range of at least 80 meters
around the ego-vehicle (up to 200 meters in the frontal area). This
allows for developing a safety area around the ego-vehicle in which
all vehicles entering or leaving such area are carefully located and
tracked to predict their most likely trajectories accurately.

• Positions of all vehicles around the ego-vehicle are accurately la-
beled in a semi-automatic process [63] and made available to-
gether with their respective vehicle IDs. The fusion between the
appropriate sensors is carried out in order to obtain as much an
accurate positioning as possible, both in lateral and longitudinal
dimensions.

• Road lane markings are included in the dataset, providing the
relative positioning of all vehicles on the road (lateral positioning
and orientation), including the ego-vehicle and the number and
type of road lanes present on the road. This information is es-
sential for enhancing road scene understanding and for providing
contextual framing.

• Ground plane coefficients are provided to enable road-based trans-
formations such as BEV.

• PREVENTION dataset also offers specific types of critical ma-
neuvers that are of interest for prediction purposes. Maneuvers of
surrounding vehicles are carefully labeled to identify critical situ-
ations such as overtaking, merging, and lane-change maneuvers.

In this section, the structure of the PREVENTION dataset is de-
tailed. This includes a description of the recording area, a list of the
provided data, and how it is structured.
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3.3.1 Driving Environments and Driving Style

PREVENTION dataset contains both urban and highway scenarios,
but it is mainly oriented to predicting intentions and trajectories on
highway environments. Urban areas are limited to the campus area
and some residential areas before entering the highway. Three different
person drove the car to generate the data. Drivers were instructed to
arrive at the destination following the traffic rules. Drivers used the
cruise control at their will. A total length of 6 hours and more than
500 km were recorded in five different days and three different areas.
Table 3.3 summarizes the recording details. The A2 and A3 are both
three-lane highway areas with straight stretches mostly. The M-50
and M-40 are the outer and middle rings around the city of Madrid,
respectively. These rings have three lanes or more. The recordings
were made during the central hours of the day to avoid heavy traffic.
However, traffic jams and congested traffic can be found in the dataset.
Some of the records cover the same driven areas. By doing so, different
behaviors and interactions can be observed at the same location with
different points of view. This dataset is not created for localization
algorithms, but it can be used to develop them with multiple records
of the same areas.

Table 3.2: Dataset Recording Main Features

Record # Drives Area Date Length Distance

1 A2 1 21st Jun 18 min 47 km

2 A2, M50, A3 2 19th Jul 59 min 83 km

3 A2, M50, A3 2 24th Jul 57 min 86 km

4 A2, M-40 3 18th Oct 108 min 149 km

5 A2, M-40 3 22nd Nov 114 min 175 km

Total – – 356 min 540 km

3.3.2 Data Access

The dataset is publicly accessible at http://prevention-dataset.uah.es.
For simplicity, all the files of each drive have been packaged in two files
due to the large size of the raw data. The post-processed data and the
labels can be downloaded independently.
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3.3.3 Data-format

The database format is structured as follows, where X, Y, N, and M
are used to define the record number, the drive order in each record,
the camera identifier, and the radar identifier. Figure 3.20 shows the
directory tree of a record.

DATABASE

RecordX

DriveY

detection_cameraN

detections.txt

detections_filtered.txt

detections_tracked.txt

labels.txt

lanes.txt

lane_changes.txt

trajectories.txt

detection_cloud

ground_coefficients.txt

detection_radar

detections_radarM.txt

logs

log_ego-vehicle.txt

log_cameraN.txt

pcap_radar.pcapng

video_cameraN.raw

video_velodyne.bin

cameraN_extrinsic_calibration.dat

cameraN_intrinsic_calibration.dat

radarM_extrinsic_calibration.dat

velodyne_extrinsic_calibration.dat

Figure 3.20: Dataset Format.

Extrinsic and intrinsic sensor calibration files are provided for each
record. These calibration files enable the transformation of data be-
tween the different sensor reference systems. Two camera-LiDAR, one
LiDAR-vehicle, and three radar-vehicle transformation matrices are
provided for each record. Transforming points from radar to the vehi-
cle reference system assumes that radar detections are at z = 0.
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Each drive contains raw sensor inputs. Two raw camera videos, a Li-
DAR cloud video, and radars data transmissions are provided for each
drive. The original image size has been reduced to 1920 × 600, remov-
ing the top and bottom bands 1920 × 300 with irrelevant information
to keep the file size smaller. Each image is stored as 1920 × 600 bytes
in a BayerBG pattern codification. Camera calibration files have been
modified to work properly with the new camera resolution. LiDAR
data is codified in a custom cloud video data format. Each frame has
a fixed size and stores the cloud number, the GPS triggering time, the
3D information, and the returned intensity. The cloud video structure
definition is provided together with the cloud video file. Radar data is
provided in a parsed format in a text file due to the complex parsing
procedure.

Folder detection_cameraN contains different information ex-
tracted directly from or related to images:

• detections.txt provides automatically generated bounding
boxes and contours of objects in the scene.

• detections_filtered.txt are the same detections with a
minimum confidence value of 0.5 and non-maximal suppression.

• detections_tracked.txt is the result of a temporal tracking
of the filtered detections, assigning a unique id to each object
along the frames. Data is stored as a sequence of [frame, id,
class, xi, yi, xf , yf , conf , n] values followed by n tuples of x, y
coordinates that represent the contour. Values xi, yi and xf ,
yf represents the top left and right bottom coordinates of the
detection bounding box. There are more than 4 million detections,
including vehicles and pedestrians. More of 3.5 million of these
detections are cars and 0.5 are trucks. Pedestrian, motorcycle,
bicycle, and bus classes are a minority. This is explained because
most of the recording time was on highways,where pedestrians
and bicycles seldom appear.

• labels.txt is a sequence of [frame, id, x, y, width, height]
values for each manual annotation that describes a key point lat-
erally centered on the vehicle. These annotations are used to
compute the vehicle improved trajectories. There is a total of 1.3
million of manual annotations that identify unequivocally each
vehicle with a unique id and the image coordinates that represent
its positions along the frames.
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• lanes.txt is a sequence of [frame, n, c0, c1, c2] values that
represents the n lane lines in the scene as a 2nd order polynomial
(Eq. 3.47).

• lane_change.txt is a list of seven values [id, type, f0, ff ,
val1, val2, val3]. The first value id is the id of the vehicle which
the action is referred to. Note that all the registered annotations
are object oriented. The second value type encodes the type of
registered event or action. The third value f0 is used to establish
the event frame for instant actions or the beginning of a time-lapse
action and ff represents the end of the time-lapse action. Vari-
able type could be left (1), right (2) for lane changes, hazardous
(3) such as stopped vehicles on the shoulder, or emergency vehicle
overtaking, and zebra crossing (4) for pedestrian oriented action.
Variables from val1 to val3 are used to provid extra information
of lane-change maneuvers. The LCE, is stored in val1, and the
use of the blinker in val2. Variable val3 adds information to the
lane-change maneuver and can take values cut-in (1), cut-out (2)
when the vehicle arrives to or leaves the ego-lane or none (0) oth-
erwise. More than 900 lane changes have been manually labeled.
Table 3.3 shows a summary of the basic lane change types left or
right for each record.

Table 3.3: Lane Change Statistics

Record # 1 2 3 4 5 Total

Left 22 36 46 139 170 413

Right 51 48 47 175 178 499

Avg. frames per LC 40.6

Avg. LC length 3.76 s

• trajectories.txt is a sequence of [frame, id, xc, yc, zc, xl,
yl, zl] values that represents the 3D position of a vehicle in the
camera and the LiDAR reference system. There are more than
3000 trajectories composed from more than 1.3 million samples.

Folder detection_cloud holds the file
ground_coefficients.txt where the coefficients of the principal
plane are stored as a sequence of [frame, A, B, C, D] values expressed
in m−1 of a scalar plane equation (eq. 3.48) and relative to the LiDAR
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reference system.

Ax + By + Cz + D = 0 (3.48)

File detections_radarM.txt contains parsed radar data.
Wide-range (1 and 3) and long-range (2) radars are different mod-
els, thus provide mostly common but also specific information. Each
radar sends a transmission with a snapshot of 25 or 40 objects for the
wide-range and the long-range respectively.

• Object #: number of the object in the transmission.

• ID: unique id (wide-range only).

• y, x: longitudinal and lateral distances in meters.

• vy, vx: longitudinal and lateral speeds in m/s.

• RCS: radar cross section.

• LT/PoE: lifetime in seconds or probability of existence (wide-
range/long-range).

• t: reception time in microseconds.

Simple C/C++ and MATLAB examples are provided in the dataset
website to load, use, and show the available information. As an exam-
ple of this visual information figure 3.21 shows a sequence of integrated
information of point clouds, images, radar, and automatic and manual
annotations. The left column shows the front camera’s acquisitions,
and the left column, the acquisition of the back camera. Both rows
show a forward time sequence from left to right. Figure 3.22 is a col-
lage of some of the events that could be found in the dataset, such as
cut-in and cut-out maneuvers, lane changes to both sides, including
entrance and exit ramps, hazardous situations, and pedestrian zebra
crossings.
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Figure 3.21: Sequence of vehicle detections and tracking. Left images are front,
and right images are rear camera records. From top to bottom, samples are pro-
gressing in time.

Figure 3.22: Example of different occurrences in the dataset. From left to right and
top to bottom, cut-in, cut-out, left-lane change, right-lane change, three hazardous
events, and pedestrian crossing.
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3.4 Conclusions

This chapter describes the creation of the PREVENTION dataset to
fulfill identified shortages in the publicly available datasets. With this
objective, after the creation of the PREVENTION dataset, the follow-
ing conclusions can be extracted:

• The PREVENTION dataset contains more than six hours of nat-
uralistic highway driving with sensor redundancy. Different raw
data sources such as cameras, LiDAR, and radars are provided as
well as manual annotations, automatic detections, and high-level
information. This dataset contains more than 4 million vehicle de-
tections, 3000 trajectories, and 900 lane changes. The PREVEN-
TION dataset can be widely used in different research contexts,
focusing on intention and vehicle trajectory prediction.

• Sensor cross-calibration methods have been developed and imple-
mented to enable sensor fusion and fault-tolerant techniques.

• Manual labeling effort has been focused on trajectories generation
and maneuver annotation. Because of this, the lateral movement
of the vehicles has been manually labeled to provide enhanced ve-
hicle trajectories fusing camera and LiDAR information. A special
effort has been made to label all the actions that take place in the
scene in which the ego-vehicle can be involved/affected or not,
such as the lane changes and potential hazards.

• Contextual information such as lanes, ground planes, or vehicle
tracking is extracted from raw data and provided ready to use.

• This information has been made publicly available to the scientific
community at prevention-dataset.uah.es.





Chapter 4

Human Ability for Maneuver
Prediction

In this chapter, the ability of humans to predict lane changes is evalu-
ated using scenes recorded in the PREVENTION dataset. This study
has the goal to state if humans can predict lanes changes, how precise
they are, and how much they can anticipate them. Moreover, the re-
sult of this study sets a baseline to be compared with future developed
prediction algorithms.

This chapter is structured as follows. Section 4.1 describes in-
depth the structure of the study, including a description of the used
sequences, the interface used to question the users, and the timing
of sequences. Section 4.2 explains how participants were selected for
this study and provides demographic information. Finally, section 4.3
presents findings and numbers derived from users’ responses.

Conclusions derived from this chapter are exposed in section 4.4.

4.1 Methodology

This study has the goal to ask the question: "Are humans able to
predict lane changes?". To do so, social research has been conducted
using the PREVENTION dataset as a basis for lane change predic-
tions. This section provides detailed information about the procedure
followed in conducting this study. The following subsections describe
how sequences were selected, how sequences are presented to users,
and how users’ predictions are collected.
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4.1.1 Sequences

This study has been conducted using sequences extracted from the
PREVENTION dataset. According to table 3.3 912 lane-change ma-
noeuvres are recorded in the PREVENTION dataset. However, some
lane-change maneuvers were kept out of this study for different reasons.
The most common excluded maneuvers were consecutive lane changes.
The end of the first lane change could motivate the user’s reaction
at the beginning of the second one. Despite this, a total of 794 lane
changes maneuvers were evaluated in this study. Lane-keeping maneu-
vers are also included in the evaluation set. A total of 179 lane-keeping
maneuvers were manually selected. These maneuvers were selected of-
fering similar situations as those represented in the lane-change set.
These situations are commonly overtaking and car-following with or
without a posterior lane change. The combination of scenes with dif-
ferent endings produces an unbiased analysis because both actions can
be expected after any situation. Otherwise, the user is only concerned
about the direction of the lane-change maneuver. Table 4.1 shows the
share of each type of maneuver in this study. Note that 83% of the
lane changes are developed by using the blinker. This fact reveals that
blinker is a heavy conditioner to state a lane-change maneuver.

Table 4.1: Maneuvers count

NLC
LLC RLC

w/o blinker w/ blinker w/o blinker w/ blinker

Samples 179
34 203 71 307

237 378

% 22.54%
4.28% 25.57% 8.94% 38.66%

29.85% 47.61%

The main concern about the number of sequences to be displayed
was that the users do not lose interest on the test. Too many se-
quences can bore the user and provide invalid results. In contrast, few
sequences provided less information, and more subjects are needed to
achieve the same conclusions. Each user test is composed of a total
of 30 sequences. This number was selected using a small number of
people, and they found the test not too large and not too short. On av-
erage, each sequence takes 15 seconds, depending on the user’s reaction
time. The complete user test takes no longer than 10 minutes. The set
of sequences is composed of an equal number of each maneuver; this
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is 10 NLC, 10 LLC, and 10 RLC. Sequences are extracted randomly
from each subset and displayed in random order. This information is
omitted to the study’s subjects. Figure 4.3 shows the three types of se-
quences that are visualized in the test. Typically, NLC sequences show
a vehicle from short to far distances where it becomes irrelevant for the
ego vehicle. Other samples present vehicles performing a car follow-
ing action with the choice to overtake. Left lane-change maneuvers
are typically caused by overtaking of surrounding vehicles. However,
the right lane changes are commonly observed after overtaking the ego
vehicle.

Figure 4.1: Typical sequence representation. No lane-change maneuvers (top) are
displayed from beginning to end. lane-change maneuvers (middle and bottom)
are represented at the beginning of the maneuver, at the lane change event, and
the end of the maneuver.

4.1.2 Interface

The test interface has been developed using a QT application. This
interface allows us to generate a random set of sequences, display them,
and record the user’s responses. This application is composed of the
main window, where all the information is displayed, and a pop-up
window informs the user for expected inputs from their side. Figure
4.2a shows the Challenge main window. A simple ID box and a Start
button are available for user interaction. Figure 4.2b and 4.2c shows
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the two application messages to inform the user. Finally, figure 4.2d
shows a frame from an example sequence where the prediction target is
marked with a red rectangle. This experiment was conducted in Spain,
alternative messages providing the same information were displayed in
Spanish if it is desired by selecting the ES option in the main window.

(a) Main window.

(b) Welcome message. (c) Remember message.

(d) Example of a sequence visualization.

Figure 4.2: Test interface views.
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4.1.3 Sequence Visualization

The sequences are video fragments taken from the front camera and
displayed at its natural frame rate. The video length has been modi-
fied and displayed according to its nature. No lane-change maneuvers
are manually selected from beginning to end, and they are entirely dis-
played adjusted to these limits. Due to user reactions are not expected,
no additional actions are required to guarantee variability in this sub-
set. lane-change maneuvers are labeled from the very first frame when
the lane change can be observed. A random time is added previously
to the lane change to provide some anticipation gap and variability.
This period is generated randomly with a uniform distribution func-
tion spanning 50 to 100 samples. This random extension guarantees
that the user cannot expect lane changes at a fixed time from the
beginning of the sequence.

Four values are recorded for each sequence identified as a lane
change by the participant:

• seq0: the frame at which the sequence begins.

• f0: the frame when the lane-change maneuver has started. This
frame is characterized by the triggering of the blinker or the be-
ginning of the lateral displacement.

• f1: the frame when the lane change event has happened. At this
frame, the rear middle part of the vehicle is just between the two
lanes. This point is considered the LCE.

• fu: the frame when the user hits any key. This value represents
the frame when the user has detected or predicted the lane change.

Note that no lane-change sequences do not need any temporal ref-
erence.

Figure 4.3: Lane change time references.



78 Human Ability for Maneuver Prediction

4.2 Participants

Participants were recruited among the Engineering School, from stu-
dents to teachers and other research staff, as well as family, friends,
and colleagues. Thus, more significant variability is achieved in terms
of age, occupation, and participants’ driving experience. A total of
72 people did the test in two weeks. They provide some demographic
information by filling up a small questionnaire. Then they perform the
trial evaluating completely 30 sequences each one. Humans have as-
sessed a total of 22160 sequences, 720 were no lane-changes, and 1440
lane-change maneuvers.

4.2.1 Questionnaire

Subjects were asked to fill a short form before doing the user test. This
form has the goal of provided demographic information that could be
related to their prediction performance. The form is anonymous. Each
user was assigned to an ID, and optionally they can provide their name
and email to be contacted with the findings derived from this study.
Users were asked with the following form:

• ID, name and email (optional), age and gender (male/female).

• Occupation: study / work / both / none.

• Has driving license: yes - no

– Driving experience: ≤ 1 yr. / 1-2 yr. / > 2 yrs.
– Driving frequency: daily / weekly / occasionally.
– Driving areas: urban / highway.

The form is divided into two parts. The first part collects some per-
sonal and demographic information. The second part asks the partici-
pants about their driving skills and habits. The anticipation of driving
behaviors can be closely related to driving skills [65].

4.2.2 User Interaction

In order to avoid biased behaviors from different users, a fixed pro-
cedure was established to instruct the volunteers in the test process.

