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Resumen

Debido al elevado número de muertes en carretera, a lo largo de los últimos
años los vehículos han ido evolucionando hasta llegar a ser máquinas inteligentes
con tecnologías avanzadas tales como Sistemas de Protección de Peatones, Sistemas
de Frenado Automático de Emergencia u otro tipo de Sistemas Avanzados de Asis-
tencia al Conductor. Mejorar estos avances tecnológicos es imprescindible ya que
iniciar la frenada lo antes posible o evaluar de forma precisa las posiciones de los
peatones antes de una colisión podrían ser tareas particularmente relevantes como
aseguran varios trabajos.

Esta tesis describe un método basado en Balanced Gaussian Process Dynami-
cal Models (B-GPDMs), los cuales aprenden información tridimensional y temporal
procedente de diferentes puntos situados a lo largo de los cuerpos de los peatones
con el objetivo de predecir sus trayectorias, posturas e intenciones futuras con una
antelación de hasta un 1 segundo. Dado que los humanos no son objetos rígidos, es
importante analizar el movimiento de cada parte del cuerpo. Por tanto, la informa-
ción de los puntos sobre el peatón es significativamente valiosa a la hora de llevar a
cabo dichas tareas. El B-GPDM permite reducir la dimensionalidad de un conjunto
de vectores de características relacionados en el tiempo e inferir posiciones latentes
futuras. Asimismo, el correspondiente vector de características puede ser recon-
struido dada la posición en el espacio latente. Sin embargo, el aprendizaje de un
único modelo genérico para todo tipo de actividades peatonales o la combinación de
algunas de ellas en un único modelo normalmente produce estimaciones imprecisas
de las observaciones futuras. Por esa razón, el método propuesto aprende múlti-
ples modelos de cada tipo de actividad del peatón, éstas son: andando, parando,
comenzando a andar y parado, y selecciona el modelo más apropiado en cada in-
stante de tiempo con el objetivo de estimar estados de peatones futuros. El método
funciona como sigue: dado un conjunto de entrenamiento compuesto de secuencias
de movimientos de peatones, éste es dividido en 8 subconjuntos basándose en la
orientación de cruce, ya sea, de izquierda a derecha o de derecha a izquierda, y tipo
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de actividad. A continuación, se obtiene un B-GPDM por cada secuencia contenida
en el conjunto de entrenamiento. Por otro lado, dada una nueva observación de un
peatón, su actividad es determinada por medio de un algoritmo de reconocimiento
de actividades basado en un Modelo Oculto de Markov. Así, la selección del mod-
elo más adecuado entre todos los entrenados se realiza entre los pertenecientes a
esa actividad. Finalmente, el modelo escogido se utiliza para predecir posiciones
latentes futuras y, a partir de ahí, reconstruir las trayectorias y las posturas.

Los resultados verifican que la información de los hombros y las piernas es más
valiosa que la información procedente de otras partes del cuerpo cuando se trata de
reconocer la acción del peatón. Más específicamente, la mayor exactitud, 95.13%,
se logra cuando las observaciones están compuestas de unos pocos puntos situados
a lo largo de las piernas y los hombros. Sin embargo, esta exactitud cae hasta el
90.69% si se utilizan un mayor número de puntos localizados a lo largo de todo el
cuerpo. El método propuesto en este documento detecta intenciones de comenzar
a andar 125 milisegundos después de la iniciación del paso con una exactitud del
80% y reconoce intenciones de parado 58.33 milisegundos antes del evento con
una exactitud del 70% cuando se utilizan únicamente puntos de los hombros y las
piernas.

En cuanto a la predicción de las trayectorias, se han obtenido errores similares
a otros trabajos. Sin embargo, algunas medidas de exactitud utilizas por otro
métodos ofrecen a una idea confusa de cómo de bien funciona un sistema. Por
ejemplo, la Mean Euclidean Distance (MED) da una interpretación física más pre-
cisa sobre las posiciones predichas de los peatones con respecto a la realidad que
el Root Mean Squared Error (RMSE). Por tanto, en esta tesis, la medida de exac-
titud escogida para la evaluación de la trayectoria futura es la MED a diferentes
Times To Event (TTEs) ya que ofrece información objetiva del rendimiento de la
predicción de la trayectoria. Para actividades de andar, se han obtenido valores de
MEDs a 0.25, 0.5, 0.75 y 1 segundos de 33.03±43.84, 70.87±89.69, 113.34±140.64
y 159.48±196.19 milímetros respectivamente. Para acciones de parando, el valor
de MED es 238.01±206.93 milímetros para un TTE de 1 segundo y un horizonte
temporal de 1 segundo. Finalmente, para acciones de comenzando a andar, se
ha obtenido un valor de MED de 331.93±254.73 milímetros para un TTE de 0
segundos y un horizonte temporal de 1 segundo.

Palabras clave: Peatones, predicción, trayectorias, actividades, modelos.



Abstract

Because of the high number of fatalities on the road, during the last few years
vehicles have been evolving to become intelligent machines with advanced tech-
nologies such as Pedestrian Protection Systems, Automatic Emergency Braking
Systems (AEBSs) or other sort of Advanced Driver Assistance Systems (ADAS).
Improving these technological advances is imperative since an early braking initi-
ation or an accurate assessment about pedestrian positions before collisions could
be particularly relevant as some works assert.

This thesis describes a method based on Balanced Gaussian Process Dynamical
Models (B-GPDMs), which learns 3D time-related information from joints placed
along the pedestrian bodies in order to predict their future paths, poses and in-
tentions up to 1 second in advance. Given that humans are not rigid objects, the
motion analysis of each body part should be taken into account. Hence, pedestrian
joints are valuable information to perform these tasks. The B-GPDM can reduce
the dimensionality of a set of feature vectors related in time and infer future latent
positions. Likewise, given a latent position from the latent space, the correspond-
ing feature vector can also be reconstructed. However, learning a generic model
for all kind of pedestrian activities or combining some of them into a single model
normally provides inaccurate estimations of future observations. For that reason,
the proposed method learns multiple models of each type of pedestrian activity, i.e.
walking, stopping, starting and standing, and selects the most appropriate among
them to estimate future pedestrian states at each instant of time. The method
works as follows: given a training dataset of pedestrian motion sequences, this is
split into 8 subsets based on typical crossing orientations, that is, from left to right
and from right to left, and type of activity. Then, a B-GPDM is obtained for each
sequence contained in the dataset. On the other hand, given a new pedestrian
observation, the current activity is determined by means of an activity recognition
algorithm based on a Hidden Markov Model (HMM). Thus, the selection of the
most appropriate model among the trained ones is centred solely on that activ-
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ity. Finally, the selected model is used to predict the future latent positions and
reconstruct the future pedestrian path and poses.

The results verify that shoulder and leg motions are more valuable sources of in-
formation than other body parts to recognise the current pedestrian action. More
specifically, the maximum accuracy rate, 95.13%, is achieved when observations
composed of a few joints placed along the legs and shoulders are taken into con-
sideration. However, the accuracy rate falls to 90.69% whether a higher number of
joints located along the whole body are used. The method proposed in this docu-
ment detects starting intentions 125 milliseconds after the gait initiation with an
accuracy rate of 80% and recognises stopping intentions 58.33 milliseconds before
the event with an accuracy rate of 70% when joints from shoulders and legs are
considered.