1. The user is asked to fill the form. In the beginning, a unique ID
is provided to the user, and it is registered in the questionnaire.
After filling it, the user introduces the same ID in the Challenge
application.
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2. After clicking the "Start" button, a message pop-up with a short
description of the expected behavior. The message says:

"Welcome to the prediction challenge. Now you will see some
videos that show highway scenes. In each video there are some
vehicles in front of the car. You have to hit any key as soon as
you think that the vehicle with the red rectangle is going to perform
a lane change. After that you will be asked about the direction of
the lane change (left or right)".

3. The user is asked to tell the staff what is needed to do. If the
answer is satisfactory the user presses the "Accept" button. If
not, a short explanation with the same information is provided.

4. Before every sequence is displayed, a new pop-up message appears,
remembering what to do and waiting for the user to be ready. This
mechanism enables a pause system at the user’s will. The message
says:

"Hit any key as soon as you think that the vehicle marked with
the red rectangle is going to perform a lane change".

5. The user presses the Accept button and the sequence is displayed.
The vehicle of interest is marked with a red rectangle according
to the description provided to the user. The user presses any key
if a lane change is predicted or detected. If not, the sequence ends
after a few seconds.

(a) If the user has pressed any key, the sequence finishes imme-
diately, and the screen is cleared. Two buttons appear in the
screen to select a left lane change or a right lane change.

6. If there are remaining sequences to visualize, the process goes back
to point 4. After the last sequence, a window pop-up providing
some statistics of the user’s performance.

• Accuracy (%). Percentage of correctly labeled maneuvers.
• Average delay in detecting the lane changes (sec.). Mean

delay from the starting of the lane-change maneuver for those
correctly labeled.

• Average lane change anticipation (sec.). Mean anticipation
time from the lane change event for those correctly labeled.

7. The main window of the Challenge interface is showed ready for
a new user.
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4.3 Results

This section reviews the data generated by test participants. Predic-
tion results are provided in terms of accuracy and delays. The existing
data is also used to determine if humans can predict lane changes on
a regular basis.

4.3.1 Lane Change Prediction Accuracy

How precise humans are predicting lane changes can be evaluated by
means of the accuracy, precision, and recall. These values are com-
puted according to eqs. 4.1 and 4.2, where N is the total number of
samples, TP are the true positive, FP the false positive, and FN the
false negative samples.

Accuracy =
TP

N
(4.1)

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(4.2)

What is considered a positive or a negative sample depends on differ-
ent interpretations of users’ responses. According to this, four different
types of interpretations are carried out attending to the nature of the
sequences, if they are correctly labeled or not, and the instant when
they were labeled:

• The simplest analysis evaluates correctly and incorrectly labeled
sequences. Table 4.2 shows the confusion matrix of all the de-
veloped tests. A total of 2160 sequences divided into correct and
incorrectly labeled sets. The correct classification maneuvers are a
big share of 88.1%. A small number of misclassifications between
left or right lanes changes is observed.

Table 4.2: Confusion Matrix I

Classified Class

Target Class left none right Recall

left 660 11 49 0.917

none 73 584 63 0.811

right 37 23 660 0.917

Precision 0.857 0.945 0.596 0.881
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• The previous analysis reveals excellent human performance. How-
ever, it is not the same to state a lane-change maneuver at the
very beginning than after the vehicle has crossed the divisor lane.
Now, lane changes labeled after the f1 are considered as no lane-
changes. The new confusion matrix is provided in table 4.3. It
can be observed that the left lane change detection rate has fallen
5 points, and the right lane change 7.5 points.

Table 4.3: Confusion Matrix II

Classified Class

Target Class left none right Recall

left 624 47 49 0.867

none 73 584 63 0.811

right 37 79 604 0.839

Precision 0.850 0.822 0.8436 0.839

• The previous analysis takes as positive samples detections of on-
going lane-change maneuvers. Strictly, predictions are only con-
sidered if lane changes are stated before they have started. The
same analysis is now conducted considering only the predictions
of the lane change as true samples. Table 4.4 shows the metrics
for this new consideration. It can be observed that only 15.6%
and 10.6% of the left and right lane changes are detected before
the lane change begins. This is a dramatic performance reduction
concerning the two previous analyses.

Table 4.4: Confusion Matrix III

Classified Class

Target Class left none right Recall

left 112 559 49 0.156

none 73 584 63 0.811

right 37 607 76 0.106

Precision 0.504 0.334 0.404 0.327

• The three previous metrics were sequence-based analysis. Now
the prediction/classification performance is analyzed in terms of
image samples. This special consideration applies only for lane-
change maneuvers, where a difference must be done between the
different time intervals of the maneuver. Sequences are visualized
from a randomly generated sample seq0 to a fixed frame f1. The
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relevant period of analysis is focused from seq0 to f0 and from f0

to f1. Depending on the user’s event, denoted as fu, samples have
different considerations:

– From seq0 to f0. This period has the consideration of pre-
diction. Consequently, these samples can be considered as
lane change or as no lane-change simultaneously and consid-
ered as TP for each corresponding category. From seq0 to
fu, samples are labeled as no lane-change samples, from fu

to f0 samples are labeled as lane change (left or right if it
is correctly assessed). This is the best case for the user; all
the samples are considered correct samples and accounted for
each corresponding category. The aim is not to underscore
predictions versus detections or vice versa.

– From f0 to f1. This period has the consideration of detec-
tion. In this period, all the samples must be classified as lane
change instances. The samples between f0 and fu are labeled
as no lane-changes (this happens when fu > f0). From fu

to f1, samples are labeled as a lane change in the sense the
users suggest. In this phase, the reaction time is punished,
indicating wrong classifications.

Table 4.5 shows the classification performance frame-wise. It can
be observed that the number of no lane-change is higher than
lane changes, 255K versus 54K. The number of correctly lane
change classes has reduced significantly, falling to 56% and 53%.
This classification metric considers not only the complete sequence
classification but also the user’s reaction or prediction time.

Table 4.5: Confusion Matrix IV

Classified Class

Target Class left none right Recall

left 16450 9595 3028 0.566

none 12153 235799 8627 0.919

right 2475 10051 13997 0.528

Precision 0.529 0.923 0.546 0.853
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4.3.2 Lane Change Prediction Delay

Reaction time or prediction time is a fundamental value to assess cor-
rectly potential hazardous situations. Even more, lane change predic-
tions after the lane change event are useless. The study’s data have
been evaluated to provide human anticipation or response time in these
specific highway scenarios.

The first parameter we have evaluated is the delay to the beginning
of the lane change. This value allows us to determine the level of
anticipation or prediction of users. It is considered appropriate to
remove the best and the worst values to remove some noise from data.
Figure 4.4 shows the average delay of each user to the beginning of
the lane-change maneuvers in a sorted way. Negative values represent
anticipation or prediction, while positive values represent a delay in
detecting maneuvers. The mean users’ delay is 1.08 seconds. It can be
observed that only four users achieved an average negative delay.

Figure 4.4: User’s delay from f0 event.

The same delay is now evaluated with respect to the lane change
event f1. Note that beyond this point, the maneuver has been com-
pletely developed, and its detection has no relevance. Figure 4.5 shows
the users’ average delay. The mean users’ delay is -1.66 seconds. This
represents that on average, the lane changes are detected 1.66 seconds
before the vehicle crosses the divisor line. All the delays with respect
to f1 are negative due to all sequences detected after f1 are discarded.

Figure 4.5: User’s delay from f1 event.
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4.3.3 Delay vs Accuracy

It is reasonable to think that time-based decisions can become more
accurate as much as the decision is delayed. Subsection 4.3.1 shows
how lane change accuracy decreases when time limitations are imposed.
Subsection 4.3.2 shows a spread range of delays when predicting lane
changes. This section provides a correlation between lane change pre-
diction accuracy and delay. Figure 4.6 shows user accuracy versus the
prediction delay. Data has been fitted to a 1st order polynomial. The
equation parameters reveal that the average accuracy is close to 80% at
prediction with a delay equal to zero. Each second earned in prediction
loses a 7.6% in accuracy.

Figure 4.6: Accuracy vs. Prediction delay (r = 0.076x + 0.799).

The question "Are humans able to predict lane changes" is now
asked using the users’ recorded data. The null hypothesis H0 states
that humans are able to predict lane changes. The alternative hy-
pothesis Ha states that humans are not able to predict lane changes.
Mathematically, hypothesis H0 and Ha can be defined as eq 4.3.

H0 : µ ≤ 0 Ha : µ > 0 (4.3)

The null hypothesis states that the mean value of lane change delay
is smaller or equal to 0. The alternative hypothesis establishes that
the mean value is higher than zero. The average user delay distribu-
tion is characterized by a x=1.08 and σx=0.63 with 72 samples. The
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hypothesis is analyzed with a confidence value of 99%, or equivalently,
a significant value of α=0.01. Due to the small number of subjects, a
T-Student test has been conducted. The t value that represents our
samples is t = 14.6. The corresponding p-value is 2.225×10−23, almost
0. The null hypothesis can be discarded as far as p − value < α. The
alternative hypothesis Ha is taken, which means that humans cannot
predict lane-change maneuvers systematically.

4.4 Conclusions

This chapter has described the collection of human responses reacting
to different traffic maneuvers in the PREVENTION dataset. This data
has been used to set a baseline for future comparisons, and to evaluate
human performance predicting maneuvers.

Surprisingly, humans cannot predict lane-change maneuvers regu-
larly, at least with the set of sequences used in this experiment. This
means that PREVENTION sequences are challenging even for humans.
These sequences were recorded in highways during real traffic condi-
tions, which can be expected in the real world. Users’ delay predicting
lane-change maneuvers has been evaluated. On average, they are de-
tected 1.08 seconds after the lane change has started and 1.66 seconds
before the middle point of the vehicle reaches the line between the
lanes.

The analysis of the prediction/classification accuracy has been con-
ducted in several different ways. The results vary from excellent 92%
in terms of sequences evaluation to questionable 15% in term of se-
quence predictions. Frame by frame analysis reached 56% of accuracy
for lane-change maneuvers.

This study focuses the user’s attention on a single target marked
with a red rectangle. However, real driving scenarios require to be
focused on all the vehicles at the same time, reducing the user’s reaction
capacity. Real human reaction times can be expected even higher than
those observed in this experiment.





Chapter 5

Prediction Models

This chapter describes the developed prediction models. As it was ob-
served in the state of the art, vehicle predictions can be assessed in
two different ways. Predictions can be focused on predicting or detect-
ing the type of maneuver, i.e., lane keeping, lane changing, overtaking,
cut-in, cut-out, merging ,etc. . . , or focused on predicting vehicle tra-
jectories. Two deep learning predictive models have been developed in
this thesis to tackle these two approaches.

This chapter is organized as follows: the maneuver prediction model
is presented in section 5.1, found problems, and details of this ap-
proach are carefully analyzed here. The trajectory prediction model is
precisely described in section 5.2. These proposed methods are deep
learning-based approaches. Training details are provided in each cor-
responding section for a complete description of the whole process.
Prediction results, in terms of maneuver or trajectory accuracy, are
widely exposed and compared in chapter 6. Finally, conclusions de-
rived from the proposed models are presented in section 5.3.

5.1 Maneuver Prediction

The maneuver prediction or classification problem faces the following
situation. Given a scene, a predictive maneuver model must correctly
assess all the future maneuvers that have not started yet. Neverthe-
less, what is this prediction model supposed to do during an ongoing
lane change? A classification model must assess ongoing maneuvers
correctly. From a practical point of view, the desired behavior of a
maneuver-aware system is the combination of both ideas, detecting
lane changes as soon as possible while detecting them until the end.
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Making use of the PREVENTION dataset, images, vehicle contours,
and lane change labels are used to develop the maneuver detection
system. This deep learning-based approach is tackled from an image
classification perspective. Given a specific input image, a particular
output label is desired. The model classifies images into categories.
Hereafter, we will refer to the classification term due to the problem’s
nature, but this is not only limited to the classification of ongoing
actions. A future action, not observed at the current moment, can be
predicted through classification by labeling the current input image as
the future desired action.

5.1.1 Problem Approach

Action recognition and prediction must deal with two problems. One of
the problems is the recognition of the prediction target. A single image
can present a scene with more than one single vehicle. Simultaneously,
some of them can be performing a lane change, and others cannot. So,
different outputs must be possible for the same input image. Figure 5.1
shows an image with three vehicles in which one of them is performing
a lane change, and the two others are not. In this example, three
outputs are desired, specifying which of them is performing the lane
change and which are not.

Figure 5.1: Multiple vehicle lane change problem example.

The second problem is the highly temporal dependency of trajec-
tories or lane-change maneuvers. Sequences of images have a better
chance to detect time-based actions such as lane changes. Figure 5.2
shows an example of a lane change that apparently cannot be identified
as a lane change (figure 5.2a) but it can be in the next frame because
of the blinkers (figure 5.2b). An easy solution could be to stack images
as a 4D volume, but the problem becomes rapidly computationally
infeasible in terms of memory size for training devices.
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(a) Image at frame f (b) Image at next frame f + 1

Figure 5.2: Example of action time dependency.

The solution to the first problem is to use a target selection method.
The target selection method draws the shape of the prediction target
in a separate image. Figure 5.3 shows the shape of three prediction
targets in the scene. Each target selection image is generated using its
corresponding contour only. This problem also arose in the user test
described in chapter 4 when the user needs to be focused on a specific
vehicle. It was worked around selecting the prediction target with a
red rectangle in that case.

Figure 5.3: Original image with three targets detected.

The second problem can be solved by stacking images across the
image depth, but this approach could become computationally infeasi-
ble. This problem has been worked around creating a new image with
the shape of the vehicles at different time stamps. The time step of
each shape is represented using different grayscale values in the image.
Figure 5.4 shows an example of this temporal codification.
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Figure 5.4: Temporal codification of vehicle trajectory.

The shape of vehicles can be represented in two different ways: using
a contour line or a filled contour. Figure 5.5 shows these types of
representation. The width of the line used to draw the contour or if it
is filled has an important role in the target selection method and the
representation of the vehicle’s motion.

(a) Contour line width = 1. (b) Contour line width = 7. (c) Filled contour.

Figure 5.5: Contour line vs filled contour representation.

The filled contour representation has an important disadvantage
with respect to the contour line representation. An oncoming vehicle
is seen bigger the closer it is; thus, the contour of the vehicle becomes
bigger, and the newer representations partially or totally overlap the
older ones. If the position of the vehicle is represented with filled con-
tours, the motion pattern can vanish. However, contour lines minimize
the overlap area, and the information persists in the representation.
Figure 5.6 illustrates the behavior of the lined and filled contour. The
left images (figures 5.6a and 5.6c) show a clear representation with
contour lines. In contrast, right images (figures 5.6b and 5.6d) show
partially hidden information because of filled contour overlap.



5.1. Maneuver Prediction 91

(a) Fwd trajectory with line contour. (b) Fwd trajectory with filled contour.

(c) Bwd trajectory with line contour. (d) Bwd trajectory with filled contour.

Figure 5.6: Trajectory overlap Contour line vs filled contour representation.

An enriched image is generated for the prediction target combin-
ing the target selection method and the motion history representation.
This representation can also be used to represent surrounding vehicle
motion histories in a separate image. This image, representing sur-
roundings behavior, enables interaction modeling.

Context is present in the three-channel original image, lane mark-
ings and road configuration are relevant for a correct scene under-
standing. However, it can be converted to a gray-scale image, and the
information remains while the data size decreases. At this point, three
single-channel images that integrate context, target selection, vehicle
interaction, and time dependency are generated. They can be com-
bined to compose a new enriched RGB image, as it is shown in Figure
5.7. Each image can now be labeled with the observed action of each
prediction target.
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(a) Original image.

(b) Vehicle performing a lef lane-change maneuver.

(c) Vehicle performing a lane keeping maneuver.

(d) Vehicle performing a lane keeping maneuver.

Figure 5.7: Enriched image composition with target prediction, motion histories,
interactions, and context information.
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5.1.2 Input and Output Data

According to an image classification approach, the expected inputs
are images, and the expected outputs are categories. The procedure
described above has been used to generate individual graphic repre-
sentations for each vehicle at each where it is perceived. The desired
output of the classification model is the observed maneuver in the in-
put’s image.

The maneuvers considered in this problem are simplified into three
categories: No Lane Change (NLC), Left Lane Change (LLC), and
Right Lane Change (RLC), where the NLC label is defined by the
absence of a lane-change maneuver. The PREVENTION dataset pro-
vides labels for each recorded lane-change maneuver. For our interest,
lane-change annotations can be described by:

• The ID of the involved vehicle.

• The type of the lane change, that can be left or right.

• The frame when the lane change has started.

• The frame at the LCE, when the middle of the vehicle has reached
the divisor line between the lanes.

The ID and the temporal lane change limits allow the labeling of
each input image into each corresponding category. As commented
before, maneuver classification is directly related to its detection, and
maneuver prediction with its anticipation. Making use of the lane
change limits the desired anticipation period can also be labeled as
lane change samples.

The problem is how to consider positive (lane change) outputs at
this anticipation period. Positive samples can be motivated for a pre-
cise future lane change prediction or by a wrong estimation of a lane-
keeping maneuver. The greater the anticipation period, the higher the
uncertainty is. In an extreme situation, if the anticipation period is
extended enough, all the situations will end up in a lane-change ma-
neuver because that is what vehicles use to do.

An example of this complex analysis is when a car is overtaking a
slower truck on the right lane with no other vehicles in front of it. It is
reasonable to think that the car will take the right lane once the truck
is overtaken. From a classification point of view, this correct thinking
can be considered a success or a fail, only changing the anticipation
period.
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5.1.3 Training Strategies

This subsection presents the different strategies followed to train the
classification model. Two domain strategies are tackled, one based on
sample division and others based on sample labeling.

5.1.3.1 Training Set Definition

The scenes presented in the PREdiction of VEhicle iNTentION (PRE-
VENTION) dataset are composed of a total of 11 long sequences.
These sequences were recorded in highways around the city of Madrid
during five different days. Sequences recorded the same day are de-
noted with the same record number. The different sequences recorded
each day are denoted with a different drive number. Sequences
recorded the same day has the same hardware setup; this means that
the position, orientation, and configuration of the sensors is the same.
Table 5.1 summarizes the sequences recorded each day, specifying the
area and the type of highway driven and the weather or light condi-
tion. The A2 is a stretch of highway between the cities of Madrid
and Guadalajara. The M40 and M50 are two rings around the city of
Madrid, being the M40 inner to the M50. As ring highways, the road
type is mainly straight with a small curvature.

Table 5.1: Sequences and Location Features

Record Drive Area Main Road Type Light

1 1 A2 - Area 1 Straight Cloudy

2 1 A2 - Area 2 + M50 Straight + Ring Dark

2 A2 - Area 2 + M50 Straight + Ring Sunny

3 1 A2 - Area 2 + M50 Straight + Ring Cloudy

2 A2 - Area 2 + M50 Straight + Ring Cloudy

4 1 A2 - Area 2 + M40 Straight + Ring Cloudy

2 M40 Ring Cloudy

3 A2 - Area 2 + M40 Straight + Ring Cloudy

5 1 A2 - Area 2 + M40 Straight + Ring Cloudy

2 M40 Ring Cloudy

3 A2 - Area 2 + M40 Straight + Ring Cloudy
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The selection of training and test sets should ideally guarantee the
maximum number and variety of examples in both sets. To do so,
three strategies are applied to create the training and the test sets:

• Sequence Split strategy: This strategy divides each sequence into
two parts, one is used for the training set, and the other is used
for the test set. The advantage of this strategy is that all the
areas, weather, and sensor setup are included in both sets. The
division is done according to a 2/1 training/testing ratio.

• Sequence strategy: The dataset is split preserving the integrity of
each sequence. Sequences are entirely used for training or testing.
When an area is recorded twice or more, at least one sequence is
included in each set. This strategy maximizes the variety of data
in terms of areas. Table 5.2 shows which sequences are used to
train and which are used to test the models.

Table 5.2: Sequence Strategy Training & Test Subsets

Record Drive Training Test

1 1 X

2 1 X

2 X

3 1 X

2 X

4 1 X

2 X

3 X

5 1 X

2 X

3 X

• One vs. All strategy: This strategy mimics the k-fold method
strategy. All the sequences are used as a training set except for
one of them, which is used as a test set. This strategy significantly
increases the number of samples in the training set. On the other
hand, the test set is significantly reduced, and the test results can
vary significantly for each fold. This error variance provides an
idea of how hard those lane changes are to be predicted.
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5.1.3.2 Labeling Strategy

The labeling strategy proposes two methods to label image input sam-
ples. The first method is focused on action recognition. Samples from
the beginning of the lane change up to the LCE are labeled as lane
change samples. The second method is focused on prediction and
recognition. Samples from one second prior to the beginning of the
lane change up to the LCE are labeled as lane change samples.

The total number of samples in the dataset, these are NLC, LLC,
and RLC, are summarized in table 5.3. It can be observed that the
number of NLC samples is high compared with the number of lane
change samples. The NLC samples represent the 95.4% of the dataset,
the LLC the 1.9%, and the RLC the 2.7%. Only NLC samples that
were recorded at the same time as lane-change maneuvers have been
used for training due to the high number of NLC samples.

Table 5.3: Samples analysis

Event number

Left Lane Changes 413

Right Lane Changes 499

Left Lane Change samples 17473

Right Lane Changes samples 25420

Lane Keeping samples 876384

Lane Keeping samples while lane changes 148523

Left Lane Change samples + 1 sec. pred 21603

Right Lane Changes samples + 1 sec. pred 30410

Lane Keeping samples while lane changes + 1 sec. pred 177584

5.1.4 Pretrained Models

Predefined state of the art CNNs classification models have been
trained to predict and classify images representing highway maneu-
vers. Table 5.4 shows the set of tested models, from the most complex
to the simplest one. A wide variety of models in terms of depth has
been tested. The objective is to find the best trade-off between network
complexity and the number of samples.

These CNN models are commonly used as the core of different visual
problem applications, but these have been designed and trained on
image classification problems. They are specifically designed to extract
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Table 5.4: CNN models used for Action Recognition and Prediction

Name Conv Layers top1-accu top5-accu

Resnet101 101 78.5% 93.9%

Resnet50 50 78.4% 94.10%

ShuffleNet 50 70.9% 89.8%

GoogleNet 22 – –

Resnet18 18 59.4% 81.3%

SqueezeNet 18 57.5% 80.3%

AlexNet 8 63.3% 84.6%

high but also low-level information from input images to finally classify
them. The final layers of the networks are commonly replaced to adapt
these models to specific classification problems. For our problem, all
the networks have been appropriately adapted to match a three-class
classification problem.

The use of predefined and pre-trained classification models demands
an input image with the same dimensions as the original one. The im-
ages presented in the dataset have 1920x600 pixels with three channels
depth. These images are rescaled to match the size constraints of the
used networks, which is 224x224.

The loss function used in the training process is the weighted-cross-
entropy. This function allows to weight classes independently and deals
with the unbalance problem. The weight of each class is proportional to
the inverse of the number of samples. These three class-weight values
are normalized to accumulate a total value of one. This mechanism
modifies the training process taking more into account minority classes
and less the common classes.

5.1.5 Hyperparameters Setup

The training hyperparameters used to train the CNN models are pre-
sented in table 5.5. Training parameters have been established exper-
imentally with a special focus on the learning rate parameter.

The learning rate parameter has an important role to play in the
training procedure. A high learning rate parameter produces a fast
convergence but also a more unstable training process. On the other
hand, a small learning rate guarantees a stable training process while
increasing the number of iterations and consequently, the training time.
The selection of the proper learning rate is critical for successful train-
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Table 5.5: Training Hyperparameters

Parameter Value

Optimizer Method adam
MiniBatch 64

Epochs 2
Shuffle Epoch

LearnRateSchedule Epoch Decay
InitialLearnRate 1e-4

LearnRateDropPeriod 1
LearnRateDropFactor 0.1

L2Regularization 0.0001
Momentum 0.9

Epsilon 10e-8

ing. The learning rate has been empirically set accordingly to an ex-
perimental analysis of the loss reduction after one epoch training. All
the experiments were conducted using the same set of input data and
the same initialization of random parameters to achieve valid conclu-
sions. The experiment used 64000 input elements trained in one epoch
with 1000 iterations with a batch size of 64. Figure 5.8 shows the cross-
entropy loss before and after the training using a different learning rate
parameter. The blue line represents the loss before the training, and
the red line represents the loss after the training. As can be seen, the
optimal learning rate for these experiments is 10−4.
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Figure 5.8: Loss reduction vs Learning rate.
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5.1.6 Data Augmentation

Additionally, a data augmentation technique has been performed over
the input images to avoid overlearning and boost generalization. The
technique applies a random translation transformation, by shifting the
image vertically and horizontally, to avoid the same input and repeat
the same training instance. Image rotation and other transformations
have been discarded because they produce non-realistic input images.
The random translation parameters are 50 and 30 pixels in the lateral
and vertical axes, respectively.

5.1.7 Temporal Output Integration

The CNN generates class-probabilities based on an input image with-
out a temporal relation. However, outputs represent classifications of
continuous maneuvers that evolves along the time. The temporal in-
tegration of isolated outputs can bring time consistency to the CNNs
output. A Markov Chain has been used to integrate consecutive CNN
outputs.

The state of the vehicle X is represented by a model with three
possible states X = {s0, s1, s2}, where s0 is the neutral state which
corresponds with a NLC maneuver, s1 is the LLC, and s2 is the RLC
state. The model is represented in figure 5.9. This model allows tran-
sitions from the NLC state to LLC and RLC states and vice versa.
However, transitions between LLC or RLC are not allowed. A transi-
tion to a middle NLC state is mandatory before changing the sense of
the lane change.

The probability of transition between states is defined by matrix
T . Each element Ti,j represents the probability of change from a state
si to a state sj in a discrete time step. Transitions from s1 to s2 and
vice versa are forbidden or simply not possible according to the model.
Consequently, these probabilities must be set as zero T1,2 = T2,1 = 0.

The probability of a certain state sj at the current time step coming
from a state si at the past time step is computed based on the prob-
ability of the state si and the probability of transition between these
states according to eq. 5.3, where Xn−1 is the state in the previous time
step. The probability of transit from any state sj to a certain state si

is computed as the sum of the probability of being transitioning from
a particular sj to the current si according to eq. 5.2.

P (Xn = sj|Xn−1 = si) = Ti,jP (Xn−1 = si) (5.1)
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Figure 5.9: Vehicle behavior model.

P (Xn = si) =
∑

j

Ti,j · P (Xn−1 = sj) (5.2)

In general, the probability of all states can be computed in a matrix
way according to eq. 5.3.

P (Xn) = T T P (Xn−1) (5.3)

Matrix T has been defined based on the frequency of each event
observed in the dataset. Note that transitions from a lane change
status are observed only twice in a complete lane-change maneuver.
Table 5.6 shows the frequency of these events. The probabilities of
transition from state s0, s1, or s2 are computed according to eqs. 5.4,
5.5, and 5.6.

Table 5.6: Frequency of Lane Change Events

Event Acronym number

Number of Left Lane Changes NLLC 413

Number of Right Lane Changes NRLC 430

Frames while Left Lane Changes FLLC 17473

Frames while Right Lane Changes FRLC 25420

Frames while no Lane Change FNLC 876384



5.1. Maneuver Prediction 101

T0,0 = P (Xn = s0|Xn−1 = s0) =
FNLC − NLLC − NRLC

FNLC

T0,1 = P (Xn = s1|Xn−1 = s0) =
NLLC

FNLC

T0,2 = P (Xn = s2|Xn−1 = s0) =
NRLC

FNLC

(5.4)

T1,0 = P (Xn = s0|Xn−1 = s1) =
NLLC

FLLC

T1,1 = P (Xn = s1|Xn−1 = s1) =
FLLC − NLLC

FLLC
T1,2 = P (Xn = s2|Xn−1 = s1) = 0

(5.5)

T2,0 = P (Xn = s0|Xn−1 = s2) =
NRLC

FRLC
T2,1 = P (Xn = s1|Xn−1 = s2) = 0

T2,2 = P (Xn = s2|Xn−1 = s2) =
FRLC − NRLC

FRLC

(5.6)

It is important to note that T diagonal values, which represent the
probability of remaining in the same state, are two orders bigger than
the probability of transitioning to another state.

The initial probability P (X0) is defined using the relative number of
occurrences for each state. Eq. 5.7 shows how the initial probabilities
vector is computed.

P (X0 = s0) =
FNLC

FNLC + FLLC + FRLC

P (X0 = s1) =
FLLC

FNLC + FLLC + FRLC

P (X0 = s2) =
FRLC

FNLC + FLLC + FRLC

(5.7)

The Markov Chain is used to compute a priori probability of the
current vehicle state based on its previous state. The joint probability
is computed based on the observation provided by the CNN.
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5.2 Trajectory Prediction

The prediction of vehicle trajectories deals with the problem of knowing
what the vehicle’s position some time into the future will be. Vehicle
positions are commonly expressed in 2D or 3D cartesian systems. In
our case, predictions are tackled from onboard sensors, and vehicle
positions are over the road plane. Consequently, a 2D reference system
with the origin in the ego-vehicle is considered.

The model proposed to predict vehicle trajectories is detailed in this
section. This approach is based on the analysis of graphic representa-
tions of the road scene through deep learning techniques. Conceptually,
vehicle positions are represented in a BEV image. The same BEV rep-
resentation is inferred some time ahead by using an image-to-image
regression approach.

5.2.1 System Description

The U-net [66] model has been selected as the prediction core to per-
form the image to image regression task. This model is a kind of CNN,
which was developed to perform semantic segmentation in biomedical
imagery. U-Net architecture is based on four different blocks: pre-
processing, encoder, decoder, and post-processing. Finally, application
layers adapt the network’s output to the desired topology problem,
such as semantic segmentation or image regression.

The U-Net network is defined by a mainstream block that halves the
original input image consecutively. Then, the same number of blocks
doubles the size of the feature’s volume. The features extracted at the
input side are concatenated with the features extracted in the output
side at the corresponding levels. The number of levels is denoted as
depth and represented by the parameter n. Figure 5.10 shows a sim-
plified representation of the U-net’s architecture. The pre-processing
block generates k features directly from the original image that will be
doubled after each depth level.

In this approach, we use this model to perform image to image
regression. The scene is represented into a BEV with dimensions H ×
W . On the input side, d representations of past samples are stacked,
creating an image with d channels. At the output side, an image with d
channels representing future samples is used as the network target. The
idea is that the network core learns the underlying behavior presented
in the input block to generate the same representation of the vehicles
in some future points.
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Figure 5.10: U-net architecture.
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It is important to note that this network takes as input a data
block with size at least 2n × 2n and multiple of them. Another critical
point is to define the receptive field from an output pixel. Eq. 5.8
shows the influence range of a single input pixel where n is the number
of encoder-decoder blocks. Each encoder block expands the receptive
field with two 3 × 3 convolution layers, and then virtually multiplies
by 2 with a maxPool layer with a kernel size 2 × 2. A decoder block
has a 2dtranspose layer that increases the features by 2 in the two
first dimensions. This block doubles the receptive field. Then, two
convolution layers with kernel size 3 × 3 increase the contact surface.

r = ±2

(

3 +
n
∑

i=2

5 · 2i−2

)

(5.8)

For example, a U-net network with five depth levels would create a
contact surface that links a pixel in the output layer on the position
(0,0) with all the pixels in the input layer located at coordinates closer
than (156,156). It would connect the output reference pixel to all pixels
closer than (316, 316) for six levels of depth. Note that the output
reference pixel is in the top left corner. The same connections are
created to the left, right, up, and down. This point is critical due to the
nature of vehicle interaction, especially in highway scenarios. Driver
decisions, and consequently, vehicle trajectories are based on what the
driver can see. In highway scenarios, the influence area of a certain
vehicle grows according to its speed. The proposed architecture cannot
ensure that the inferred vehicle position takes all the driver’s visibility
into account because of the sensors’ range. Table 5.7 summarizes the
main features of the U-net model for common depth levels.

Table 5.7: U-net Contact Surface Area

Depth levels 4 5 6 7

Contact Area ±76 ±156 ±316 ±636

Minimum input size 16 32 64 128

Parameters 56k 116k 235k 472k

5.2.2 Input and Output Representation

The input image is generated using the vehicle detections to represent
the scene in a BEV representation.

The BEV representation has been defined as a grid with a size of
256×512 pixels representing an area of ±25.6×102.4 meters in lateral
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(y) and longitudinal (x) axis. The size of the grid has been established
based on three criteria: memory size when it is allocated in the GPU
for training purposes, a proper resolution to understand the scene, and
compatibility with the proposed network architecture. The lateral and
longitudinal resolutions are 0.1 and 0.2 m/px respectively.

Vehicles can be represented into the BEV using two choices:

• Rectangular representation. It uses a fixed size rectangle wv × hv

to populate the BEV whit a fixed value Iv. This representation is
closer to reality because of the vehicles’ shape.

• Bi-dimensional Gaussian distribution. The Gaussian distribution
represents the probability of being a vehicle using a specific tile
in the BEV, according to eq. 5.9. The mean value of each bi-
dimensional Gaussian distribution µ is set using the vehicle’s po-
sition. The standard deviation σ is composed with half of the
rectangle size.

Iv(x, y) = Iv exp −




(

x − µxi√
2σxi

)2

+

(

y − µyi√
2σyi

)2


 (5.9)

Rectangle size wv ×hv has been set to 1.8×5.0 meters. Equivalently,
σ = (0.9, 2.5).

At the point where two vehicles’ representations overlap, there are
two options to merge the area shared by them. They can be added,
generating values up to 2Iv, or they can be limited to the maximum of
each vehicle representation according to eq. 5.10. The second option
to combine the shared areas represents the real scene in a more reliable
way, and the maximum value of the representation keeps limited to Iv.

Iv(x, y) = max
∀

{Iv,i(x, y)} (5.10)

Additionally, lanes extracted from the original image can be repre-
sented into the vehicle occupancy map to provide context information.
The value used to represent the lanes is IL. If the complete image span
(from 0 to 255) is used for representation, in the case of the Gaussian
distribution, IL can match with some points of the vehicle’s represen-
tation.

Figure 5.11 illustrates a sample of the dataset. Different combina-
tions of Gaussians and rectangle vehicle representations are combined
with the lane models provided in the dataset. For this representation,
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Iv is set to 128 and 255 for the rectangle and Gaussian representation,
and IL is set to 255.

(a) Gauss. w/ lanes (b) Rect. w/ lanes (c) Gauss. w/o lanes (d) Rect. w/o lanes

Figure 5.11: BEV representation of vehicle detections and lanes.

Both input and output images are generated in the same way, but
output images do not include lane representations. The complete input
and output data consist of d consecutive samples stacked by creating
an input/output volume with a size of 256 × 512 × d. When d time
samples of data are stacked, a new problem arises in the output block.
The output block represents future samples. Consequently, three kinds
of vehicles coexist:

• Vehicles that exist in the input and output block. This is the
most common case.

• Vehicles that exist in the input block but do not in the output
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block. These are vehicles that abandoned the field of view of the
sensor.

• Vehicles that do not exist in the input block, but they do in the
output block. These are vehicles that enter the field of view of
the sensor.