Concerning the path prediction results, similar errors are obtained with respect
to other works. However, some measures of accuracy used by other methods pro-
vide a vague idea of how well a system works. For example, the MED gives a more
precise physical interpretation of the predicted pedestrian positions with respect
to a groundtruth than the RMSE. Hence, in this thesis, the measure of accuracy
chosen for the path evaluation is the MED at different TTEs since it gives ob-
jective information of the path prediction performance. The MEDs achieved for
walking activities at 0.25, 0.5, 0.75 and 1 second are 33.03±43.84, 70.87±89.69,
113.34±140.64 and 159.48±196.19 millimetres respectively. For stopping activi-
ties, a MED value of 238.01±206.93 millimetres for a TTE of 1 second and a time
horizon of 1 second. Finally, for a starting action, the method described in this
thesis achieves a MED value of 331.93±254.73 millimetres for a TTE of 0 seconds
and a time horizon of 1 second.

Keywords: Pedestrians, prediction, paths, activities, models.
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Chapter 1

Introduction

According to the report about road safety that the Spanish General Division for
Traffic publishes every year, Spain was the sixth country in the European Union
(EU) with the lowest number of road fatalities per population in 2014 and had lower
rates than other countries like the United States, Japan and Australia. Namely,
there were 91.570 casualty accidents, which resulted in 1.688 fatalities at the time
of the accident or within 30 days of its occurrence, 9.574 casualties were admitted
to hospital and 117.058 people were slightly injured. Regarding pedestrians, 336
were fatalities (19.91%), 1.902 were hospitalised and 10.625 suffered minor injuries.
It is noteworthy that 92.86% of the pedestrians involved in an accident were in ur-
ban roads. On the other hand, data are more dramatic when European statistics
are analysed. According to the Annual Accident Report 2015 published by the
European Road Safety Observatory, almost 26.000 people died in road traffic ac-
cidents in the EU in 2013, including 5.712 pedestrians, which represent 22.02% of
all fatalities. Concerning world statistics, data are more impressive. The Global
Status Report on Road Safety published by the World Health Organisation (WHO)
in 2015 indicates that more than 1.2 million people died in road traffic accidents
worldwide in 2013. About 275.000 of these fatalities were pedestrians.

Because of the high number of fatalities, during the last few years vehicles
have been evolving to become intelligent machines with advanced technologies such
as traffic signs recognition, pedestrian protection systems, Automatic Emergency
Braking Systems (AEBSs) or other sort of Advanced Driver Assistance Systems
(ADAS). Likewise, more sophisticated mathematical algorithms in perception and
machine learning, and their applications in the field of Intelligent Transportation
Systems (ITS), have contributed to this evolution as well. In addition, the per-
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formance gain on computers and sensors such as cameras, Radio Detection And
Ranging (RADAR), Light Detection and Ranging (LIDAR) or Global Positioning
System (GPS), have also improved on-board vehicle systems. Finally, all these
new technological advances arise as a consequence of the promotion and funding
launched by governments and worldwide organisations to increase the road safety.
This evolution has not finished yet. Indeed, it started a few years ago and it will
continue during the next decades. For example, an effective interaction with other
traffic participants is an open challenge for intelligent vehicles. This is particu-
larly true in urban environments that are not primarily dedicated to traffic and are
populated with Vulnerable Road Users (VRUs) like pedestrians and cyclists. In
order to cope with the wide variations in traffic situations and behaviours of traffic
participants, scientific progress is required in perception, prediction and interaction
techniques.

Figure 1.1: Collision Warning with Full Auto Brake and Cyclist and Pedestrian
Detection developed by Volvo. The driver is warned when a road user or vehicle is in
front and, if he does not take action to avoid the collision, an emergency braking is

activated. www.automobilesreview.com.

Some of the sensors listed before, in particular those that enable to distinguish
objects and determine their distances with high accuracy, are employed in the
innovative solutions that have been developed by vehicle manufacturers over the
last few years. The main motivation of these systems, called active safety systems,
is to prevent accidents instead of mitigating them as passive safety systems do.
For example, regarding pedestrian protection systems and AEBSs, Toyota recently
presented the Pre-Collision System with Pedestrian-avoidance Steer Assist that
warns the driver when a pedestrian or object is in front of the vehicle and, if he does
not take action to avoid the collision, an AEBS in addition to automatic steering is
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activated. Volvo has also equipped some of its vehicles with the Collision Warning
with Full Auto Brake and Cyclist and Pedestrian Detection, described in [11], which
assists the driver when there is a risk of collision with a VRU or vehicle in front,
regardless of whether the object is stationary or moving in the same direction. The
system combines a long-range RADAR and a forward-viewing wide-angle camera
to continuously monitor the frontal area of the vehicle. The driver is first warned of
a potentially imminent collision with a flashing red warning and an acoustic signal.
But, in case he did not start an evasive action, then the automatic braking function
would be deployed. The system can automatically avoid collisions if the driving
speed is less than 35 km/h and mitigate injuries above that threshold. Beyond this,
its effectiveness is assessed by means of the reconstruction of real-world accidents in
[43]. This work asserts that the system may completely avoid 30% of the impacts
involving pedestrians and could reduce up to 24% of the fatalities for crashes where
pedestrians were struck by the front of a vehicle assuming that the system has been
universally adopted.

Improving these technological advances is imperative since an early braking ini-
tiation or an accurate assessment about pedestrian positions before collisions could
be particularly relevant as some works assert. For example, the studies developed in
[24, 52] evaluate the potential effectiveness of AEBSs using real pedestrian-vehicle
crashes. The first study analyses the functionality of these systems considering
different attributes such as the sensor field of view, detection, reaction and braking
initiation. The study determines that those systems based on a camera with a field
of view of 35° need a reaction time between 0.5 and 1 second from the instant when
a pedestrian is visible to the braking initiation in order to achieve a collision avoid-
ance rate of 75% and 64% respectively. Additionally, the work concludes that 50%
of these accidents would be avoided if the brakes were triggered 1 second before
the impact. Finally, it asserts that a period between 1.5 and 0.5 seconds before a
collision is critical regarding pedestrian positions since, for example, at 1 second
before a crash, people are mainly located no more than 3 meters of the side of the
vehicle and less than 20 meters far away. It is worth mentioning that the vehicle
travel speeds in the dataset ranged from 20 to 60 km/h with an average value of 40
km/h. On the other hand, the second study evaluates the effectiveness as a function
of the sensor field of view, maximum braking deceleration and braking initiation
time assuming that the brake force has a linear ramp up time of 300 milliseconds.
As expected, the longer the braking initiation time, the higher the impact speed
and thus, the injury risk. These results are in accordance with those of [24]. It is
noteworthy that, concerning the Global Status Report on Road Safety published by
the WHO in 2015, an adult has less than a 20% chance of dying if struck by a car
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at less than 50 km/h but almost a 60% risk of dying if hit at 80 km/h. Hence, a
precise assessment about the current and future pedestrian positions and an early
detection of people entering a road lane is a major challenge in order to increase
the effectiveness of AEBSs. Similarly, an early recognition of pedestrian intentions
can lead to much more accurate active interventions in the last second automatic
manoeuvres. Therefore, with the aim of addressing these challenges, a lot of effort
has been put into recognising pedestrian activities and predicting trajectories and
intentions in the last few years so that strong gains are expected to be made in the
performance and reliability of VRU protection systems.

This thesis describes a method to predict pedestrian positions, poses and in-
tentions up to 1 second ahead in time applying a novel probabilistic modelling
technique called Balanced Gaussian Process Dynamical Model (B-GPDM) and a
Hidden Markov Model (HMM). The B-GPDM enables to estimate future observa-
tions from pedestrian motion sequences previously modelled. These sequences, in
which different pedestrian dynamics were captured, are composed of 3D positions
and displacements of several joints placed along the pedestrian body. On the other
hand, an activity recognition based on a HMM makes possible to select the most
accurate model to estimate future pedestrian states.