Future positions of vehicles that are not present in the input block
cannot be computed as far as there are no data to consider their ex-
istence, neither their future positions. Future scene representations
are generated considering vehicles that were present in the last input
representation only.

5.2.3 Vehicle Position Extraction

The codification procedure transforms numeric data into a representa-
tion to make predictions. Once predictions are made, the representa-
tion needs to be transformed into numeric data. For each input image,
n different predictions are generated at different time horizons. The
number of vehicles present in a future scene is a priori unknown, so
the way used to extract the numeric positions must be able to produce
a non-fixed amount of them. It can only consider the vehicles in the
future should be the same or fewer than in the last known sample.

The algorithm proposed in 5.12 is used to extract the position of the
vehicles. The output data somehow represents the probability of being
using a tile in a certain future sample. The algorithm finds the pixel
with the highest probability first. This pixel is denoted as P = (R, C),
and it is used as the discrete location of the vehicle. The discretization
procedure used to represent both input and output data into a grid
needs to be reverted. The proposed algorithm extracts the position
with sub-pixel resolution in a second step. The position of the vehicle
is refined using a scoring function. Each pixel pi included in the area
defined by a rectangle with dimension R = 2w × 2h around P con-
tributes weighting its probability by its pixel coordinates according to
eq. 5.11. Note that discrete positions are conditioned by the resolution
used to define the probability occupancy map.

P̂ (R̂, Ĉ) =
r=R+h
∑

r=R−h

c=C+w
∑

c=C−w

p(r, c) · (r, c) (5.11)

After computing the sub-pixel position, the area used to compute it
is cleared, setting the probability in the occupancy map to zero. This
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procedure is repeated as many times as tiles with a probability higher
than pmin remain in the occupancy map. According to the definition of
the occupancy map, where a value of 1 means that the pixel is occupied
and 0 means empty, we set the threshold pmin to 0.5. That is the
limit to consider that a pixel represents a possible vehicle. Figure 5.13
shows the codification of an arbitrary vehicle, the red cross represents
the actual center of the vehicle, the blue plus symbol represents the
discrete found position of the vehicle, and the green one represents
the sub-pixel position of the vehicle. Note that the image has been
zoomed by 16 to illustrate the differences between discrete and sub-
pixel detection. Vehicle parameters are w = 5.0, h = 2.0, x = 6.63,
y = 3.21, and representation parameters: xppm = yppm = 1.

Figure 5.12: Position extraction algorithm.

Table 5.8 shows the position extracted from the vehicle shown in fig-
ure 5.13. The vehicle is represented in a BEV using the same resolution
in both axes, equal to 1 meter per pixel. The position of the vehicle
is at coordinates x, y = (6.63, 3.21). The resolution used to make the
representation defines the error generated when the maximum method
is applied to extract the vehicle’s position. However, the subpixel res-
olution method has errors in the order of tens of millimeters, which is
not related to the resolution used to represent the data.
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Figure 5.13: Position extraction from graphic representation. The red cross rep-
resents the actual center of the vehicle, the blue plus symbol the discrete found
position, and the green plus symbol the sub-pixel position. Image augmented 16
times.

Table 5.8: Position Extraction Methods

Original Maximum SubPixel

X / Y [m]/[m] 6.63 / 3.21 7 / 3 6.615 / 3.216

X / Y Error [m]/[m] - / - 0.37 / 0.21 0.015 / 0.006

5.2.4 Association of Extracted Positions

When the positions of all the vehicles are extracted from an image,
they need to be associated with their respective detection. A simple
procedure based on a Hungarian matrix [61] is used to associate the ex-
tracted positions with the positions given in the dataset. The number
of elements that can be matched is the minimum between the num-
ber of positions extracted from the image of the number of detections
provided for the corresponding scene. The value used as the distance
parameter to associate elements is the Euclidean distance between ex-
tracted points and the provided samples. This method is good enough
as predicted positions do not differ from their actual positions.
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5.2.5 Training Strategy

The available data in the dataset consists of 11 sequences recorded at
16 Hz. The number of frames accounts for 345K samples representing
more than 6 hours of traffic recordings. The amount of data is mas-
sive and allows us to train models with a wide variety of samples and
situations. The natural frame rate is too high to appreciate relevant
differences from one frame to the next one. The original frame rate
was reduced from 16Hz to 4Hz, discarding three consecutive samples
out of four. The input and output data stack 8 BEV representations
of past and future samples, respectively. The lowered frame rate al-
lows the input and output data to cover a larger period using the same
number of samples. The time represented in the input block is from t
to t - 1.75 seconds. The output block represents future locations from
t + 0.25 to t + 2.0 seconds. The network can only be used to predict
positions 2 seconds ahead. However, the proposed architecture has the
same dimensions in the input and the output sides. The first channel
of the output (t + 0.25) can be used as the newest sample (t = 0) in
the input block, and the new output extends the prediction one step
(t+2.25). This process can be repeated as many times as desired, but
the output quality decreases due to the progressive degradation of the
input data.

The training set contains samples included in sequences from 1 to
8. Samples from sequences 9 to 11 have been used as a test set.

The influence of high-level parameters such as the network’s depth
level and the output topology has been tested doing different trainings
by varying them. Regarding the depth levels of the U-net, it was
limited to 5 and 6. Level 7 and above exceeds the GPU memory size,
and the training could not be conducted. Levels below 5 offer a minimal
contact area.

The last layer of the U-net was replaced to fit the regression prob-
lem. Three different layers were identified as possible output layers:
liner, tanh, and clippedReLu. The linear layer does not apply a trans-
formation to the network’s output. The tanh layer applies the hyper-
bolic tangent function ranging the output into the range of (−1, 1) with
a nonlinear transformation. The clippedRelu keeps the output between
0 and the given value, which is 1 for this purpose. The last one seems to
be perfect to fit the output problem with its values in the range (0, 1).
The RMSE has been used as a loss function for the image-to-image
regression problem. The main training hyperparameters are listed in
table 5.9.
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Table 5.9: Training Hyperparameters

Parameter Value

Optimizer Method adam

MiniBatch 1

Epochs 1

InitialLearnRate 1e-6

L2Regularization 0.0001

Momentum 0.9

Gradient threshold 1

Epsilon 10e-8

Figures 5.14 and 5.15 illustrate a complete input-output sequence.
Vehicles represented as rectangles have been selected for this illustra-
tion. Lanes are included at the input block as the way to include con-
text information. The output block has no lane markings given that
the desired output is only the vehicles’ positions at each corresponding
time step.

5.2.6 Baseline

For further comparisons, a KF with a Constant Speed model has been
used to process vehicle positions and generate predictions. State vector
X, and the observation vector Y , are defined in eq. 5.12 where x, and
y are vehicle positions, vx and vy are vehicle speeds, and ∆t is the time
step. The process model A, and the observation model H are described
in eqs. 5.13 and 5.14.

X =
[

x y vx vy

]T
Y =

[

x y vx vy

]T
(5.12)

Xk = AXk−1

Yk = HXk

(5.13)

A =











1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1











H =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











(5.14)
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(a) f − 28 (b) f − 24 (c) f − 20 (d) f − 16

(e) f − 12 (f) f − 8 (g) f − 4 (h) f

Figure 5.14: BEV input block Sequence. Samples from f − 28 to f .
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(a) f + 4 (b) f + 8 (c) f + 12 (d) f + 16

(e) f + 20 (f) f + 24 (g) f + 28 (h) f + 32

Figure 5.15: BEV output block sequence. Samples from f + 4 to f + 32.
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5.3 Conclusions

In this chapter, two CNN-based models are proposed to predict maneu-
vers and trajectories of surrounding vehicles in a deep-learning fashion.

Maneuver predictions are tackled from an image classification ap-
proach. Enriched images are efficiently generated to include context
information, vehicle interaction, motion histories, and a target selec-
tion method. The number of vehicles in the scene and the number of
past vehicle representations are virtually unlimited. In contrast with
4D image inputs, the data size does not increase with the number of
temporal instances. In contrast with the state of the art approaches,
this novel image-based proposal is not limited to a fixed number of
vehicles or a fixed vehicle distribution. Besides, none of the existing
works uses the appearance of the image to predict or classify the ma-
neuvers of the surrounding vehicles.

A trajectory prediction model using BEV representations has been
presented. The model uses vehicle detections and lane information
to create a virtual representation of the scene. An image-to-image
regression approach is exploited to generate future representations of
the current scene. This approach is unlimited in terms of the number
of considered vehicles. The trajectory prediction is generated for all
the vehicles at the same time, unlike most of the state of the art works,
where a single vehicle is considered as the prediction object, and the
others actuate as conditions.



Chapter 6

Results

This chapter presents, compares, and discusses the results generated for
the models proposed in chapter 5. Section 6.1 presents the maneuver
classification and prediction results. The trajectory prediction model
is evaluated and analyzed in section 6.2 providing final results. Finally,
conclusions derived from this chapter are exposed in section 6.3.

6.1 Maneuver Detection and Prediction

This section presents the results generated by the training and evalu-
ation of the CNN models proposed in chapter 5. The User Prediction
Challenge described in chapter 4 will be used as baseline for compar-
ison purposes. Following the same structure, results are provided at
single-sample and trajectory-wise.

Two sets of data were used to train the models attending to the
labeling strategy. The labeling strategy defines the longest prediction
horizon by labeling k samples of a future oncoming maneuver. This
prediction time is denoted as tp = k. Attending to the value of k two
types of strategies are defined. The simplest strategy is limited to the
classification of ongoing actions, where k = 0. Classification results
of current actions are presented in subsection 6.1.1 and denoted as
maneuver detection results. The second strategy allows the prediction
of an oncoming maneuver up to k samples in the best case. This set
is not limited only to the detection of ongoing maneuvers and can also
predict oncoming ones. Prediction results of current and future actions
are presented in subsection 6.1.2 and denoted as maneuver prediction
results.
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6.1.1 Maneuver Detection

This subsection presents maneuver detection results. Maneuvers de-
tection is related to the detection of ongoing actions and it is denoted
by tp = 0. Classification results can be evaluated in two different ways.

The single-sample classification results evaluate how many samples
are correctly categorized. These kinds of results are machine-learning
oriented, and they are generated after the models’ training. These
results are presented in subsection 6.1.1.1.

More complex analysis is performed treating samples as a part of
complete maneuvers. Subsection 6.1.1.2 presents maneuver-wise re-
sults providing detection rates as well as anticipation or delays.

To find the best configuration, different state-of-the-art CNN mod-
els were trained using different sets of data, as it was defined in chapter
5. In this chapter, the different sets are denoted as:

• Sequence Split strategy S = 1: half of each record is used for
training and the remaining half for testing.

• Sequence strategy S = 2: some of the records are completely used
for training and the remaining ones for testing.

• One vs. All S = 3: follows the K-Fold strategy using each record
as the testing set and the remaining ones as the training set.

6.1.1.1 Single-sample Detection

This subsection provides a summary of the maneuver classification
evaluating each sample or image as an isolated element. The best
way to present the ability of each model to assess the corresponding
action for each given sample is the confusion matrix. However, due
to the high number of models and variations trained for this purpose,
the confusion matrix have been kept apart in the appendix A. Each
model configuration has been summarized by its overall accuracy and
the by-class precision and recall, according to eqs. 4.1 and 4.2.

Tables from 6.1 to 6.3 show the performance of each CNN model
trained with three different sets of data limited to maneuver classifi-
cation only. It can be observed that Resnet50 and Resnet101 models
achieved almost similar scores for the training sets S1 and S2. However,
when S3 is used as training set, which implies many more samples, the
Resnet50 overcomes all the other models.
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Table 6.1: Models Results Summary, S = 1, tp = 0
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Accuracy 72.2 76.3 76.3 72.2 84.2 84.3

none Precision 75.7 78.1 78.1 75.7 93.8 91.3

Recall 92.0 92.6 92.6 92.0 87.9 89.8

left Precision 58.7 68.0 68.0 58.7 47.5 56.5

Recall 32.4 43.7 43.7 32.4 63.0 60.0

right Precision 62.5 72.2 72.2 62.5 57.3 65.0

Recall 44.3 48.9 48.9 44.3 71.6 68.6

Table 6.2: Models Results Summary, S = 2, tp = 0
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Accuracy 72.3 76.8 75.1 86.3 86.9 87.0

none Precision 70.9 76.5 75.1 93.0 90.5 93.1

Recall 95.8 95.2 94.2 91.1 91.1 91.6

left Precision 69.1 74.7 74.7 54.1 53.2 63.1

Recall 38.8 40.9 37.4 67.1 66.9 61.3

right Precision 83.6 80.3 75.1 68.0 70.0 66.0

Recall 40.2 49.2 47.6 67.2 71.1 75.9

Table 6.3: Models Results Summary, S = 3, tp = 0
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Accuracy 73.8 76.8 77.8 85.5 86.9 82.7

none Precision 74.9 77.2 79.8 93.0 93.4 88.6

Recall 93.3 94.3 93.0 90.0 91.1 91.7

left Precision 66.8 74.3 67.4 54.3 57.9 57.9

Recall 36.4 40.7 43.0 62.2 65.3 46.7

right Precision 72.4 76.1 73.2 63.2 68.8 64.1

Recall 45.9 51.0 51.0 70.7 74.0 62.1
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Model Resnet50 trained with set S3 achieved the best classification
results. Table 6.4 presents results for each training fold, for a deeper
analysis of the differences between the training sets. Attending to the
accuracy as an average value of the performance for each training, folds
4, 8, and 11 look like the three most challenging records (red) due to
their low accuracy. On the other hand, folds 7, 9, and 10 seem to be
the easiest ones (green). According to the User Prediction Challenge,
humans asses 85.3% of the frames correctly on average as it is presented
in table 4.5. Resnet50 model, trained with the K-Fold configuration
achieves 86.9% accuracy on average which overcomes humans’ accuracy
a 1.6%.

Table 6.4: K-Fold Test Results: Resnet50, S = 3, tp = 0

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 86.4 85.8 85.7 82.9 86.3 86.2 88.9 84.5 88.1 87.5 84.0 86.9

none Pre 87.2 90.2 92.6 87.1 89.8 90.9 93.3 90.5 94.0 90.1 87.9 91.1

Rec 96.1 92.3 90.4 92.1 95.1 92.8 93.9 89.9 91.9 95.5 91.7 93.4

left Pre 72.7 65.1 64.2 74.9 73.5 42.3 70.1 64.6 64.4 72.5 73.3 65.3

Rec 41.4 62.4 62.7 51.7 59.0 54.9 62.4 51.1 61.5 59.2 58.6 57.9

right Pre 87.1 76.9 66.1 71.3 74.5 79.7 68.3 67.3 70.3 75.9 65.8 74.0

Rec 70.0 70.0 76.7 74.6 64.4 61.7 72.2 78.8 80.5 57.7 65.7 68.8

6.1.1.2 Maneuver-level Detection

The previous subsection analyses the CNNs’ outputs as an isolated
element. However, lane change and lane-keeping maneuvers are time-
based actions and they should be treated as they are. The raw output
of each maneuver sequence is temporarily filtered by using the Markov
model described in subsection 5.1.7.

The procedure used to evaluate the maneuver detections is as fol-
lows:

• A lane-change maneuver is considered as a correct detection if it
is correctly stated before the LCE takes place.

• A lane-change maneuver is considered as a wrong detection if the
lane change is not detected or if it is detected after the LCE.

• A lane-keeping maneuver is correctly detected if all of their sam-
ples are classified as none samples.

To evaluate all the lane-change maneuvers commonly, their length
has been normalized to 1. The normalization prevents weighting effects
between long and short maneuvers.
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Tables from 6.5 to 6.7 presents average numeric results for each
trained model. Anticipation is provided in seconds to the LCE and
relative to the maneuver’s length, where 100% means the maneuver is
correctly detected from its beginning and 0% at the LCE. The Area
Under the Curve (AUC) represents in a single number the ability to
detect as soon as possible all the maneuvers, including those which
are not detected. Finally, accuracy is included in tables to introduce
the binomial anticipation versus accuracy. Accuracy for the LC set,
which includes left and right lane changes, and the NLC set is provided.
These two accuracy values refer to the original training set. The bal-
anced set refers to the set used in the User Prediction Challenge which
is the reference to be compared.

Table 6.5: Maneuver Anticipation vs Accuracy S = 1, tp = 0

Anticipation AUC Accuracy

[s] [%] LC NLC All Balanced

Alexnet 2.53 81.0 0.67 78.4 68.7 69.9 75.2

GoogleNet 2.45 77.8 0.69 83.7 71.6 73.1 78.3

SqueezeNet 2.54 81.3 0.75 87.8 68.0 70.4 79.3

Resnet18 2.23 68.9 0.54 73.0 86.8 85.1 77.8

Resnet50 2.16 67.2 0.52 72.1 87.9 85.9 77.1

Resnet101 2.28 72.2 0.61 80.3 84.2 83.7 81.8

Figure 6.1: Normalized lane change detection representation. S = 1, tp = 0.
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Figures from 6.1 to 6.3 represents graphically the performance of
the trained models detecting lane-change maneuvers. Each maneuver
is sorted based on the detection time from the latest to the earliest.
lane-change maneuvers that were not detected before the LCE are
placed on the left side of the graph, with an equivalent detection frame
to f1. The early detections are located on the right side of the figure
where higher levels of anticipation are achieved. The AUC value is
extracted from this representation where non-detected maneuvers ac-
count for zero and the detected ones for their corresponding normalized
anticipation. Models can be visually compared, better ones described
most-left and most-high curves. Note the point where each curve starts
defines the share of non-detected maneuvers.