It is worth doing a distinction between the terms ‘intention’ and ‘activity’.
Hereafter, the former will be referred to a future pedestrian action and the latter
will be referred to the current one. In this thesis, intentions and activities are
classified into different categories, i.e. start crossing (or starting), stop before
crossing (or stopping), crossing (or walking) and waiting (or standing). On the
other hand, ‘positions’, ‘paths’ and ‘trajectories’ are considered as synonyms and
make reference to pedestrian locations with respect to an origin in different future,
current or past instants of time. In addition, the term ‘pose’ is referred to the
pedestrian posture. Finally, the ‘pedestrian state’ comprises all the attributes
mentioned above.

The present document is organised as follows: Chapter 2 presents a brief
overview of previous works focused on pedestrian intention and path prediction.
Chapter 3 introduces the theoretical basis of the Gaussian Process Dynamical
Model (GPDM) and B-GPDM to reduce the dimensionality of a set of observa-
tions related in time in a non-linear way. Chapter 4 explains in detail how the
activity recognition and pedestrian path and intention prediction are carried out
applying the HMM and B-GPDM. Chapter 5 describes extensive results obtained
by the proposed method. Finally, Chapter 6 lists the conclusions of this thesis and
future research lines that may spring from it.



Chapter 2

Previous Works

The problem of vision-based pedestrian detection for ADAS has been exten-
sively researched in the past. Indeed, outstanding surveys on this field can be
found in the literature such as [12,15,18]. As a consequence, many manufacturers
have equipped their vehicles with commercial systems that warn the driver when
a pedestrian or object is in front. Nonetheless, as mentioned previously, improving
these systems with the estimation of future VRU states could activate effective
automatic manoeuvres earlier. Despite this, not many works have been published
so far about intention, path and pose prediction once pedestrians are detected.

Throughout this chapter, a brief overview of previous works orientated towards
estimating future pedestrian states is presented and glossed. Firstly, in Section 2.1,
the most relevant features for that purpose are analysed. Beyond that, the creation
of appropriate models from one or several of these features is a common task in
order to obtain accurate descriptions of pedestrian motions. Therefore, different
modelling techniques are explored in Section 2.2. After that, the path prediction
accuracies and time horizons accomplished by significant works are examined in
Section 2.3. Finally, some conclusions about the analysis of these works and the
main objectives of this thesis are presented in Sections 2.4 and 2.5 respectively.

2.1. Features and Information

A wide range of features and information can be extracted from pedestrians
to infer their future states. However, some of them are certainly more significant
than others. Studies such as [4, 16, 21, 23, 45, 53, 56, 65, 66] give some useful clues.
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Several of these works prove that pedestrians relied on the distance to vehicles
rather than the Time To Collision (TTC) to cross the road or wait. Specifically,
the data analysis of some experiments carried out in [53] shows that, independently
of vehicle travel speeds, the road crossing action is unlikely when the TTC is below
3 seconds, however it is almost sure when the TTC is above 7 seconds. Between
these limits, the distance to vehicles normally determines the decision. A similar
conclusion is reached in [65], where the crossing probability is almost 100% when
the TTC is longer than 6 seconds.

Other parameters, e.g. the direction and size of oncoming vehicles, pedestrian
gender and age, step frequency, head-turning, gait and presence of other pedes-
trians, have important effects in road crossing decisions. Regarding the vehicle
direction, the study developed in [53] asserts that, when vehicles go in the same
direction as pedestrians, shorter distances and TTCs are chosen. It also appears
that pedestrians accept longer TTCs when facing larger vehicles or are accompa-
nied by others, as demonstrated in [65]. Besides, the gender-based analysis of this
last work reflects that men usually take fewer risks than women. Likewise, concern-
ing the age, as claimed in [45], elderly pedestrians select more dangerous decisions
than younger people despite the fact that they normally take more time to make
them. Another important variable is the step frequency. The results showed in [56]
confirm that people tend to use higher step frequencies when they are crossing the
road, especially when vehicles are moving towards them or when they are crossing
without right-to-way. In [23], the head-turning is examined in crossing activities
when vehicles are approaching. The work states that the head-turning frequency
increases towards the entry of crosswalks and at collision points. Moreover, the
analysis indicates that the head-turning frequency at nighttime, when vehicles are
approaching from behind or by elderly people tends to be low. On the other hand,
four studies focused on pedestrian gait are presented in [4, 16, 21, 66]. The first
one establishes reference values for both comfortable and maximum human gait
speeds. The second one evaluates pedestrian behaviours and gait responses at
signal-controlled intersections by analysing the elapsed time between the illumi-
nation of a pedestrian walk sign and the gait initiation, the rate of acceleration
to reach a steady state velocity and the number of steps required to reach that
velocity. The third study shows that the mechanism of gait termination is a com-
bination of a decrease in the step length and an increase in the step time. It is
also remarkable that, during the last three steps of deceleration, the behaviours of
children, adults and elderly people are very similar. Additionally, the analysis of
pedestrian velocity profiles indicates three typical motion patterns in the way peo-
ple slow down from steady state velocities: stopping with constant deceleration,
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stopping with increasing deceleration and fast stopping. Finally, the last study
evaluates pedestrian speeds in steady motions and accelerations from stationary
positions taking into account the age and gender.

Although all these variables are examined from a pedestrian’s point of view,
significant clues can also be collected from a driver’s perspective since they are
capable of understanding complex traffic situations and forecasting paths and in-
tentions of other road users. The study elaborated in [53] addresses this issue
and concludes that the observation of only pedestrian trajectories is unreliable for
drivers to estimate forthcoming positions. Therefore, future paths and intentions
are mainly predicted with motion parameters and body language.

Taking into account these studies, it seems that the most relevant features to
compute path and intention predictions can be mainly extracted from two sources.
The first one is directly obtained from pedestrians whose body languages, posi-
tioning information, orientations, head poses and motions determine the variables
that a driver commonly uses to infer intentions and to know whether pedestrians
are aware of oncoming vehicles. The second source emerges from the situation
criticality and the environment at each instant of time, where vehicle-pedestrian
and curbside-pedestrian distances, existence of zebra crossing, road width or size
of approaching vehicles are significant data. An analysis of recent works focused on
the task of predicting future pedestrian states confirms these conclusions. Figure
2.1 shows a classification of the main features and information that these works use
to estimate pedestrian paths and intentions. In the following sections, “position-
ing information” makes reference to one or several of the next pedestrian features:
position, velocity and acceleration.

Features and
Information

From the
Context

Situation
Criticality

Environment

From the
Pedestrian

Head Pose

Orientation

Motion
Features

Positioning
Information

Figure 2.1: Features and information that relevant works focused on pedestrian path
and intention prediction use to infer future states. These features can be mainly

extracted from two sources: from the pedestrian and from the context.
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2.1.1. Pedestrian Features

The path prediction of a pedestrian walking towards the road curbside, when
viewed from an oncoming vehicle, and the assessment of whether he will cross or
stop are fundamental tasks for innovative ADAS. To carry them out, pedestrian
motion features are regularly extracted applying image processing instead of com-
puting only pedestrian positions and velocities as less accurate approaches do. For
example, in [1,54], positioning information is only considered to predict pedestrian-
vehicle collisions and paths at short time horizons respectively. Nonetheless, in
[31, 32], apart from using that information, augmented motion features derived
from dense optical flow fields are also processed for path and intention predictions.
These studies compare the proposed approaches with two simpler methods based
only on positioning information. On the one side, the path prediction results indi-
cated in [31] show a similar performance for walking trajectories in all algorithms,
however, the approaches based on augmented motion features achieve more accu-
rate results for stopping trajectories. On the other side, in [32], the results indicate
that the addition of motion features does not improve the accuracy in the estima-
tions. Despite this, the intention prediction results from both studies show that
the proposed approaches outperform the other methods. Another example of the
use of motion features can be found in [36] where a method to recognise starting,
stopping and bending in intentions from a moving vehicle is implemented. The
motion features are gathered using the overlapping of pedestrian silhouette images
which are based on depth maps at consecutive time instants.