Table 6.6: Maneuver Anticipation vs Accuracy S = 2, tp = 0

Anticipation AUC Accuracy

[s] [%] LC NLC All Balanced

Alexnet 2.36 82.6 0.77 90.9 65.3 68.0 83.1

GoogleNet 2.36 82.5 0.78 89.7 65.9 68.4 82.3

SqueezeNet 2.37 83.2 0.79 90.9 67.3 69.8 82.3

Resnet18 2.03 70.8 0.61 82.9 86.5 86.1 84.0

Resnet50 2.01 70.2 0.61 80.6 87.2 86.5 82.7

Resnet101 2.09 74.2 0.65 82.9 86.3 86.0 83.9

Figure 6.2: Normalized lane change detection representation. S = 2, tp = 0.
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Comparing the three tables and figures it can be observed that
Alexnet, GoogleNet, and SqueezeNet models are better than Resnet
models in detecting maneuvers. This fact suggests that the simplest
models are better in detecting maneuvers than the most complex ones.
SqueezeNet’s anticipation goes from 2.37 to 2.53 seconds corresponding
to training sets S2 and S1. Compared to Resnet50, which achieved the
best single-sample classification results, anticipation goes from 2.00 to
2.15 seconds for the same sets.

If the AUC is considered as a performance parameter, the simplest
models overcome the most complex again. Between the three simplest
models, SqueezeNet achieves 0.79 AUC using training set S2 and 0.78
with S3.

Table 6.7: Maneuver Anticipation vs Accuracy S = 3, tp = 0

Anticipation AUC Accuracy

[s] [%] LC NLC All Balanced

Alexnet 2.33 78.9 0.72 87.9 65.4 68.0 80.9

GoogleNet 2.40 81.0 0.75 88.8 68.4 70.7 81.7

SqueezeNet 2.43 83.3 0.78 90.9 66.6 69.5 82.9

Resnet18 2.16 74.1 0.62 80.0 85.1 84.5 81.6

Resnet50 2.09 72.6 0.66 87.3 84.5 84.8 86.4

Resnet101 2.28 77.3 0.66 79.7 79.0 79.1 80.9

Figure 6.3: Normalized lane change detection representation. S = 3, tp = 0.
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There is a relevant effect regarding accuracy. While the simplest
models achieve higher accuracy for lane-change maneuvers, they are
worse in detecting lane-keeping maneuvers (90.9 vs 66.7, SqueezeNet
table 6.7). On the other hand, Resnet models achieve quiet similar
accuracy for lane change and lane-keeping maneuvers (87.3 vs 84.5,
Resnet50 table 6.7). This situation is generated by the imbalance num-
ber of maneuvers in the training sets. The additional Balance accuracy
column shows the accuracy for the User Prediction Challenge in which
the amount of no lane-change maneuvers is similar to the lane change
ones. In this particular set, the Resnet50 model overcomes all the other
models.

This behavior together with the anticipation and the single-samples
classification results suggests that the simplest models (AlexNet,
GoogleNet, and SqueezeNet) are more sensitive and reactive to small
variations while Resnet models are less sensitive in general.

Comparing the human and the model’s ability to assess maneuvers
correctly, humans reached 83.9% accuracy (see table 4.3). Alexnet,
GoogleNet, SqueezeNet, Resnet18, and Resnet101 models reached ac-
curacy levels classifying maneuvers (see table 6.7) below the human
ability. In contrast, all the models overcome human anticipation (1.66
seconds on average). It is observed that models with higher anticipa-
tion periods have lower accuracy in detecting maneuvers. This behav-
ior was observed among the different users that performed the test.
Resnet50 model overcomes human’s accuracy and anticipation in 2.5%
and 0.43 seconds respectively.

6.1.2 Maneuver Prediction

Results presented in the previous section strictly stick to the recogni-
tion of ongoing maneuvers. Models were trained and tested using sam-
ples corresponding to ongoing lane changes or no lane-changes. How-
ever, some of the lane-change maneuvers were detected from their very
beginning (just at f0). To perform predictions through CNN classifi-
cation architectures, a small number of samples before the lane-change
maneuvers were labeled as their corresponding future maneuver. The
period used to extend the prediction has been limited to 10 samples
(1.0 second) due to high uncertainty related to future action classifica-
tions. The behavior expected from the predictive models is to classify
lane change actions before they have started but also while they are
carried out. This behavior creates a fork in the training process where
the no lane-change samples must be classified as they are but on the
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other hand, no lane-change samples before a lane change must not. In
other words, the period before an action transition can be understood
as a present maneuver detection or as a future maneuver prediction.
The limitation of the prediction period reduces the uncertainty and fo-
cuses the models to generate the desired predicted actions. Otherwise,
the predictions performed by any model can fail systematically due to
the lack of motivated information.

The maximum prediction period is denoted as tp = 10 where 10
samples where added before each lane-change maneuver. The no lane-
change maneuvers were also extended 10 samples from the beginning.
Following the same structure presented in subsection 6.1.1 results are
analyzed as single-sample results, which are machine-learning oriented
in 6.1.2.1, and at trajectory level, providing maneuver detection rates,
anticipation, and prediction periods in 6.1.2.2. The trained models
and the data used for this purpose are the same as those used in the
previous subsection except for the lane-change maneuver’s length as
the only significative difference.

6.1.2.1 Single-sample Prediction

This subsection provides a summary of the maneuver classification
evaluating each sample as an isolated element. Each model configu-
ration has been summarized by its overall accuracy and the by-class
precision and recall, according to eqs. 4.1 and 4.2. Each specific con-
fusion matrix have been kept apart in appendix A for simplicity.

Tables from 6.8 to 6.10 show the performance of each CNN model
trained with three different sets of data including classification of
current and future maneuver state samples. It can be observed
that there are no significant differences between Resnet18, Resnet50,
and Resnet101 models. Compared with AlexNet, SqueezeNet, and
GoogleNet their performance is from 10 to 12 points lower. It can
also be observed that training set S2, which implies much fewer sam-
ples than S3, produces slightly better results with the Resnet models,
unlike the simpler models.

Model Resnet50 trained with set S2 achieved the best classification
results. The performance between S2 and S3 decreases 1.5 points for
this model. It was expected to have a better performance over the
S3 set because it includes more samples to train the model. This fact
suggests the test samples in set S2 are easier than test samples in S3,
or the training samples in S2 are more valuable, learning-wise, than
those in S3 which is really improbable because S3 set is trained with
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Table 6.8: Models Results Summary, S = 1, tp = 10
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Accuracy 71.0 70.8 73.0 82.9 82.6 82.8

none Precision 75.0 70.4 75.3 93.6 93.0 91.3

Recall 91.3 93.5 91.0 86.5 86.9 88.3

left Precision 48.9 69.0 59.9 44.2 45.0 44.4

Recall 31.7 36.3 38.3 58.7 57.7 62.5

right Precision 64.6 74.5 69.4 50.7 51.8 62.6

Recall 40.3 43.1 44.6 70.6 82.6 82.8

Table 6.9: Models Results Summary, S = 2, tp = 10
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Accuracy 72.0 70.8 73.0 85.1 85.9 85.6

none Precision 73.1 70.4 75.3 92.0 93.1 92.6

Recall 94.3 93.5 91.0 90.6 90.5 90.7

left Precision 63.2 69.0 59.9 53.4 52.5 50.0

Recall 29.7 36.3 38.3 58.6 63.2 62.7

right Precision 72.0 74.5 69.4 64.6 64.6 67.5

Recall 45.2 43.1 44.6 66.2 68.7 85.6

Table 6.10: Models Results Summary, S = 3, tp = 10
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Accuracy 73.1 75.6 76.0 84.2 84.4 84.1

none Precision 75.6 76.3 78.1 92.5 92.3 90.1

Recall 91.8 93.8 92.5 89.0 89.3 90.9

left Precision 58.8 71.8 61.9 49.7 51.4 58.2

Recall 34.7 39.5 40.7 59.0 59.0 53.5

right Precision 67.8 74.0 73.8 59.6 60.7 65.0

Recall 43.6 48.4 47.5 67.7 68.2 65.0
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all the samples except those included in the testing fold. However,
as it was commented before, only S3 set ensures that all the samples
are evaluated and comparable with the results derived from the User
Prediction Challenge.

Table 6.11 presents results for each individual training fold, for a
deeper analysis of the differences between the training sets. Attend-
ing to the accuracy as an average value of the performance for each
training, folds 1, 8, and 11 look like the three most challenging records
(red) due to their low accuracy. On the other hand, folds 7, 9, and 10
seem to be the easier ones (green).

According to the User Prediction Challenge, humans’ asses 85.3%
of the frames correctly on average as it was presented in table 4.5. The
Resnet50 model, trained with the K-Fold configuration achieves 84.4%
accuracy on average which is 0.9% below humans’ accuracy.

This number does not mean the model performs worse than hu-
mans assessing current and future maneuver state based on a single
sample. Note that all the samples before the lane-change account as
correctly categorized samples independently on whether the user pre-
dicts or not the future maneuver. The training process does not allow
this behaviour and the confusion matrix shows each sample as it is.
If the same criterion is applied to the CNN’s output the classification
results for Resnet50 model trained with S3 set increases its accuracy
up to 87.2% performing 1.9 points over human’s accuracy.

Table 6.11: K-Fold Test Results: Resnet50, S = 3, tp = 10

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 80.5 81.9 86.8 81.4 85.7 84.2 86.5 80.5 86.3 84.3 80.3 84.4

none Pre 86.0 84.1 91.8 88.0 89.5 89.1 91.6 85.3 91.2 89.2 84.8 89.3

Rec 89.4 94.2 92.9 89.8 95.9 92.1 92.6 91.5 92.8 92.6 90.8 92.3

left Pre 41.8 61.8 76.1 62.1 72.0 41.7 69.2 51.6 55.0 61.6 73.5 59.0

Rec 50.5 28.4 64.3 54.3 53.3 50.3 51.9 35.1 55.6 52.9 50.4 51.4

right Pre 79.7 75.2 65.0 70.0 72.7 72.7 57.3 65.8 73.4 64.4 50.2 68.2

Rec 60.2 59.0 68.6 71.8 62.2 53.5 67.0 56.0 65.7 55.6 49.5 60.7
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6.1.2.2 Maneuver-level Prediction

The previous subsection analyses the CNNs’ outputs as isolated el-
ements. This subsection evaluates complete maneuvers as a single
element, considering them as continuous evolving elements. The ma-
neuver classification procedure is the same used in 6.1.1.2. The only
difference is that a few samples are added before each maneuver to
provide a chance to classify them before they have started. Here we
define that a maneuver is predicted only if it is detected at least 1
sample before their observed beginning. The length of maneuvers has
been also normalized to 1 to avoid weighting effects. The period before
the maneuver is equal for all the maneuvers so it does not need to be
normalized.

Tables from 6.12 to 6.14 presents average numeric results for each
trained model. Anticipation is provided in seconds to the LCE and
relative to the maneuver’s length, where 100% means the maneuver is
correctly detected from its beginning and 0% at the LCE. However,
a prediction period is added before the beginning of the maneuver
extending its virtual length over the unit. If a maneuver is correctly
predicted the anticipation can be higher than 100%.

Prediction is presented in two formats. As a time value which rep-
resents the average prediction time for the predicted maneuvers only,
and as a percentage which shows the share of predicted lane-change
maneuvers.

The AUC represents in a single number the ability to predict and
detect as soon as possible all the maneuvers, including those which
are not detected. The AUC value is composed as the addition of the
ordinary detection AUC and the prediction AUC. The detection AUC
evaluates as soon as the maneuvers are detected, considering only the
samples since their observed beginning. The prediction AUC evaluates
the as soon as the maneuvers are predicted, considering only the sam-
ples between the first sample of the maneuver and the beginning of the
observed maneuver. Both can account for a maximum of 1 individually
and together can reach a maximum value of two.

Finally, accuracy follows the same criteria than the previous sub-
section, specifying lane-change and lane-keeping accuracy, as well as
overall training and User Prediction Challenge accuracy.
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Table 6.12: Maneuver Anticipation vs Accuracy S = 1, tp = 10

Ant. Pred. AUC Accuracy

[s] [%] [s] [%] LC NLC All Balanced

Alexnet 3.20 106.3 0.82 63.5 1.15 78.5 68.9 70.1 75.3

GoogleNet 3.04 102.0 0.79 59.3 1.17 85.0 67.4 69.6 79.2

SqueezeNet 3.19 108.2 0.78 65.4 1.31 91.0 62.2 65.8 81.4

Resnet18 2.53 81.7 0.71 32.6 0.75 72.6 87.2 85.4 77.4

Resnet50 2.56 82.1 0.69 35.9 0.75 72.9 87.1 85.4 77.6

Resnet101 2.60 86.2 0.70 42.6 0.90 79.8 84.8 84.2 81.4

Figure 6.4: Normalized lane change detection representation. S = 1, tp = 10.

Figures from 6.4 to 6.6 represents graphically the performance of
the trained models detecting and predicting lane-change maneuvers.
The representation is the same used in the previous subsection but
predicted maneuvers are represented above f0, which is the observable
beginning of the maneuver. The top limit is fp which points to the
first sample of each maneuver. The AUC value is extracted from this
representation where the rectangle created between f0 and f1 denotes
the area for the detection AUC and the rectangle created between
f0 and fp defines the prediction’s AUC area. Models can be visually
compared, better ones described most-left and most-high curves. Note
the point where each curve starts defines the share of non-detected
maneuvers and the point where the curve reaches f0 defines the share
of predicted maneuvers.
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Table 6.13: Maneuver Anticipation vs Accuracy S = 2, tp = 10

Ant. Pred. AUC Accuracy

[s] [%] [s] [%] LC NLC All Balanced

Alexnet 2.97 106.4 0.79 65.3 1.28 86.9 67.5 69.5 80.4

GoogleNet 2.95 108.3 0.74 62.9 1.31 90.9 67.4 69.9 83.0

SqueezeNet 3.12 112.8 0.79 68.8 1.41 91.7 65.3 68.0 82.8

Resnet18 2.61 94.2 0.75 42.9 0.98 80.6 86.3 85.7 82.5

Resnet50 2.54 92.3 0.73 45.7 0.98 82.5 87.1 86.6 84.0

Resnet101 2.55 93.6 0.68 47.2 0.99 84.1 85.9 85.7 84.7

Figure 6.5: Normalized lane change detection representation. S = 2, tp = 10.

Comparing the three tables and figures it can be observed
that Alexnet, GoogleNet, and SqueezeNet models overcome widely
Resnet models in predicting maneuvers as well as in detecting them.
SqueezeNet’s anticipation reaches 3.19 seconds, 0.71 seconds more com-
pared with the Resnet50 model, which achieved the best single-sample
classification results. The percentage of predicted maneuvers is higher
for the simplest models again, 70.2% versus 49.5% at S3 set. The av-
erage prediction time reaches 0.77 seconds for those predicted maneu-
vers with Alexnet and SqueezeNet models. The difference with Resnet
models is narrower in this feature, achieving 0.71 seconds of prediction
time on average. The AUC value is a consequence that summarizes
all these causes. SquezeNet’s AUC is a 32% higher than Resnet101’s
AUC.



6.1. Maneuver Detection and Prediction 129

Table 6.14: Maneuver Anticipation vs Accuracy S = 3, tp = 10

Ant. Pred. AUC Accuracy

[s] [%] [s] [%] LC NLC All Balanced

Alexnet 2.97 105.3 0.77 66.1 1.23 86.0 66.9 69.1 79.6

GoogleNet 3.01 106.8 0.75 65.6 1.29 90.4 67.5 70.2 82.8

SqueezeNet 3.11 110.5 0.77 70.2 1.36 90.7 67.0 69.8 82.8

Resnet18 2.58 90.3 0.69 45.3 0.95 82.7 84.8 84.5 83.4

Resnet50 2.58 90.9 0.71 45.7 0.96 82.2 84.5 84.2 83.0

Resnet101 2.69 94.9 0.72 49.5 1.03 83.5 83.3 83.3 83.4

Figure 6.6: Normalized lane change detection representation. S = 3, tp = 10.

The prediction of maneuvers produces the same effect as it was pro-
duced with the detection of maneuver regarding the accuracy. While
the simplest models achieve higher accuracy for lane-change maneu-
vers, they are worst in detecting lane-keeping maneuvers (90.7% vs
67.0%, SqueezeNet table 6.14). On the other hand, Resnet models
achieve quiet similar accuracy for lane-change and lane-keeping ma-
neuvers (83.5% vs 83.3%, Resnet101 table 6.14). This situation is
generated by the imbalance number of maneuvers in the training sets.
The additional Balance accuracy column shows the accuracy for the
User Prediction Challenge maneuvers, in which the amount of no lane-
change maneuvers is similar to the lane change ones. In this partic-
ular set, which includes predictions, the SqueezeNet model overcomes
Resnet50, which was the best detecting maneuvers (see 6.7).
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Simple models anticipate more but also increase their balanced ac-
curacy. On the other hand, Resnet models have lower anticipation
periods but also lower accuracy levels. This scene is opposite to the
one observed while training maneuver detections. SquezeNet model
has 3.11 seconds of anticipation on average with a maneuver detec-
tion accuracy of 82.8%. Comparing detection versus prediction, the
SquezeNet model has kept its LC accuracy and has reduced its NLC
accuracy 5.9% to earn 0.68 seconds of anticipation.

Comparing the human and the model’s ability to assess maneuvers
correctly, humans reached 83.5% accuracy (see table 4.3). Alexnet,
GoogleNet, and SqueezeNet models reached from 79.6% to 82.8% ac-
curacy classifying maneuvers (see table 6.14), which is 0.7% below the
human performance. The human’s average anticipation was estab-
lished in 1.66 seconds. SquezeNet model has average anticipation of
3.11 seconds which increases the anticipation 1.45 seconds. The Resnet
models have reached performance comparable to human accuracy, but
with higher anticipation periods. Resnet101 equals human’s accuracy
(83.4%) and increases the anticipation period of 1.03 seconds.

6.1.3 Anticipation vs Accuracy

It has been observed that the better anticipation or prediction, the
lower the accuracy is. Both features are compared one by one and
together with human performance in figures 6.7 and 6.8. Both figures
present anticipation versus accuracy for each model together with the
regression model to explain human’s performance. Figure 6.7 shows
the results for the detection models while figure 6.8 shows the results
for the prediction models. It is easy to understand what models are
better making use of this representation. The most left and up the
model, the better their global performance is.

It can be observed that all the trained models are located above the
human’s performance line. This means that all the models have higher
accuracy or anticipation than average human performance. Models
Resnet50 and SqueezeNet highlight in figure 6.7, Resnet50 because the
high accuracy level and the SqueezeNet because its anticipation period.
SqueezeNet and Resnet101 can be considered the two best models in
figure 6.8 because of their higher anticipation and accuracy levels re-
spectively. In conclusion, the Resnet50 model trained in detecting
maneuvers is the most reliable to detect maneuvers, and SquezeNet
trained in predicting maneuvers is the most anticipative one. Both
are comparatively better than humans in classifying and anticipating
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maneuvers.

Figure 6.7: Detection models Accuracy vs Anticipation.

Figure 6.8: Prediction models Accuracy vs Anticipation.
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6.1.4 Maneuver Prediction and Detection Visual Results

This subsection shows a set of visual results predicting and detecting
lane-change maneuvers. Figures from 6.9 to 6.13 shows five sequences
when lane change takes place in several different conditions. This rep-
resentation shows scenes in which many vehicles are involved and all
of them are classified into the three categories. Each prediction target
is defined with a white cornered rectangle, this status means a lane-
keeping status. The white rectangle turns red for those in which a lane
change is detected by the system, additionally, a red arrow is added
to highlight the sense of the lane change. Results have been generated
with the Resnet101 model trained in prediction mode.

Figure 6.9: Example of lane-change maneuver detection I.
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Figure 6.9 shows an evolving sequence in which two vehicles perform
left lane-change maneuvers. The top image shows the first frame when
the lane change is detected on the white car placed on the right lane.
At the same time, a white van is performing a left lane change from the
middle to the left lane. The middle and the bottom images show the
evolution of the double left lane-change maneuver performed by the
white car. All the samples from the beginning of the lane change to
the end have been correctly classified into its corresponding category
as it is shown by the red arrows. The maneuver has been anticipated
2.8 seconds before the vehicle crosses the first divisor line. Note that
the white car is appearing in the image and it is only visible five frames
before the lane change detection. Those vehicles which are performing
lane-keeping maneuvers are also correctly categorized.

Figure 6.10: Example of lane-change maneuver detection II.
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Figure 6.10 shows a double lane change again, this time from left to
right. This representation shows a correct categorization of the vehicle
coming from the left lane to the right one. The vehicle driving on the
right lane is taking the exit and marking it with the blinker, however,
the system does not detect its intention. This can be caused by a lack of
movement that defines its intentions and because the exit is not visible
due to the fact that the vehicle configuration occluded it. These kinds
of tricky scenes are difficult to assess even for humans. The right lane-
change maneuver has been anticipated 1.3 seconds, just 5 samples after
the vehicle enters the camera FOV. The white van in the middle lane
is performing a lane-keeping maneuver which is correctly detected as
it is represented with the white rectangle.

Figure 6.11 shows an overtaking maneuver that ends in a cut-in and
a cut-out maneuver when approaching to an entry ramp. In this scene,
the red car in the left lane overtakes the ego vehicle and develops a
right lane change merging in front of the ego vehicle. This maneuver is
correctly detected with 3.1 seconds of anticipation. At the same time,
the black car in the middle lane performs a cut-out maneuver which
is not detected. The black car leaves the central lane because the red
car enters it at a higher speed. The black car remains in the right lane
until the end of the sequence. When the vehicles are approaching the
entry ramp a second red car appears. The system does not detect the
intention of the second car to merge the highway at the beginning of
the entry ramp. This behavior can be understood from a classification
point of view as a correct classification because it is not performing
a lane change at that moment and there is a solid line that forbids
the lane change. From a predictive point of view, there is enough
information to think that the red car will join the highway through a
lane change. At the same time, the black car is classified as a right
lane-change maneuver. It is wrong because it will not, but the relative
position of the vehicle to its lane together with the free space in front
of the oncoming red car suggests that a right lane-change maneuver
could take place. The black car gets on the right line at some point.
The system ends up to assigning the right lane change status when the
merging ramp starts to disappear. The last image in figure 6.11 shows
the moment when the left lane change is detected for the second red
car which anticipates the LCE 1.2 seconds.
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Figure 6.11: Example of lane-change maneuver detection III.
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Figure 6.12 shows an example of an extreme cut-in maneuver. The
black car on the middle lane (left lane with respect to the ego-vehicle)
merges in front of the ego-vehicle. The free space between the ego-
vehicle and the preceding vehicle is physically enough for a cut-in but
unsuitable according to traffic laws and to standard driving behaviors.
The top image shows a developed lane change state, however, the sys-
tem does not recognize it. It can be motivated by the shortage of free
space to develop the lane-change maneuver. The middle image shows
the moment when the system recognizes the lane-change maneuver, 0.1
seconds before the LCE. The bottom image shows the ends of the lane
change when the vehicle has stabilized in the lane and is detected in a
lane-keeping status again. This behavior of the system suggests that it
can judge what is more realistic based on free space and trajectories.

Figure 6.12: Example of lane-change maneuver detection IV.
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Figure 6.13 shows the las example of lane change detections. This
example shows how ego-trajectories can affect the performance of the
model. In this example, the vehicle driving in the middle lane drives
to reach the left lane. The top image shows the left lane-change ma-
neuver correctly classified with 3.8 seconds of anticipation. However,
0.6 seconds after the detection of the left-lane change the ego-vehicle
turns to head the left lane, and consequently, the image starts to shift
to the right. The lane change of the ego-vehicle produces a distorted
view of the scene that seems like a right lane change. At the moment
the yaw rate of the ego-vehicle stops and the white vehicle reached the
divisor line the system detects the left lane change again.

Figure 6.13: Example of lane-change maneuver detection V.
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6.1.5 Applications

The models developed in this thesis have been deployed on an auto-
mated vehicle and tested in a controlled environment. AEB, ACC,
and Autonomous Emergency Steering (AES) systems need a mecha-
nism to take into consideration a specific surrounding vehicle. The
developed models have been tested and validated in the framework of
the BRidging gaps for the adoption of Automated VEhicles (BRAVE)
European project [67]. One of the objectives of this project is to prove
the validity of the advanced prediction systems.

The tests were conducted at the UTAC CERAM [68] test center
owned by one of the consortium partners. UTAC CERAM is a EuroN-
CAP accredited agent for active safety test protocols implementation
as well as for accreditation of the EuroNCAP test.

6.1.5.1 Tests Configuration

Two test configurations were tested at the UTAC CERAM center re-
lated to the scope of this thesis. Both configurations simulate an entry
ramp on the highway where a vehicle will join. The trajectories of
both vehicles are synchronized to generate a simultaneous arrival at
the merging point. The Vehicle Under Test (VUT) drives at a con-
stant speed of 50 km/h. The Ground Vehicle Teleoperated (GVT)
drives at a constant speed of 10 km/h. These relative speeds simulate
a common highway scenario in which the main traffic flow drives at
120 km/h and the side traffic flow merge at 80 km/h.

The first configuration (see figure 6.14a) evaluates the ACC func-
tionality assuming that the GVT will merge in front of the VUT and
there is no chance to use the adjoining lane. The VUT should start to
brake as soon as it considers that the GVT will merge into the VUT’s
trajectory. The second configuration (see figure 6.14b) evaluates the
AES functionality assuming that the GVT will merge in front of the
VUT and the adjoining lane is available to be used. The VUT should
start to change the lane as soon as it considers that the GVT will
merge into the VUT’s trajectory.

The VUT’s performance relies on the prediction or detection of
an oncoming lane change in both configurations. The earler the lane
change is detected the longer the time and the distance to the GVT
are. Consequently, smother actions need to be applied to control the
VUT and higher the safety levels are.

Additionally, two different setups were used for each configuration.
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(a) Configuration 1. ACC system test.

(b) Configuration 2. AES system test.

Figure 6.14: EuroNCAP test configuration.

The TTC used for the experiments were TTC = 0 and TTC = −1.5
seconds. In other words, this means that if none of the vehicles change
its speed the collision point will be at the end of the GVT’s merging
with its rear bumper in contact with the front bumper of the VUT
for TTC = 0 with a relative speed of 40 km/h. For the setup with
TTC = −1.5 seconds, the relative distance from the front bumper of
the VUT to the rear bumper of the GVT is -16.67 meters, which means
the VUT has overtaken (or crashed) the GVT.

6.1.5.2 Evaluation Results and Comments

This subsection provides visual and numerical results for the described
scenarios. The following figures provide images extracted from the de-
veloped interface in which relevant information can be observed such
as frame number, processing time, the position of the target, and prob-
ability for each possible action. Note that the results were generated
by using the Resnet50 model trained to strictly detect ongoing maneu-
vers because of the lack of motivation to perform lane changes by the
GVT.
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Figure 6.15 shows keyframes in one of the tests performed in config-
uration 1 (ACC) with TTC = 0. Figure 6.15a shows the first frame in
which the lane change can be observed (48.1 meters). At this point, the
vehicle continues at its cruising speed. Figure 6.15b shows the frame
in which the system detects the lane-change maneuver and starts to
perform ACC (36 meters, 6 frames, and 0.6 seconds delayed). Figure
6.15c shows which will be the traditional lane change detection, which
is when the middle of the vehicle crosses the divisor lane (14.5 me-
ters, 40 frames, and 4.0 seconds later). Finally, figure 6.15d shows the
vehicle stabilized at 20 meters of distance performing ACC task.

(a) Lane change beginning. (b) System trigger.

(c) Traditional trigger. (d) Stabilized ACC.

Figure 6.15: EuroNCAP test, configuration 1, TTC = 0 seconds.
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Figure 6.16 shows the same set of images for the experiment config-
uration 1 with TTC = −1.5 seconds. The difference is that the GVT
starts the maneuver when both vehicles are closer. Figure 6.16a shows
the GVT start to turn at 26.9 meters distance. The lane change is
detected by the system at 20 meters, 9 frames, and 0.9 seconds later as
it is shown in figure 6.16b. At this point, the vehicle starts to perform
ACC tasks. Figure 6.16c shows the traditional lane change detection at
12.3 meters of distance, 40 frames, and 4.0 seconds later. Finally, figure
6.16d shows the vehicle stabilized at 20 meters of distance performing
ACC task.

(a) Lane change beginning. (b) System trigger.

(c) Traditional trigger. (d) Stabilized ACC.

Figure 6.16: EuroNCAP test, configuration 1, TTC = −1.5 seconds.
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Figure 6.17 shows key frames in configuration test 2 (ACC) with
TTC = 0 seconds. Figure 6.17a shows the frame in which the lane
change is detected. This takes place at 38.5 meters to the GVT, 8
frames and 0.8 seconds after the beginning of the GVT’s maneuver,
at this point the AES is triggered. Figure 6.17b shows the instant in
which the AES starts to modify the VUT’s trajectory.

(a) System trigger. (b) AES.

Figure 6.17: EuroNCAP test, configuration 2, TTC = 0 seconds.

(a) System trigger. (b) AES.

Figure 6.18: EuroNCAP test, configuration 2, TTC = −1.5 seconds.
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Figure 6.18 shows keyframes in one of the configuration test 2 (ACC)
with TTC = −1.5 seconds. Figure 6.18a shows the frame in which the
lane change is detected. This takes place at 22.7 meters to the GVT,
9 frames, and 0.9 seconds after the beginning of the GVT’s maneuver.
Figure 6.17b shows the instant in which the AES starts to modify the
trajectory of the VUT at 19.1 meters of distance and 4 frames later.

The independent EuroNCAP tester issued the following qualitative
report comparing BRAVE and other vehicles with similar capabilities:

"The vehicle tested scored full points on the accomplished tests.
EuroNCAP protocols used to obtain scores were written to assess AEB
systems."

"Comparison between BRAVE vehicle and other manufacturer’s
vehicles with AD functions:

• BRAVE vehicle is the best performing vehicle as far as relative
distance with GVT is concerned for cut-in use cases.

• BRAVE vehicle was the only vehicle able to avoid any collision
fully autonomously for the cut-in -1.5s TTC use case.

• BRAVE vehicle behaves more smoothly than other vehicles."
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6.2 Trajectory Prediction

This section presents the results generated by the proposed trajectory
prediction models. This section is divided into two subsections. Sub-
section 6.2.1 provides quantitative results and subsection 6.2.2 presents
qualitative prediction results by means of graphic representations in-
ferred by the proposed models.

6.2.1 Quantitative Results

The quantitative results of trajectory prediction are evaluated in this
subsection. For trajectory prediction evaluation, two metrics are used
to evaluate the quality of each model. The RMSE and the Mean Ab-
solute Error (MAE) are used as performance metrics and they are
provided in both longitudinal and lateral coordinates.

The RMSE is defined in equation 6.1. Sub index k denotes each
prediction step and sub index i represents each individual trajectory
in a set with a total of N trajectories.

RMSEk =
1√
N

N
∑

i=0

√

(x̂k,i − xk,i)2 (6.1)

The MAE represents the average error as it is defined in eq. 6.2.
The RMSE weights each error by its own value, in contrast the MAE
provides an average value of the error.

MAEk =
1√
N

N
∑

i=0

|x̂k,i − xk,i| (6.2)

The literature evaluates commonly the performance of trajectory
predictive models providing the Average Trajectory Error (ATE) and
the Final Trajectory Error (FTE). In this work, RMSE and MAE are
provided for each prediction step, consequently, FTE matches with the
MAE at the last prediction step. The ATE is directly computed as the
MAE’s average value as it is shown in eq. 6.3 where M is the total
number of prediction steps.

ATE =
1

M

M
∑

k=0

MAEk (6.3)



6.2. Trajectory Prediction 145

The input block provides a kind of video clip representing 1.75 sec-
onds of past information to generate an output block that represents
the scene 2.0 seconds in advance. This output block has 8 samples
at 0.25 seconds time intervals. Table 6.15 presents the RMSE for the
different trained models at different prediction intervals. For clarity,
some prediction intervals have been omitted, however, the prediction
errors follow a linear trend. The tanh configuration produced unstable
trainings generating divergence and ending with computation errors.
These configurations have been removed from tables due to their con-
sistent null results. U-net has been tested with 4, 5, and 6 depth levels
together with the linear and clippedRelu final layers. Hereafter the
U-net models will be denoted as U-net4 for the configuration with 4
depth levels and similarly for each depth level.

The first entry in table 6.15 presents results for KF which is used
as baseline method for comparison purposes. The KF has been used
to predict positions at the same prediction horizons as the CNN-based
models.

Table 6.15: Network Parameters Trajectory Prediction RMSE

t = 0.25 t = 1.0 t = 2.0

Predictive model εx / εy εx / εy εx / εy

KF 1.20 / 0.47 1.76 / 0.94 1.98 / 1.44

U-net4, fcn = linear 1.24 / 0.65 1.65 / 0.97 2.39 / 1.40

U-net4, fcn = clippedRelu 1.36 / 0.71 1.68 / 1.04 2.51 / 1.39

U-net5, fcn = linear 0.43 / 0.23 0.62 / 0.55 1.06 / 0.81

U-net5, fcn = clippedRelu 0.74 / 0.38 0.95 / 0.68 1.93 / 0.94

U-net6, fcn = linear 0.35 / 0.22 0.56 / 0.52 0.93 / 0.69

U-net6, fcn = clippedRelu 0.65 / 0.27 0.94 / 0.71 1.72 / 0.87

It can be observed that the error gets lower as the number of depth
levels grows. The U-net6 produces better predictions than the U-net5,
and this produces better results than the U-net4. The proportional
relation between depth levels and the receptive field size and the net-
work complexity could explain this behavior. The KF model has an
RMSE comparable to the U-net4. U-net5 and U-net6 produce a lower
error in both longitudinal and lateral coordinates.

Comparing the two terminal layers, there is a huge difference be-
tween models trained with the linear and those trained with the clippe-
dRelu terminal layer. Error is nearly the half when the linear layer is
used instead the clippedRelu. This difference gets smaller when less
complex models with fewer depth levels are used. A priori the clippe-
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dRelu was expected to fit better into the problem’s nature. However,
the nonlinearities introduced by this layer at the end of the model
allows a better fitting but also introduces a flat gradient response at
some points.

(a) Longitudinal RMSE. (b) Lateral RMSE.

Figure 6.19: Trajectory prediction. RMSE.

Figure 6.19 shows the RMSE for both longitudinal and lateral error
as a visual complement of the values detailed in table 6.15. Clippe-
dRelu configurations have been omitted due to their bad performance
in comparison with the base line. As it was said before the best model
is the U-net6 with the linear terminal layer followed closely by the
U-net5 with the same configuration.

It is observed that KF’s errors are similar to the simplest U-net4.
It can be explained because this U-net has a small receptive field and
the future positions of the vehicles are inferred based only on near
objects which basically is the vehicle itself. U-net5 or U-net6 increases
exponentially their receptive fields including inter-vehicle interactions.
This is the reason why they can perform better predictions than the
KF and the U-net4.
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U-net6 prediction errors are 53% and 52% lower with respect to the
baseline method in longitudinal and lateral coordinates at 2.0 seconds
prediction horizon. The U-net5 prediction errors are 46% and 44%
lower for the longitudinal and lateral errors respectively.

Table 6.16 shows the MAE for the linear set of network configu-
rations. As an unweighted metric it is easier to understand expected
errors at each prediction time. Moreover, ATE and FTE are provided
as common literature metrics.