Beyond that, the orientations in which pedestrians are facing could be evalu-
ated to predict where people may move in the future or determine the situational
awareness of oncoming vehicles. When pedestrians are moving, motion directions
and orientations can be easily approximated with their position histories. However,
when pedestrians are static, only the orientations they are facing offer information
about possible future paths. For instance, the applicability of pedestrian orienta-
tions and head poses to predict intentions is investigated in [17, 55]. In the first
work, Histogram of Oriented Gradient (HOG) features are fed to an 8-class Sup-
port Vector Machine (SVM) classifier whose probabilities allow to model a HMM
to infer future orientations. The second work presents an approach that combines
intention recognition and path prediction for pedestrians that are walking along
or towards the road curbside on their way to cross, stopping or just keeping on
going in the same direction. The proposed model integrates positioning informa-
tion from a stereo vision system and situational awareness computed by head pose
estimations.
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Moreover, many dangerous situations arise from the fact that the driver’s view
of the road scene may be obstructed by objects. In these cases, it is difficult or even
impossible to detect pedestrians from the inside of a vehicle and avoid potential
collisions. For that reason, infrastructural sensors in combination with roadside
units can be mounted at urban hazard spots and send the appropriate signals to
vehicles through wireless communication channels. This solution is proposed in
[34, 35, 37] with the aim of predicting starting intentions. The algorithms extract
pedestrian motion features by overlapping a sequence of edge images or depth-
based foreground images. This spatial-temporal information implicitly comprises
the body language of a pedestrian gait initiation. On the other hand, positioning
information is extracted in [19, 20, 22] to create velocity-time-based and position-
based models which are able to predict paths in the course of a gait initiation at
crosswalks or for typical pedestrian motions. Furthermore, apart from using po-
sitioning information, heading angle is also considered in [7]. The work proposes
a method to avoid vehicle-pedestrian collisions that learns and predicts pedestrian
intentions while their motion instances are being observed. Positioning informa-
tion and heading angles are taken into account to extract trajectories that are
clustered into motion patterns later. Thereby, a future trajectory can be predicted
by means of the matching between the current pedestrian path and a classified
motion pattern.

Although this section has been centred on ITS, path and intention predictions
are regularly carried out in other areas. Applications orientated towards surveil-
lance, robotics, vehicle motion prediction or human motion analysis compute future
trajectories as well. For example, a shopping mall is the scenario chosen in [8, 9]
to test two improved approaches based on the work developed in [7]. Whereas the
former uses the same features, positioning information at discrete time steps is only
deployed in the latter. A similar strategy is also applied in [14] using static surveil-
lance cameras. Additionally, the work developed in [27] assumes that different
head pose patterns reflect different intentions. In this case, positioning informa-
tion and head poses are taken into account to model a Dynamic Bayesian Network
(DBN) to predict intentions in a shopping mall as well. It is noteworthy that all
these approaches may also be implemented for stationary ITS infrastructures set
up in intersections or streets since pedestrians are normally located along cross-
walks or sidewalks. Regarding vehicle motion prediction, this task is addressed in
[26] by means of a trajectory matching algorithm based on positioning information
and orientations relative to the ego-vehicle. Finally, a people motion tracking and
path prediction approach designed for robot applications is presented in [51]. The
method computes 3D positions of different points located along the human body.
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2.1.2. Contextual Features

Where and when a pedestrian will cross the road is highly related to its specific
context location. For example, a pedestrian walking towards a crosswalk is more
likely to cross. However, a pedestrian with that intention might not do so if there
is a car approaching fast, but might cross if the car is still far away. Therefore,
although urban environments are generally very complex, exploiting and analysing
the situational criticality and the structure of streets, sidewalks, intersections or
crosswalks, i.e. the spatial layout of the environment, can also provide some valu-
able information to innovative ADAS.

In this sense, the factors introduced before and the pedestrian situational aware-
ness are computed in [38] using an on-board stereo camera with the aim of pre-
dicting pedestrian paths from an approaching vehicle. Concretely, the situational
awareness is assessed by the pedestrian head orientation, the situation criticality
by the vehicle-pedestrian distance at the expected collision point, and the spatial
layout by the curbside-pedestrian distance. Furthermore, pedestrian features and
contextual information are combined in [5, 39, 61] as well. The first work fuses
two models to predict crossing intentions from a moving vehicle. One is a generic
context-based model fitted for inner-city and the other is a specific model fitted
for crosswalk environments. Contextual information such as lateral distances and
times that pedestrians need to reach some goals (collision point, curbstone, ego-
lane or crosswalk) and pedestrian features such as tridimensional positions, veloc-
ities and directions are processed by a stereo vision system. In the second work,
curbside-pedestrian and vehicle-pedestrian distances, head orientations and their
variations, and pedestrian speeds are computed to predict intentions using a stereo
thermal camera mounted on the front-roof of a car. Finally, the last work is focused
mainly on identifying those features from the environment that are necessary to
learn the best model which is able to determine whether a pedestrian will cross
the road at a crosswalk. The features are divided into two different basic types:
those that describe pedestrian motions (velocities, distances to curbs, distances to
crosswalks and distances travelled between consecutive time steps) and those that
characterise the interaction between pedestrians and vehicles (closest vehicles to
pedestrians, velocities and distances travelled by those vehicles, distances between
vehicles and crosswalks and distances between vehicles and pedestrians). The work
confirms that the features related to pedestrians provide better results in inferring
intentions.

On the other side, as previously mentioned, many dangerous situations arise
from the fact that the driver’s view of the road scene may be obstructed by objects
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Figure 2.2: Given a single pedestrian detection, the approach proposed in [33] forecasts
plausible paths and destinations from vision-input. Physical attributes of the scene are

able to encode agent preferences like using the sidewalks.

and, hence, it could be impossible to avoid a collision. However, only pedestrian
features have been considered so far for these types of situations. Including prior
knowledge about the scene such as objects, sidewalks, roads, entries and destina-
tions might provide richer information to systems focused on predicting pedestrian
trajectories. For example, in [33], the task of inferring paths and intentions from
a static camera is addressed by incorporating physical scene features and noisy
tracker observations. Thereby, the effect of physical environments on pedestrian
intentions is modelled through the information that is gleaned from physical scene
features and prior knowledge of possible destinations. The scene understanding is
done by means of a semantic scene labelling algorithm combined with ideas from
an Inverse Reinforcement Learning (IRL) framework.

2.2. Modelling Techniques

Unlike animals, whose behavioural patterns have their origins on primitive in-
stincts and emotions, humans normally act according to their reasoning. This is
related to the learning and experience that they acquire from many different sit-
uations along their lives. Indeed, the knowledge and observation of events allow
humans to understand and predict future situations, intentions, motions or trajec-
tories and react correctly in each case. For example, they can avoid collisions with
moving objects when they are walking on a street predicting future paths a few
seconds before and changing their trajectories accordingly.
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Based on these considerations, providing the capability of prediction to com-
puters has been a growing topic among researchers in the last few years. Getting to
understand the underlying intent of an observed agent is of paramount interest in
a large variety of domains that involve some sort of collaborative and competitive
scenarios, e.g. robotics, surveillance, human-machine interaction and intelligent
vehicles. This capability of prediction is normally carried out by machine learning
algorithms. The machine learning is a branch of computer science that studies
how to give computers the capability of learning in order to make predictions and
identify patterns on data. The machine learning techniques are classified into three
categories in [3]. These are:

Supervised learning: In this case, input data and their corresponding tar-
get values are provided in order to infer a function or model that relates both.
The algorithms associated with this category can be divided into classification
and regression. Whereas the former assign each input vector to one of a finite
number of discrete classes, the latter assign each input vector to one or more
continuous variables. Techniques like the SVM, linear regression, boosting,
Artificial Neural Networks (ANNs), naïve Bayes classifiers or decision trees
are included within this group.