Table 6.16: Network Parameters Trajectory Prediction MAE

FTE ATE

t = 0.25 t = 1.0 t = 2.0

Predictive model εx / εy εx / εy εx / εy εx / εy

KF 0.24 / 0.22 0.58 / 0.65 1.13 / 1.04 0.67/0.68

U-net4, fcn = linear 0.35 / 0.18 0.57 / 0.46 1.43 / 0.85 0.69/0.49

U-net5, fcn = linear 0.23 / 0.15 0.44 / 0.39 0.84 / 0.59 0.51/0.40

U-net6, fcn = linear 0.20 / 0.14 0.42 / 0.38 0.76 / 0.53 0.47/0.38

MAE values have been notably reduced compared with the RMSE
values. However, the RMSE arguments are valid for the MAE. As
deeper the network the better the predictions are. KF’s errors are
comparable to the U-net4 model again. As remarkable points, the
ATE for the U-net6 is 0.51 and 0.40 meter for lateral and longitudinal
errors respectively. This means that the longitudinal and lateral errors
are between 0.51 and 0.40 meters on average. The FTE for the U-
net6 reaches 0.76 and 0.53 meters in longitudinal and lateral errors on
average for a 2.0 seconds prediction horizon.

Figure 6.20 shows the MAE for both longitudinal and lateral error
as a complement of table 6.16. It can be observed that the U-net4
has a similar longitudinal error but a lower lateral error than the KF.
A narrower lateral error distribution can produce a small difference
between RMSE and MAE values.

The U-net6 prediction errors are 33% and 49% lower in longitudinal
and lateral with respect to the KF model at MAE level for 2.0 seconds
prediction horizon. If the ATE is used to compare models, the U-net6’s
ATEs are 30% and 44% lower than the KF’s ATEs for longitudinal and
lateral coordinates respectively.
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(a) Longitudinal MAE. (b) Lateral MAE.

Figure 6.20: Trajectory prediction. MAE.

These results were achieved using plain Gaussian representation of
vehicles. Now, the best U-net configuration is tested using Gaussian
and rectangle representations together with and without lanes. Table
6.17 shows the MAE, FTE and ATE for these configurations.

Table 6.17: Input Configurations Trajectory Prediction MAE

FTE ATE

t = 0.25 t = 1.0 t = 2.0

Input Configuration εx / εy εx / εy εx / εy εx / εy

Gaussian 0.20 / 0.14 0.42 / 0.38 0.76 / 0.53 0.47/0.38

Rectangle 0.26 / 0.14 0.48 / 0.39 1.04 / 0.59 0.53/0.41

Gaussian + lanes 0.19 / 0.16 0.43 / 0.40 0.75 / 0.56 0.48/0.41

Rectangle + lanes 0.24 / 0.15 0.49 / 0.37 1.07 / 0.55 0.53/0.40

It is observed that the Gaussian representation of vehicles helps
to increase the performance of the prediction system compared to the
representation based on rectangles. This fact can be explained because
the gaussian representation can model the probability of the vehicle
to be using a specific area in the scene. The area near the actual
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position of the vehicle has a small influence. In contrast, the rectangle
representation is a kind of binary input, where areas denoted as vehicles
influence on the output but those areas surrounding the vehicle cannot.
The Gaussian representation seems more robust.

The representation or not of the lanes has no effect on the prediction
performance. It was expected to increase the prediction performance
by representing lane information in the input blocks, however, no sig-
nificant changes have been observed. Lane markings are represented
by single-pixel lines in order to avoid occluding vehicle positions. This
fact may be the cause to produce no changes.

In conclusion, the U-net model trained with 6 depth levels and the
linear layer as the terminal layer using the vehicle’s Gaussian repre-
sentation produces the lowest errors from all the trained models. This
configuration overcomes in both longitudinal and lateral coordinates
the KF model which has been used as baseline. U-net with 7 or more
depth levels is expected to produce better results due to the observed
trend, however, it is impossible to be trained with the currently avail-
able hardware.

6.2.2 Qualitative Results

This subsection provides qualitative results and examples of the scenes
predicted using the U-net architecture.

Figure 6.21 shows a scene predicted using the different network con-
figuration and the input representation exposed above. In general, the
higher the peak values and rounded the output objects the better the
predictions.

Figure 6.21a shows the desired output for the analysis sample. The
positions of each vehicle are denoted by a peak value that reaches 255
intensity value. This is the output that the predictive model must
generate based on a specific input. Figure 6.21b shows the generated
output of the U-net6 with the linear terminal layer and using Gaussians
to represent vehicles in the input block. Compared with the other
figures this is the most likely desired output, and numerically it is, as
it was exposed in tables 6.17 and 6.16. The following images show how
the system’s outputs degrade when worse configurations are used.

Figure 6.21c shows the effect of the clippedRelu terminal layer. The
prediction seems quite similar for both terminal layers, however, the
image loses definition, and positions extracted with the linear layer are
two times more precise. Note that one pixel is equal to 0.2 meters in
longitudinal and 0.1 meters in lateral.
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(a) Desired output.
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(b) Linear layer + Gaussian
representation.
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(c) ClippedRelu layer +
Gaussian representation.
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(d) Linear layer + Rectan-
gles representation.

(e) Linear layer + Gaussian
+ Lanes representation.
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(f) Linear layer + Rectangles
+ Lanes representation.

Figure 6.21: Network configuration and Input representation’s effect on output
images.

Figure 6.21d shows difference in the input representation using rect-
angles instead Gaussians. The output image has lower definitions but
still performs quite well in comparison with the clippedRelu variation.
Figure 6.21e shows the output but now including lanes in the input
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representation. The definition is better when using rectangles but
still lower than the plain gaussian representation. Finally, figure 6.21f
shows the generated output using rectangles and lanes in the input
block. As it happens with the Gaussian representation the use of lanes
does not provide any improvement.

Figure 6.22 shows an example of a sequence prediction. The images
shown in this figure are cumulative past future samples on a heatmap
representation. The trajectory of each vehicle is represented as a kind
of worm where the first half represents past positions and the sec-
ond one the future positions. Figure 6.22a shows the first part of the
trajectory which corresponds to the input data used to predict the tra-
jectories. Figure 6.22b shows the input data representation together
with the expected output data, this is the ground truth. Figure 6.22c
shows the input and the predicted positions. Predictions become less
defined for longer prediction periods.

Note that this particular sequence shows three vehicles driving at
different speeds compared with the ego-vehicle, it is the only way to
show this kind of representation. Otherwise, consecutive vehicle po-
sitions would be stacked in a small area and trajectories cannot be
appreciated.

(a) Input sequence.
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(b) Input and output se-
quence.
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(c) Input and predicted se-
quence.

Figure 6.22: Trajectory prediction example. Time series visualization.
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Figure 6.23 shows a detailed view of two trajectories corresponding
with the sequence above. The two left images are a long trail sequence
in which the FTE is 0.22 and 0.24 meters for longitudinal and lat-
eral directions respectively. The predictions become less defined with
higher prediction horizons. The two right images are a short displace-
ment trajectory ended with a non-expected lateral displacement. As
far as there is no evidence of lateral displacement in the input sequence
and there are no other agents that could motivate the lateral displace-
ment it is not expected to predict it. Therefore, the FTE reaches 1.5
and 0.48 meters for longitudinal and lateral coordinates respectively.

(a) Traj. 1 GT. (b) Traj. 1 Pred.. (c) Traj. 2 GT. (d) Traj. 2 Pred.

Figure 6.23: Detail of trajectory prediction.

Finally, figure 6.24 shows a sort of samples in a sequence, using
both input and output representation to understand the scene as bet-
ter as possible. Note that lanes have been used in the predictions
only for representation purposes. The actual position of the vehicle
is represented with a gray rectangle in all images. The last known
position of each vehicle is represented with a blue rectangle in the
prediction images. Predicted positions of vehicles are denoted by the
yellow Gaussian distributions. The center of each vehicle corresponds
with the mass-center of each Gaussian. Images have been converted
back to its natural aspect ratio. Top images have been cropped due
to the lack of information in the deleted areas to fit in a single page
representation.
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(a) t = −1.75. (b) t = −1.0. (c) t = −0.5. (d) t = 0.0.

(e) t = 0.25. (f) t = 1.0. (g) t = 1.5. (h) t = 2.0.

Figure 6.24: Final Trajectory Prediction Results.
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6.2.3 Application to Static Sensor Data

The proposed architecture has been trained using the PREVENTION
dataset which includes data recorded with onboard sensors. However,
due to the extended use of static sensor data this training has been
replicated using the HigHD dataset. This dataset included static im-
agery taken from a drone over the study area. The study area covers
only a straight stretch of highway with 3 or more lanes. This data
contains two traffic streams at the same time.

The resolution used to represent the input data has been modified
to fit in the GPU size. The original data frame rate was 25 Hz, it has
been reduced close to 4 Hz, removing five of each six samples.

More than 28K trajectories and 93K samples were used to train the
model. The test set has around 7K trajectories with 25K samples. The
results are presented in table 6.18 as an MAE for both longitudinal and
lateral.

Table 6.18: Trajectory Prediction MAE. HigHD Dataset.

FTE ATE

t = 0.25 t = 1.0 t = 2.0

Predictive model εx / εy εx / εy εx / εy εx / εy

U-net5, fcn = linear 0.65 / 0.21 1.17 / 0.27 1.57 / 0.36 0.97 / 0.22

U-net6, fcn = linear 0.29 / 0.01 0.53 / 0.02 0.82 / 0.04 0.51 / 0.02

U-net5, fcn = clippedRelu 0.92 / 0.47 1.35 / 0.52 1.67 / 0.63 1.03 / 0.39

U-net6, fcn = clippedRelu 0.57 / 0.27 1.01 / 0.33 1.37 / 0.41 0.85 / 0.25

Note that the results are in the same line than those achieved with
the PREVENTION dataset. The best configuration is the U-net6 us-
ing the linear terminal layer. The longitudinal error is quite similar
compared with the PREVENTION data. However, the lateral error is
extremely low. This suggests that there are fewer lateral displacements
in the HigHD dataset. The longitudinal FOV in the HigHD dataset is
five times longer, and the lateral almost the same.

Figure 6.25 shows a sequence extracted from the HigHD dataset. In
this figure, some samples of the input and output block are presented.
Four top images represent an input sequence data, four bottom repre-
sents predictions at t = {0.25, 1.0, 1.5, 2.0} seconds ahead. Red crosses
represent the position of the prediction targets, and green plus symbols
are the predicted positions extracted from the image generated by the
U-net model.
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Figure 6.25: Data representation in a BEV of predicted vehicles using HigHD data.
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6.3 Conclusions

In conclusion, two types of predictive models have been tested and
evaluated, one to detect and predict lane-change maneuvers and other
to predict vehicle trajectories.

The maneuver prediction system has proved to have better accuracy
and anticipation ratio than humans by means of comparison with the
User Prediction Challenge. The Resnet50 model is the best choice
to detect maneuver and overcomes human’s accuracy by 2.5% and
anticipation by 0.43 seconds. Model Resnet101 equals human accuracy
but it extends the anticipation period 1,03 seconds. These systems
can anticipate lane changes up to 3.11 seconds on average with an
accuracy ratio up to 86.4%. The detection maneuver model has been
tested under controlled conditions as an ACC and AES systems trigger
and it showed an outstanding performance compared with traditional
decision-making algorithms.

The trajectory prediction system takes advantage of graphic rep-
resentations to infer future vehicle positions by means of the U-net
model. U-net model trained with 6 depth levels and using Gaussian
representations of vehicles has shown prediction errors up to 50% lower
than the KF. Results suggest that deeper networks can achieve better
prediction performance. This system has been trained using onboard
sensor data as well as static sensor data. Results show that prediction
from onboard sensors is more complex than from static points of view.



Chapter 7

Conclusions and Future Work

This chapter presents global conclusions and discusses the main con-
tributions developed in this thesis as well as the future lines of research
that can be followed.

7.1 Conclusions

The goal of this thesis was the development of predictive systems to
infer future intentions and trajectories of vehicles in highway scenarios.

• It was found that available public datasets were not specifically
built to develop trajectory nor intention predictive models. Those
who can be used to develop trajectory prediction models are based
on static recording platforms. The PREVENTION dataset has
been specifically built to fulfill this void. The models developed
in this thesis have been trained and tested using this dataset.

• The User Prediction Challenge has proved that humans react to
ongoing lane changes regularly instead of predicting them. The
study shows that users only predict 13% of lane-change maneuvers
in advance. The percentage of correctly detected lane changes
before the vehicle crosses the lane rises to 85%. The average user
delays lane-change detection 1.08 seconds.

• The developed maneuver prediction system has overcome human’s
accuracy by 2.5% and anticipation by 0.43 seconds.

• The maneuver prediction system has been tested as ACC and
AES trigger mechanism, showing an improvement of 2.6 seconds
compared with traditional decision-making algorithms.

157
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• The trajectory prediction systems have been developed using the
U-net model and the PREVENTION dataset. It has shown a
better performance compared with a KF baseline method. The
developed model has shown prediction errors up to 50% lower
than the baseline method.

• Alternatively, this model thought and designed to fit in the PRE-
VENTION dataset features has been used to predict trajecto-
ries with a static recorded dataset exhibiting better results. This
proves the versatility and adaptability of the proposed approach.

7.2 Main Contributions

After the review of the state of the art and considering the discussion
presented before, the main contributions of this thesis are:

• Development of the PREVENTION dataset. An onboard sensor
dataset to provide specifically designed data for trajectory and
lane change prediction models. This free-access dataset is open to
the scientific community and provides more than 4 million vehicle
detections, 3000 trajectories, and 900 lane changes in close to 6
hours of recordings.

• A social study has been conducted to evaluate human performance
to predict lane changes. This study evaluates the PREVENTION
scenes to set a baseline for further comparisons.

• Two novel CNN based prediction models are presented:

– The maneuver prediction approach is based on a CNN model
to classify enriched images. Context information, vehicle in-
teraction, motion histories, and a target selection method are
efficiently encoded in an enriched image to detect and predict
lane changes in highway scenarios. This kind of represen-
tation has the advantage of being virtually unlimited in the
number of vehicles in the scene and the number of past ve-
hicle representations. In contrast with 4D image inputs, the
data size does not increase with the number of temporal in-
stances. In contrast with the state of the art approaches, this
novel image-based proposal is not limited to a fixed number
of vehicles or a fixed vehicle distribution. Besides, none of the
existing works uses the appearance of the image to predict or
classify the maneuvers of the surrounding vehicles.
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– The trajectory prediction approach is based on a U-net model
and uses vehicle graphic representations into a BEV to pat-
tern interactions. The model uses vehicle detections and lane
information to create a virtual representation of the scene,
but it is not limited to these features. All kind of information
can be easily included and the model is virtually unlimited in
the number of considered vehicles. Moreover, the trajectory
prediction system uses one single prediction step to generate
all the future positions for all the vehicles, unlike most of the
works in the state of the art.

7.3 Future work

After the review of the state of the art and based on results and con-
clusions derived from this work, several research lines can be followed
to improve the performance of the systems or either take advantage of
these systems in other applications.

• Machine learning approaches need tons of data to reach their max-
imum potential results. The first obvious future work is the im-
provement of the PREVENTION dataset by recording more data.
The value of the dataset can be measured by the richness of the
data but also by its volume. However, this is a monotonous re-
source and time-consuming task. The setup of a prediction chal-
lenge is a basic step in the improvement of the dataset. This will
motivate researches to use it and publish their results.

• The User Prediction Challenge has shown important results rel-
ative to maneuver prediction. However, the system is ready to
use the PREVENTION dataset to evaluate other human parame-
ters such as attention, focus, fatigue, and others by using external
cameras.

• The maneuver prediction system has shown a good performance
detecting and predicting lane-change maneuvers in highway sce-
narios from an onboard sensor point of view. It could be interest-
ing to exploit this approach to predict maneuvers on intersections
from a static point of view such as infrastructure cameras. This
prediction model could help to manage the traffic at controlled
intersections. This approach can be used to learn patterns at in-
tersections or roundabouts from an onboard perspective to predict
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if the oncoming vehicles will exit the intersection or the round-
about or if they will cross in front of the ego-vehicle.

• Trajectory prediction results have shown that prediction perfor-
mance grows with the U-net depth levels. Due to hardware limi-
tations, higher depth levels could not be either trained or tested.
More efficient representations will allow trying these deeper mod-
els. Hardware improvements will allow us to try these models.

• A hybrid model that joins both trajectory and maneuver pre-
diction concepts in a single graphic representation could improve
both predictions because trajectories are related to maneuvers and
vice versa.



Appendix A

Confusion Matrix

This chapter collects the confusion matrix for all the experiments con-
ducted in section 6.1.1. The chapter is divided in sections based on
the name of the corresponding netowrk. Each confusion matrix is de-
noted by the name of the network, the training set S = 1, 2, 3 and the
prediction time tp = 0, 10.
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A.1 SqueezeNet Confusion Matrix

Table A.1: Confusion Matrix, Squeezenet, S = 1, tp = 0

Output Class

Target Class none left right Recall

none 57161 1999 2578 0.926

left 7228 6422 1054 0.437

right 8809 1026 9428 0.489

Precision 0.781 0.680 0.722 0.763

Table A.2: Confusion Matrix, Squeezenet, S = 2, tp = 0

Output Class

Target Class none left right Recall

none 49692 1292 1213 0.952

left 7814 5917 733 0.409

right 7491 707 7939 0.492

Precision 0.765 0.747 0.803 0.768

Table A.3: Confusion Matrix, SqueezeNet, S = 3, tp = 0

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 80.4 75.6 78.8 72.4 71.5 76.0 78.3 75.7 76.4 77.3 75.1 76.8

none Pre 90.7 92.4 96.3 91.2 93.6 93.0 96.3 94.3 95.9 95.0 92.6 94.3

Rec 83.8 77.0 77.5 72.7 73.5 77.8 77.7 74.2 75.3 77.7 74.0 77.2

left Pre 39.0 43.3 45.7 43.8 52.2 27.3 42.8 49.3 36.7 42.3 61.4 40.7

Rec 57.0 71.4 79.7 64.4 54.4 77.2 79.5 67.2 77.4 82.8 76.1 74.3

right Pre 72.3 51.8 55.4 57.1 37.5 54.7 44.9 48.2 50.5 49.0 37.5 51.0

Rec 78.0 71.1 86.1 77.8 74.8 66.3 82.8 88.3 82.4 69.9 83.1 76.1
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Table A.4: Confusion Matrix Squeezenet, S = 1, tp = 10

Output Class

Target Class none left right Recall

none 58459 1672 2408 0.935

left 11558 7376 1381 0.363

right 12997 1640 11087 0.431

Precision 0.704 0.690 0.745 0.708

Table A.5: Confusion Matrix Squeezenet, S = 2, tp = 10

Output Class

Target Class none left right Recall

none 52902 1243 1168 0.956

left 10720 6708 1103 0.362

right 10419 954 8909 0.439

Precision 0.714 0.753 0.797 0.728

Table A.6: Confusion Matrix Squeezenet, S = 3, tp = 10

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 71.7 71.9 78.9 72.1 69.0 74.9 78.8 72.8 76.2 77.5 74.1 75.6

none Pre 89.3 92.5 94.6 92.7 93.4 93.0 95.8 92.9 94.9 94.4 91.5 93.8

Rec 73.9 72.6 79.8 70.9 68.7 76.0 78.9 72.1 76.1 78.9 74.1 76.3

left Pre 29.3 32.9 58.4 44.8 52.1 26.9 44.0 43.7 34.2 44.5 58.3 39.5

Rec 62.9 84.3 65.1 64.1 66.6 71.8 75.7 65.5 76.0 73.3 71.4 71.8

right Pre 59.6 62.7 46.1 54.3 35.7 50.9 43.5 45.4 52.0 46.1 37.6 48.4

Rec 67.6 59.2 84.8 83.1 72.3 69.9 80.6 80.7 76.9 71.3 79.0 74.0
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A.2 Googlenet Confusion Matrix

Table A.7: Confusion Matrix Googlenet, S = 1, tp = 0

Output Class

Target Class none left right Recall

none 57161 1999 2578 0.926

left 7228 6422 1054 0.437

right 8809 1026 9428 0.489

Precision 0.781 0.680 0.722 0.763

Table A.8: Confusion Matrix Googlenet, S = 2, tp = 0

Output Class

Target Class none left right Recall

none 48823 1254 1752 0.942

left 8766 5911 712 0.384

right 7408 751 7421 0.476

Precision 0.751 0.747 0.751 0.751

Table A.9: Confusion Matrix Googlenet, S = 3, tp = 0

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 75.8 81.0 82.6 76.3 72.9 75.5 79.6 79.1 80.1 78.9 69.5 77.8

none Pre 90.9 90.9 95.7 88.7 93.1 94.1 93.7 92.4 93.8 92.2 91.9 93.0

Rec 80.7 86.2 82.8 81.0 74.2 76.3 81.2 79.9 82.1 81.7 66.7 79.8

left Pre 29.0 54.3 59.2 52.1 48.2 28.5 50.2 51.4 38.9 45.0 52.8 43.0

Rec 61.4 68.1 77.4 59.7 59.7 74.4 65.5 69.0 60.4 70.2 77.8 67.4

right Pre 68.6 59.1 55.1 60.5 42.7 49.9 42.6 55.8 55.7 51.8 32.5 51.0

Rec 63.5 63.8 85.5 72.6 76.5 71.1 80.2 81.4 78.9 67.2 77.8 73.2
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Table A.10: Confusion Matrix Googlenet, S = 1, tp = 10

Output Class

Target Class none left right Recall

none 62543 3020 3168 0.910

left 8928 6404 1381 0.383

right 11543 1264 10327 0.446

Precision 0.753 0.599 0.694 0.730

Table A.11: Confusion Matrix Googlenet, S = 2, tp = 10

Output Class

Target Class none left right Recall

none 62253 3054 2910 0.913

left 8933 5231 2357 0.317

right 11828 2403 9609 0.403

Precision 0.750 0.489 0.646 0.710

Table A.12: Confusion Matrix Googlenet, S = 3, tp = 10

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 73.1 75.5 78.3 73.9 74.8 75.2 78.8 73.1 75.6 77.4 71.4 76.0

none Pre 89.0 89.6 95.4 91.2 91.2 92.2 94.6 91.6 94.3 92.1 88.2 92.5

Rec 74.2 80.7 78.4 75.5 80.1 78.0 79.9 73.9 76.0 80.3 73.5 78.1

left Pre 32.3 41.9 53.7 48.7 45.9 26.1 46.6 34.1 39.6 40.4 60.7 40.7

Rec 53.7 62.2 66.8 59.6 50.7 59.0 65.2 68.3 58.4 69.3 58.9 61.9

right Pre 58.6 51.4 46.8 54.3 45.6 48.3 41.3 55.7 44.4 51.4 32.4 47.5

Rec 77.7 59.0 87.4 79.7 67.7 66.1 82.2 72.2 81.9 65.0 76.3 73.8
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A.3 Alexnet Confusion Matrix

Table A.13: Confusion Matrix, Alexnet, S = 1, tp = 0

Output Class

Target Class none left right Recall

none 55405 2236 2556 0.920

left 9207 5543 2348 0.324

right 8586 1668 8156 0.443

Precision 0.757 0.587 0.625 0.722

Table A.14: Confusion Matrix, Alexnet, S = 2, tp = 0

Output Class

Target Class none left right Recall

none 46115 1004 1029 0.958

left 8047 5469 597 0.388

right 10835 1443 8259 0.402

Precision 0.709 0.691 0.836 0.723

Table A.15: Confusion Matrix, Alexnet, S = 3, tp = 0

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 70.8 71.2 74.1 66.5 75.0 76.7 70.3 78.1 77.6 76.4 70.7 73.8

none Pre 87.0 91.6 95.3 91.2 92.6 93.0 96.7 92.6 94.2 93.0 90.9 93.3

Rec 73.8 72.3 72.9 65.8 81.7 79.2 68.2 79.5 79.3 78.3 70.1 74.9

left Pre 27.9 33.8 44.2 38.5 34.6 25.8 38.8 44.6 35.1 40.2 56.6 36.4

Rec 62.4 74.9 77.5 60.6 53.7 63.8 74.5 69.5 58.6 68.5 62.5 66.8

right Pre 61.9 53.0 43.9 47.7 50.8 54.2 31.4 56.9 50.6 47.6 33.6 45.9

Rec 63.1 62.5 78.0 73.9 58.4 68.4 84.5 77.0 78.1 70.1 90.0 72.4
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Table A.16: Confusion Matrix, Alexnet, S = 1, tp = 10

Output Class

Target Class none left right Recall

none 62253 3054 2910 0.913

left 8933 5231 2357 0.317

right 11828 2403 9609 0.403

Precision 0.750 0.489 0.646 0.710

Table A.17: Confusion Matrix, Alexnet, S = 2, tp = 10

Output Class

Target Class none left right Recall

none 54132 1562 1693 0.943

left 11871 5632 1441 0.297

right 8038 1711 8046 0.452

Precision 0.731 0.632 0.720 0.720

Table A.18: Confusion Matrix Alexnet, S = 3, tp = 10

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 69.6 66.5 76.3 66.2 70.9 74.7 75.9 70.1 73.7 73.4 69.8 73.1

none Pre 80.9 87.8 94.5 90.5 90.2 92.6 93.8 97.0 94.1 93.3 91.8 91.8

Rec 80.4 70.1 77.3 66.0 75.5 77.8 77.8 68.6 74.4 74.9 68.5 75.6

left Pre 25.8 26.6 49.2 35.0 41.8 21.4 42.3 33.6 31.9 41.5 56.8 34.7

Rec 48.5 55.5 63.6 57.7 53.3 64.1 55.9 69.4 60.7 60.3 64.9 58.8

right Pre 61.0 46.0 43.8 49.9 40.0 54.7 35.8 44.7 44.8 38.7 32.3 43.6

Rec 38.4 56.1 80.8 74.3 62.3 61.5 79.3 78.2 76.4 74.7 88.3 67.8
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A.4 Resnet18 Confusion Matrix

Table A.19: Confusion Matrix Resnet18, S = 1, tp = 0

Output Class

Target Class none left right Recall

none 55405 2236 2556 0.920

left 9207 5543 2348 0.324

right 8586 1668 8156 0.443

Precision 0.757 0.587 0.625 0.722

Table A.20: Confusion Matrix Resnet18, S = 2, tp = 0

Output Class

Target Class none left right Recall

none 60472 3025 2917 0.911

left 1855 4281 244 0.671

right 2670 610 6724 0.672

Precision 0.930 0.541 0.680 0.863

Table A.21: Confusion Matrix Resnet18, S = 3, tp = 0

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 83.0 85.9 86.5 81.5 84.6 84.3 88.5 82.9 87.0 85.1 82.4 85.5

none Pre 86.5 89.2 91.4 87.7 90.7 90.0 92.1 88.5 91.4 88.4 87.9 90.0

Rec 92.2 94.5 92.6 90.1 93.8 91.4 94.6 90.3 93.0 94.4 89.7 93.0

left Pre 49.5 65.9 79.7 64.9 67.8 40.3 73.9 61.6 60.1 69.8 72.0 62.2

Rec 52.1 61.8 57.2 49.8 46.9 56.6 55.4 48.6 58.9 49.2 58.3 54.3

right Pre 85.6 80.2 64.1 69.9 64.7 73.4 66.4 65.8 74.1 67.2 55.5 70.7

Rec 61.8 59.5 74.8 76.1 68.6 56.3 67.5 68.0 67.9 53.2 64.8 63.2



A.4. Resnet18 Confusion Matrix 169

Table A.22: Confusion Matrix Resnet18, S = 1, tp = 10

Output Class

Target Class none left right Recall

none 77714 5520 6626 0.865

left 2612 4721 709 0.587

right 2688 447 7541 0.706

Precision 0.936 0.442 0.507 0.829

Table A.23: Confusion Matrix Resnet18, S = 2, tp = 10

Output Class

Target Class none left right Recall

none 68085 3490 3542 0.906

left 2939 4753 421 0.586

right 3017 662 7217 0.662

Precision 0.920 0.534 0.646 0.851

Table A.24: Confusion Matrix Resnet18, S = 3, tp = 10

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 81.0 82.1 85.2 79.2 84.5 84.7 86.9 78.7 86.4 83.3 80.6 84.2

none Pre 86.7 85.2 91.7 85.6 89.8 88.9 91.3 86.4 90.3 88.1 85.3 89.0

Rec 89.1 94.2 91.0 88.3 92.8 93.0 93.7 87.5 93.7 92.7 90.7 92.5

left Pre 44.5 59.3 73.7 56.9 73.3 42.1 72.1 47.1 57.3 60.2 74.2 59.0

Rec 58.5 43.7 59.4 48.8 59.6 50.6 48.6 44.8 49.7 40.3 53.5 49.7

right Pre 80.4 74.3 59.5 70.2 65.8 76.6 58.7 59.5 75.2 60.5 48.9 67.7

Rec 60.7 48.9 72.0 70.1 64.4 51.7 64.6 57.7 64.1 56.1 48.0 59.6
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A.5 Resnet50 Confusion Matrix

Table A.25: Confusion Matrix Resnet50, S = 1, tp = 0

Output Class

Target Class none left right Recall

none 68654 4420 5052 0.879

left 2113 4490 527 0.630

right 2431 537 7481 0.716

Precision 0.938 0.475 0.573 0.842

Table A.26: Confusion Matrix Resnet50, S = 2, tp = 0

Output Class

Target Class none left right Recall

none 60794 3174 2798 0.911

left 1917 4212 167 0.669

right 2286 530 6920 0.711

Precision 0.935 0.532 0.700 0.869

Table A.27: Confusion Matrix Resnet50, S = 2, tp = 0

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 86.4 85.8 85.7 82.9 86.3 86.2 88.9 84.5 88.1 87.5 84.0 86.9

none Pre 87.2 90.2 92.6 87.1 89.8 90.9 93.3 90.5 94.0 90.1 87.9 91.1

Rec 96.1 92.3 90.4 92.1 95.1 92.8 93.9 89.9 91.9 95.5 91.7 93.4

left Pre 72.7 65.1 64.2 74.9 73.5 42.3 70.1 64.6 64.4 72.5 73.3 65.3

Rec 41.4 62.4 62.7 51.7 59.0 54.9 62.4 51.1 61.5 59.2 58.6 57.9

right Pre 87.1 76.9 66.1 71.3 74.5 79.7 68.3 67.3 70.3 75.9 65.8 74.0

Rec 70.0 70.0 76.7 74.6 64.4 61.7 72.2 78.8 80.5 57.7 65.7 68.8
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Table A.28: Confusion Matrix Resnet50, S = 1, tp = 10

Output Class

Target Class none left right Recall

none 77205 5190 6491 0.869

left 2834 4806 686 0.577

right 2975 692 7699 0.677

Precision 0.930 0.450 0.518 0.826

Table A.29: Confusion Matrix Resnet50, S = 2, tp = 10

Output Class

Target Class none left right Recall

none 68955 3649 3614 0.905

left 2382 4675 340 0.632

right 2704 581 7226 0.687

Precision 0.931 0.525 0.646 0.859

Table A.30: Confusion Matrix Resnet50, S = 3, tp = 10

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 80.5 81.9 86.8 81.4 85.7 84.2 86.5 80.5 86.3 84.3 80.3 84.4

none Pre 86.0 84.1 91.8 88.0 89.5 89.1 91.6 85.3 91.2 89.2 84.8 89.3

Rec 89.4 94.2 92.9 89.8 95.9 92.1 92.6 91.5 92.8 92.6 90.8 92.3

left Pre 41.8 61.8 76.1 62.1 72.0 41.7 69.2 51.6 55.0 61.6 73.5 59.0

Rec 50.5 28.4 64.3 54.3 53.3 50.3 51.9 35.1 55.6 52.9 50.4 51.4

right Pre 79.7 75.2 65.0 70.0 72.7 72.7 57.3 65.8 73.4 64.4 50.2 68.2

Rec 60.2 59.0 68.6 71.8 62.2 53.5 67.0 56.0 65.7 55.6 49.5 60.7
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A.6 Resnet101 Confusion Matrix

Table A.31: Confusion Matrix Resnet101, S = 1, tp = 0

Output Class

Target Class none left right Recall

none 66858 3450 4144 0.898

left 3122 5337 431 0.600

right 3218 660 8485 0.686

Precision 0.913 0.565 0.650 0.843

Table A.32: Confusion Matrix Resnet101, S = 2, tp = 0

Output Class

Target Class none left right Recall

none 60523 2499 3019 0.916

left 2816 4998 340 0.613

right 1658 419 6526 0.759

Precision 0.931 0.631 0.660 0.870

Table A.33: Confusion Matrix Resnet101, S = 3, tp = 0

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 78.7 81.3 83.7 80.9 80.1 83.8 85.0 81.6 85.9 81.5 73.1 82.7

none Pre 87.4 90.0 92.8 91.5 93.0 91.8 94.5 92.5 90.6 91.2 88.2 91.7

Rec 86.8 88.6 89.1 86.5 87.5 90.1 88.4 85.8 93.9 87.7 77.2 88.6

left Pre 41.1 62.2 66.8 61.7 48.2 32.1 47.5 45.9 49.7 42.1 63.1 46.7

Rec 32.4 54.4 46.3 52.2 65.5 58.9 68.5 69.0 53.4 63.6 55.7 57.9

right Pre 61.2 54.5 54.2 63.0 54.4 72.8 62.1 66.1 75.4 65.2 30.0 62.1

Rec 68.8 63.9 82.6 83.6 55.5 57.6 70.8 68.7 57.2 55.1 70.0 64.1
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Table A.34: Confusion Matrix Resnet101, S = 1, tp = 10

Output Class

Target Class none left right Recall

none 75830 5179 4902 0.883

left 2187 4745 665 0.625

right 4997 764 9309 0.618

Precision 0.913 0.444 0.626 0.828

Table A.35: Confusion Matrix Resnet101, S = 2, tp = 10

Output Class

Target Class none left right Recall

none 68571 3732 3322 0.907

left 2326 4451 317 0.627

right 3144 722 7541 0.661

Precision 0.926 0.500 0.675 0.856

Table A.36: Confusion Matrix Resnet101, S = 3, tp = 10

Test Fold 1 2 3 4 5 6 7 8 9 10 11 All

Acc 84.5 85.6 85.9 82.8 81.0 84.1 78.0 80.6 80.7 84.7 84.1 84.1

none Pre 90.1 93.5 92.5 88.0 84.4 91.0 89.0 88.4 87.4 87.8 88.7 90.1

Rec 91.5 89.4 90.9 89.9 92.8 89.8 84.3 87.7 88.8 94.4 94.9 90.9

left Pre 40.2 63.6 56.1 45.7 60.5 63.0 59.6 60.0 74.7 71.0 78.0 58.2

Rec 59.9 62.8 56.5 56.0 34.9 64.7 47.7 35.3 54.7 41.2 49.9 53.5

right Pre 76.0 53.0 67.2 83.6 68.6 62.8 58.0 57.2 46.4 67.1 62.7 65.0

Rec 55.4 74.7 73.3 68.2 55.3 66.2 79.2 75.2 61.9 56.8 58.7 65.0
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