Unsupervised learning: In this instance, input data are also provided
but, unlike supervised learning, target values are unknown. Some subfields
of this category are clustering, which consists in discovering groups of similar
features within the data, density estimation, which determines a distribution
of data within the input space, or visualisation, which projects the data from
a high-dimensional space to another of lower dimensions. The Expectation-
Maximization (EM) algorithm, k-means, Gaussian Process Latent Variable
Model (GPLVM), GPDM and Principal Component Analysis (PCA) are some
examples of techniques included in this group.

Reinforcement learning: Concerning this category, agents interact with
their environments through actions that change the environment states and,
as a result, these agents receive some rewards. Learning how to maximise
the future rewards is the final goal of the algorithms belonging to this group.
Some representative techniques are the Markov Decision Process (MDP) and
Monte Carlo algorithm.

As mentioned before, the creation of appropriate models from one or several of
the features glossed in the previous section by means of machine learning techniques
is a common task in systems focused on intention and path prediction. This task
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allows to achieve accurate descriptions of pedestrian motions. Hence, it demands
a prior step of gathering information about the process which will be modelled.
Choosing the best modelling technique, regardless of the features selected, is an
important decision because not all approaches yield as good results as others. This
decision is especially critical concerning pedestrians since simple models may not
deal correctly with changes in human dynamics. Therefore, throughout this section,
different techniques for pedestrian motion modelling, which are applied to predict
intentions and paths, are examined.

2.2.1. Linear Models

Simple linear models have been proposed in several works obtaining interesting
results in path prediction. For example, in [20], a piecewise linear model is fitted
to a velocity-time curve whose data are derived from pedestrians in the course of a
gait initiation at crosswalks. It assumes motions with Constant Acceleration (CA)
during the first stride and motions with Constant Velocity (CV) afterwards. Thus,
pedestrian trajectories emerge integrating their velocities. Besides, a sigmoid model
is also fitted to the curve and compared with the previous approach, achieving the
linear model better results at the beginning of starting motions.

SVMs are also linear models that have been extensively applied in many vision-
based applications. Specifically, some systems focused on starting intention recog-
nition are found in [34,35,37]. In these works, linear 2-class SVM classifiers are used
in order to determine whether a motion-based descriptor belongs to a pedestrian
which is starting to walk or not. Additionally, some of them include a class proba-
bility estimation through the transformation of the SVM outputs into probability
distributions over classes which are interpreted as pedestrian intention probabilities.
On the other hand, the number of pedestrian motions contemplated is expanded
in [36]. Therefore, learning a SVM classifier with class probability estimation for
each type of motion is an essential condition to infer future pedestrian intentions.

2.2.2. Non-linear Models

Non-linear models have also been implemented to predict pedestrian trajecto-
ries. In fact, polynomial approximations are well suited to model temporal trends
providing an extraction of the principal information of the underlying time series in
the form of polynomial coefficients, high independence of input data and additional
noise resistance. These models are formed as compositions of basis polynomials
that can consist of various functions, such as polynomials, wavelets or sinusoidal
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functions. Besides, the coefficients are optimised by minimising the least-squares
error between the time series data and the polynomial. For example, a simplified
model of pedestrian motions is learned by applying this technique in [19]. Beyond
that, in [22], the polynomial coefficients are trained in an ANN and an ε-Support
Vector Regression (SVR) model with a non-linear Radial Basis Function (RBF)
kernel in order to predict pedestrian paths. The ε-SVR model obtains slightly
higher prediction errors than the approach based on the ANN.

2.2.3. Dynamic Bayesian Networks

A Bayesian Network (BN) is a probabilistic graphical model represented with
a directed acyclic graph composed of nodes and edges. Whereas the former corre-
spond to random variables that can take both discrete and continuous values, the
directed edges express probabilistic relationships between these variables. Further-
more, extending the scope of these models, a DBN is a sequential BN whose nodes
can also have connections with nodes at adjacent time steps, thus making possible
to model time-series data. Because of their flexibility, DBNs are also implemented
to predict future pedestrian states. For example, a DBN, which capture contex-
tual information as latent states on top of a Switching Linear Dynamical System
(SLDS), is proposed in [38] to predict pedestrian paths from vehicles (see Figure
2.3). The SLDS uses the top-level DBN to select per time step the underlying
system dynamics.

Additionally, special cases of DBNs are the Markov-chain Model (MCM), the
HMM and the recursive Bayesian Filters (BFs) which are used in many ITS and
robotics applications to model pedestrian motions. In a MCM, the future state of
a process depends solely on its present state. Hence, it is assumed that pedestrians
just choose their next positions on the basis of their current ones. In contrast, a
HMM copes with transitions of unobservable states, i.e. pedestrian thoughts, and
the observations, which correspond to measured positions, are dependent on these
thoughts. Likewise, in a HMM, the future state of a process also depends solely
on its current state. Unfortunately, the hypothesis that all pedestrians behave
similarly is assumed when these models are considered. To solve this problem,
modelling different motions and selecting the most appropriate one at each instant
of time is a recurrent approach. For example, a method to predict future pedestrian
positions is developed in [2] by means of a Mixed-Markov-chain Model (MMM).
In this work, the pedestrian motions, composed of positioning information, are
classified into patterns corresponding to groups of similar activities. Because of
its simplicity, the prediction accuracy is rationally low at earlier steps since the
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Figure 2.3: The DBN and SLDS proposed in [38] for two time slices. Two sets of
variables are distinguished: those related to the SLDS (consisting of the discrete

switching state M , the continuous hidden state X and the associated observation Y )
and those related to the spatial layout, situation criticality and pedestrian awareness

(consisting of the following discrete latent variables: SV (Sees-Vehicle), HSV
(Has-Seen-Vehicle), SC (Situation-Critical) and AC (At Curb)) that influence the SLDS

switching state. The observations HO (Head-Orientation), Dmin (Minimum
Vehicle-Pedestrian Distance) and DT C (Distance-To-Curb) provide evidence for the

context and pedestrian awareness.

process can not gather enough information about the pedestrian to estimate the
next position. However, the accuracy is rapidly improved in later steps. Finally, a
recursive BF is a general probabilistic method to deal with the problem of extract-
ing information about parameters, or states, in a dynamical system given noisy
measurements. In order to make inference of future states at least two proba-
bilistic models are normally required. One for describing the transitions between
states, i.e. the process model, and the other for relating the current state to the
noise measurement, i.e. the measurement model. A recursive BF lies essentially
in estimating the posterior probability associated with the state by means of two
stages: prediction and update. The former applies the process model to project the
previous posterior probability forward in time, thus predicting the next state. In
contrast, the latter uses the latest measurement to tighten the posterior probability
obtained in the prediction stage by means of the measurement model. It is notewor-
thy that simple recursive BFs take into account the current position and velocity
of a dynamic object to estimate the most probable next position in a discrete-time
domain. However, since these approaches are based only on physical observations,
they are accurate for objects with low dynamical behaviours. Thereby, these mod-
els reach their limits in the context of pedestrian path and intention prediction
since unexpected or very fast changes could occur.
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Likely, the most popular recursive BF to estimate future states are the Kalman
Filter (KF). This is a discrete-time linear model in which the current state of a
dynamic system can be propagated to the future by means of the underlying linear
dynamical model without the incorporation of new measurements. Beyond that,
whereas the KF normally assumes that an object moves at Constant Position (CP),
CV, CA or Constant Turn Rate (CT), the Interacting Multiple Model (IMM)-
KF takes into account the capability of some objects to suddenly change their
dynamical behaviour. This model combines different KFs by means of a Transition
Probability Matrix (TPM) that captures the probability of transition from one
type of motion to another. Some examples of the use of the KF and IMM-KF for
intention and path prediction can be found in [19,31,32]. All these works implement
the KF with CV motion model to estimate paths of moving pedestrians. However,
the IMM-KF is also considered in [31,32] in order to include an additional KF with
CP model for non moving pedestrians. Besides, this last model enables to derive
the pedestrian intentions from the transition probabilities at each instant of time.

The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF)
are two non-linear versions of the KF that have been used in many applications
focused on pedestrian tracking and path prediction. Specifically, these tasks are
accomplished in [51] by means of an EKF. Likewise, an IMM-EKF or IMM-UKF
can be implemented to combine different filters that model different pedestrian
motions. For example, in [34], an IMM-EKF with CP and CV as motion models
recognises starting intentions. In [54], pedestrian paths at short time horizons are
predicted using an EKF and an IMM-EKF with CV, CA and CT models corre-
sponding to crossing, stopping, bending in and starting activities. Besides, in [55],
an IMM-EKF is implemented in combination with a Latent-Dynamic Conditional
Random Field (LDCRF) model for the intention recognition and path prediction
tasks in different scenarios. The LDCRF output has a direct impact on the tran-
sition probabilities which control the behaviour of the IMM-EKF. The method is
able to integrate the features extracted from the pedestrian dynamics as well as
the context-based interaction to learn inner connections within a specific type of
scenario and external correlations between different types of environments.

On the other hand, the MDPs are an extension of the MCMs. The difference is
the addition of actions and rewards. At each time step, the process is in a state and
the decision maker chooses an action that is available for that state. The process
responds at the next time step by randomly moving into a new state and giving the
decision maker a corresponding reward. For example, in [33], the task of inferring
the future actions of people from noisy visual input is addressed by means of a
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Hidden Variable Markov Decision Process (HMDP). The method models the effect
of static environments, instead of dynamic environments like moving people, on
the future pedestrian intention. The learning of how much a physical scene feature
affects a person action is done by training the parameters of a cost function.

2.2.4. Trajectory Matching Models

Pedestrians generally follow well-defined paths, either to cross the road, walk
along sidewalks or turn at an intersection. For this reason, the learning of pedes-
trian motion patterns has been widely carried out in relevant path prediction
systems over the last few years. These methods apply a matching algorithm to
compare the current pedestrian trajectory (in terms of spatial position, velocity
or heading angle) with trajectories previously learned. When the best matched
trajectory is found, this is used to predict future positions and estimate the risk
of collision. In other words, future positions arise looking ahead on matched tra-
jectories that are contained in a dataset. Nonetheless, the main drawback of these
algorithms is the need to define a temporal window prior to the prediction to
achieve significant results.

Some examples of the use of these models can be found in [7–9, 14, 26, 31, 32].
In particular, path prediction methods based on the clustering and classification
of observable pedestrian trajectories into motion patterns are developed in [7–9].
Firstly, in the learning stage, pedestrian states are extracted and associated with
existing trajectories using a distance-based procedure. After that, the derived tra-
jectories are clustered by applying a Constrained Gravitational Clustering (CGC)
algorithm and classified into motion patterns. In the prediction step, the similarity
between the current pedestrian trajectory and the motion patterns makes possible
to select an appropriate model to predict future positions. On the other side, a
probabilistic model based on Gaussian Process (GP) regression is proposed in [14]
to describe typical motion patterns and predict pedestrian trajectories using solely
positioning information. After the execution of the trajectory clustering, a model
of each cluster is built. Furthermore, a long-term vehicle motion prediction ap-
proach based on a combination of a trajectory classification and a Particle Filter
(PF) framework is proposed in [26]. The method learns and uses motion patterns
to estimate future vehicle positions. As a measure of similarity, the Quaternion-
based Rotationally Invariant Longest Commom Subsequence (QRLCS) metric is
introduced. Similar strategy is addressed in [31, 32] where a trajectory match-
ing and filtering framework called Probabilistic Hierarchichal Trajectory Matching
(PHTM) is developed. In these works, each trajectory is composed of pedestrian
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lateral and longitudinal positions and features extracted from optical flow fields at
different instants of time. Besides, the matching of an observed test trajectory and
a trajectory included in a dataset is computed by a measure of similarity and a
probabilistic search framework.

2.2.5. Social Force Models

People are usually driven by an inner motivation towards some goal, are in-
fluenced by obstacles and other people along their paths, and follow social rules.
In other words, human motions are influenced by physical and social constraints
related to the environment. Based on these considerations, pedestrian motions are
represented in [25] by simple social force models. These models describe the inter-
actions between pedestrians using the concept of social forces or social fields. These
forces model different aspects of pedestrian behaviours, such as the motivation of
people to reach a goal or the repulsive effect of walls and other people.

2.2.6. Gaussian Process Dynamical Models

The GPDM is also a suitable non-linear option since it reduces the dimen-
sionality of feature vectors related in time into a latent space, thus modelling the
underlying dynamics. Besides, this model provides smooth predictions of future
observations which can be effective to estimate future pedestrian states. Nonethe-
less, the absence of a direct mapping from the feature space to the latent space is
an obstacle that should be overcome when new observations are captured. In [31],
lateral pedestrian dynamics are trained into two GPDMs, one for walking motions
and the other for stopping motions due to the fact that combining data belonging
to different activities could result in degenerated models. To overcome the absence
of mapping from the original space to the latent space, each model is combined
with a PF that finds the latent position given an observation. Finally, an IMM-PF
makes possible to combine both GPDMs to determine what model is used at each
instant of time.

2.2.7. Fuzzy Finite Automatas

A Fuzzy Finite Automata (FFA) is implemented in [39] to predict pedestrian in-
tentions using a stereo FIR camera mounted on the front-roof of a vehicle. The FFA
connects four states corresponding to standing and crossing intentions in different
contexts. Whereas the states are represented by nodes in a FFA, the transitions
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between nodes are represented by arcs. The states have corresponding membership
values and are interpreted as the probability of a pedestrian event at a particu-
lar instant. Moreover, changes between states are controlled by various transition
Probabilistic Density Functions (PDFs) based on spatial-temporal feature varia-
tions.

2.2.8. Neural Networks

The use of ANNs, such as the Single-layer Perceptron (SLP) or Multi-layer
Perceptron (MLP), are alternative approaches for activity recognition or time series
forecasting. They provide the development of path prediction methods that are
capable of dealing with all kind of intentions included in a training dataset without
a prior state classification as demonstrated in [19, 22]. The results show that the
ANNs outperform simpler models such as the KF. This is due to the fact that an
ANN has the capability to handle intentions by learning a single implicit motion
model independent of a specific motion type. In [19], a preprocessed selection of n
trajectory points at defined time steps prior to an event is used as input pattern
and estimated m points of the future path as output pattern. Furthermore, in [22],
a polynomial least-squares approximation is combined with a MLP. The velocity
profiles of past and future time windows are approximated with polynomials in
order to learn the relation of in- and output coefficients. Hence, the future velocity
profiles can be estimated by the reconstruction of the output polynomials based
on the predicted coefficients. Additionally, in [5], a SLP is trained to classify
context and pedestrian features with the intent of obtaining crossing or non crossing
outputs.

2.3. Prediction Accuracies and Time Horizons

Previously, it was mentioned that two main sources of information can be used
to make predictions of future pedestrian states. Nonetheless, each of these sources
involves getting different prediction horizons. The approaches based on pedestrian
features can normally cope with a higher variety of intentions but they have the
drawback of achieving shorter time horizons. The opposite occurs in the case of
context-based algorithms which normally obtain the longest time horizons but only
for limited pedestrian intentions in controlled scenarios.

Additionally, none of the works reviewed in this thesis offers a discussion about
the best method of event-labelling, i.e. when a pedestrian starts or finishes an event
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such as crossing, starting or stopping, and the best evaluation method of path pre-
dictions. Addressing these issues is imperative in order to establish a standard
criterion which enables to make comparisons among approaches in similar condi-
tions. Regarding the event-labelling, in [31,32,54], the last placement of the foot on
the ground at the curbside is labelled as non-crossing event when pedestrians are
stopping. However, when they continue walking, the closest point to the curbside,
before entering the roadway, is selected as crossing event. Finally, when pedestri-
ans are bending in or starting to walk, the first moment of visually recognisable
body turning or leg movements is chosen to label the event. On the other hand,
the frame where a human observer recognises the initial foot movement is labelled
as starting action in [34, 35]. Furthermore, the initiation of a crossing activity is
defined when the foot of a pedestrian touches the ego-lane in [5]. Despite these
examples, there are several events that are harder to label, e.g. transitions from
walking to stopping or from starting to walking actions. Establishing a criterion to
label these transitions would allow to model each pedestrian activity appropriately.

Concerning path evaluations, the RMSE and MED between estimated pedes-
trian positions and the groundtruth are often chosen as measure of accuracy. For
example, the MED used in [19, 20, 55] gives a more precise physical interpreta-
tion of the predicted pedestrian positions with respect to a groundtruth than the
RMSE used in [22]. Likewise, the mean and standard deviation of the per-sequence
RMSE used in [31, 32] provide vague information of the system performance since
the RMSE for each sequence does not offer information about the similarity be-
tween predicted positions and the groundtruth at discrete time steps. Besides,
although most of the works consider that the evaluation must be done for each
type of intention separately, it is not clear what methodology is the most appro-
priate in order to standardise the path evaluation. Hence, a reliable comparison of
path prediction approaches has not been done for the moment.

2.3.1. Short-term Predictions

As mentioned previously, due to the fact that humans have highly dynamic
behaviours, the approaches based on pedestrian features are only suitable for short
prediction horizons, normally up to a few seconds ahead in time. These approaches
are analysed in Table 2.1, where the path accuracies and time horizons are showed.
The features, modelling algorithms and evaluation methods that have been used
by these works are also included.
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Ref. Features Algorithm Error Time Starting Stopping Walking

[31] Position
KF.

Stationary veh.
Mean combined lat.

and long. RMSE
0.77 s -

0.93
±0.15

0.28
±0.12

[31] Position
IMM-KF.

Stationary veh.
Mean combined lat.

and long. RMSE
0.77 s -

0.87
±0.12

0.25
±0.12

[31] Motion
PHTM.

Stationary veh.
Mean combined lat.

and long. RMSE
0.77 s -

0.58
±0.17

0.29
±0.07

[31] Motion
GPDM.

Stationary veh.
Mean combined lat.

and long. RMSE
0.77 s -

0.51
±0.07

0.34
±0.18

[31] Position
KF.

Veh. moving.
Mean combined lat.

and long. RMSE
0.77 s -

1.25
±0.33

0.62
±0.29

[31] Position
IMM-KF.

Veh. moving.
Mean combined lat.

and long. RMSE
0.77 s -

1.19
±0.17

0.77
±0.26

[31] Motion
PHTM.

Veh. moving.
Mean combined lat.

and long. RMSE
0.77 s -

0.74
±0.23

0.43
±0.17

[31] Motion
GPDM.

Veh. moving.
Mean combined lat.

and long. RMSE
0.77 s -

0.66
±0.32

0.62
±0.25

[32] Position IMM-KF
Mean combined lat.

and long. RMSE
0.77 s -

1.54
±1.23

1.33
±0.87

[32] Motion PHTM
Mean combined lat.

and long. RMSE
0.77 s -

0.88
±0.43

1.07
±0.39

[20] Position
Piecewise

linear model
MED 0.6 s 0.19 - -

[20] Position
Piecewise

linear model
MED 1.2 s 0.20 - -

[20] Position
Piecewise

linear model
MED 2.4 s 0.28 - -

[20] Position
Sigmoid
model

MED 0.6 s 0.08 - -

[20] Position
Sigmoid
model

MED 1.2 s 0.19 - -

[20] Position
Sigmoid
model

MED 2.4 s 0.47 - -

[19] Position KF MED 1.2 s 0.374 0.296 0.296
[19] Position KF MED 2.5 s 1.294 0.881 0.820

[19] Position
Polynomial

approx.
MED 1.2 s 0.408 0.310 0.305

[19] Position
Polynomial

approx.
MED 2.5 s 1.300 0.871 0.814

Continue on next page



22 Chapter 2. Previous Works

Continued from previous page

Ref. Features Algorithm Error Time Starting Stopping Walking

[19] Position MLP MED 1.2 s 0.315 0.224 0.230
[19] Position MLP MED 2.5 s 1.131 0.647 0.755

[22] Position KF RMSE 1.0 s 0.458 0.415 0.373
[22] Position KF RMSE 2.5 s 1.617 1.429 1.226

[22] Position
Polynomial

approx.+MLP
RMSE 1.0 s 0.334 0.292 0.250

[22] Position
Polynomial

approx.+MLP
RMSE 2.5 s 1.227 0.937 0.984

[55]
Position
and head

IMM-EKF
Lateral
MED

1.0 s -
0.31

±0.20
0.25

±0.22

[55]
Position
and head

IMM-EKF
+LDCRF

Lateral
MED

1.0 s -
0.14

±0.18
0.23

±0.21

Table 2.1: Short-term path prediction errors (means and standard deviations) in meters
for different pedestrian activities.

Analysing the results obtained in [31], path predictions at 0.77 seconds ahead
in time for stopping intentions have a mean combined lateral and longitudinal
RMSE of 0.51± 0.07 and 0.66± 0.32 meters from stationary and moving vehicles
respectively. On the other hand, regarding walking intentions, the path predictions
at the same time horizon have a mean combined lateral and longitudinal RMSE
of 0.25 ± 0.12 meters for stationary vehicles and 0.43 ± 0.17 meters for moving
vehicles. All algorithms compared in this work show a similar performance in this
last case due to the fact that the dynamical pedestrian behaviours do not change
as abruptly as in stopping intentions. Moreover, inspecting the results obtained
in other works, low errors in path predictions are found as well. For example,
in [32], the approach based on the PHTM outperforms the IMM-KF. However,
in contrast to the work developed in [31], the results correspond to pedestrian
positions manually extracted and perturbed by artificial uniform noise from moving
and stationary vehicles. In [20], mean prediction errors of absolute walking distance
are computed in the course of a gait initiation. The work presents errors of 0.19
and 0.28 meters at 0.6 and 2.4 seconds respectively using a piecewise linear model.
The sigmoid model, also proposed in the work, achieves errors of 0.08 and 0.47
meters at the same instants of time respectively. Furthermore, path predictions up
to 2.5 seconds are estimated in [19, 22]. The results show that bigger deviations
for starting than stopping or walking intentions are produced. Specifically, in [19],
by means of an ANN, the MED for starting, stopping and walking intentions at
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a time horizon of 1.2 seconds are 0.315, 0.224 and 0.23 meters respectively. As
expected, longer errors are accomplished at 2.5 seconds. In [22], the RMSE for
starting, stopping and walking intentions at 1 second are 0.334, 0.292 and 0.25
meters respectively. Once again, the RMSE for starting, stopping and walking
intentions at 2.5 seconds are longer. Finally, in [55], the lateral prediction error is
computed in meters when predicting 1 second ahead around event occurrences for
crossing and stopping pedestrians. At the moment of the event, the lateral MED
are 0.23±0.21 and 0.14±0.18 meters for crossing and stopping events respectively.

Figure 2.4: Prediction of pedestrian path during a gait initiation with an interval of 0.2
seconds computed by the algorithm described in [20].

Nonetheless, not all the works reviewed in this chapter have the capability of
predicting pedestrian paths. In fact, most works only predict pedestrian inten-
tions such as starting, stopping, walking and bending in. The studies developed
in [31, 32] also test the different approaches in the task of recognising pedestrian
walking and stopping intentions, providing the capacity of human experts as base-
line, who reach an accuracy of 80% in predicting the correct intention about 570
milliseconds before the event. This precision is only reached about 200-230 mil-
liseconds in advance by the algorithms based on augmented motion features and
0-90 milliseconds by the algorithms based on positioning information. In [36], stop-
ping intentions are detected between 500 and 125 milliseconds before standing still
within an accuracy range of 80% and 100% respectively. Bending in intentions are
recognised from 320 to 570 milliseconds after the first visible lateral body motion
in the same accuracy range. Finally, starting intentions are detected from 125 to
250 milliseconds after the event with an accuracy range of 75% and 100%. On
the other side, the approach developed in [35] recognises starting intentions 120
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and 340 milliseconds after the gait initiation with an accuracy of 80% and 99%
respectively in a controlled scenario. Similar results are obtained in [34,37] despite
more realistic scenarios are tested. Finally, the method developed in [22], which is
focused on the early recognition of the gait initiation, is also evaluated and com-
pared with the approach developed in [34]. The first algorithm outperforms the
second one achieving a precision of 80% at the moment of the event.

2.3.2. Long-term Predictions

Unlike the approaches based on pedestrian features, the context-based systems
have the advantage of making long-term predictions, up to 3 or 4 seconds ahead in
time. Nonetheless, they are unable to deal with changes in the pedestrian dynamics
correctly and estimate future paths. For example, an event-based evaluation is
done in [5] for the two models developed to predict crossing intentions. Prediction
horizons of 0.77 seconds are accomplished by the inner-city model when pedestrians
are close to a crosswalk and 0.67 seconds otherwise. On the other hand, longer
prediction horizons are achieved by the specific crosswalk model. In this case,
the system can predict all crossing intentions on average 3.23 seconds in advance.
Analysing the performance of the combination of both models the method predicts
crossing intentions 2.59 seconds ahead in time.

In addition, the trajectory-based methods proposed in [7–9, 14] can also deal
with long-term predictions. However, they are applied in a suitable way when a
low number of motion patterns are only required to predict all possible pedestrian
paths. Besides, a pedestrian motion history should be extracted previous to the
prediction. Finally, changes in the pedestrian dynamics are not considered so that
only walking activities are normally contemplated. Hence, when all these factors
are assumed, low errors are normally obtained for long-term predictions.

2.4. Discussion

In this chapter, different studies focused on pedestrian behaviours at crosswalks
and intersections inspect important variables, i.e. the pedestrian-vehicle distance,
step frequency, environment, pedestrian gender and age or head-turning, that may
be effective for innovative pedestrian protection systems. Unfortunately, not all
these variables can be extracted using the sensors which are commonly set up in
intelligent vehicles. For this reason, only positioning information, motion features,
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orientation, head poses and context features are regularly considered by vision-
based systems destined to predict future pedestrian states. These variables can
be mainly extracted from two sources of information. The first one is directly
obtained from pedestrians and the second one emerges from the situation criticality
and the environment. Despite the combination of both sources of information may
accomplish more accurate estimations, this approach is not often addressed.

On the other hand, no system applies pedestrian skeleton estimation to pre-
dict paths and intentions. Given that humans are not rigid objects, the motion
analysis of each body part should be taken into account for these tasks. For ex-
ample, whereas the motion of the head may not be relevant in starting intentions,
a slightly motion of a knee could be indicative of that action. Likewise, before
stopping activities, pedestrian gap steps are usually shorter than in walking activ-
ities. Determining the distance between feet could distinguish the beginning of a
stopping intention.

Furthermore, infrastructural sensors in combination with roadside units could
deal with many dangerous situations. Although these systems offer good results,
the implementation is unfeasible since all vehicles should include the devices that
allow to establish the connection with the system. Besides, the roadside units
must be extensively located along roads and streets. For these reasons, with the
exception of hazard spots, this approach should not be considered to improve the
road safety. Hence, the improvements of pedestrian protection systems should be
developed from a vehicle perspective instead of from an infrastructural point of
view.

Concerning modelling approaches, switching between models with different dy-
namics are the best option to achieve accurate path and intention predictions.
However, extensive experiments have not been carried out so far in order to fix
the number of different pedestrian dynamics that could emerge in urban environ-
ments. For example, pedestrians with disabilities could have dynamics that do
not correspond to any trained model. On the other hand, approaches which take
into account past motion histories to accomplish accurate future paths may not be
effective in situations where pedestrians suddenly appear in the vehicle trajectory.

Finally, as mentioned in previous sections, none of the works reviewed in this
thesis offers a discussion about the best method of event-labelling. Establish-
ing a standard criterion would allow to compare approaches in similar conditions.
Whereas the last placement of the foot on the ground at the curbside is usually
labelled as non-crossing intention when pedestrians are stopping, the closest point
to the curbside and the first moment of visually recognisable body turning or leg
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movements are generally selected in walking, bending in and starting intentions.

Moreover, despite most works reviewed above are focused on predicting pedes-
trian intentions, providing the probability of crossing with high confidence is not
enough to avoid pedestrian-vehicle crashes. For example, future pedestrian posi-
tions could be decisive in the computation of the best collision avoidance trajectory
for an automatic steering system. Thus, a good estimation of pedestrian paths
should be also computed by innovative ADAS. Hence, although context informa-
tion does not allow to estimate accurate future paths as some approaches based on
pedestrian features do, the combination of both sources of information may provide
longer and more accurate predictions about intentions and trajectories.

Finally, regarding the path evaluation, the RMSE and MED between estimated
pedestrian positions and the groundtruth are often chosen as measure of accuracy.
However, it is not clear what methodology is the most appropriate in order to
standardise the path evaluation. Hence, working in these aspects is essential in
order to obtain reliable comparisons between approaches.

2.5. Objectives

After reviewing different works focused on pedestrian path and intention pre-
diction, this thesis tries to solve several problems previously discussed. Hence, the
main objectives of this thesis are:

1. To develop a single-frame method to predict pedestrian path, poses and in-
tentions up to 1 second ahead in time applying a novel probabilistic modelling
technique called B-GPDM and a HMM. The B-GPDM enables to estimate
future observations from pedestrian motion sequences previously modelled.
These sequences, in which different pedestrian dynamics were captured, are
composed of 3D positions and displacements of several joints placed along the
pedestrian body. On the other hand, an activity recognition algorithm based
on a HMM makes possible to select the most accurate model to estimate
future pedestrian states.

2. To measure the influence of modelling four different pedestrian dynamics,
i.e. standing, starting, stopping and walking, instead of two activities as pro-
posed in other works. These dynamics enable to appropriately define typical
dynamical changes which are carried out by pedestrians in real scenarios. As
mentioned before, switching between models with different dynamics are the
best option to achieve accurate path and intention predictions.
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3. To determine what information and body parts are more relevant to make pre-
dictions of future pedestrian states. Therefore, the method will be evaluated
taking into account two different sets of joints located along the pedestrian
body. One set will be composed of 41 joints and the other will be composed
of 11 joints which are located in shoulders and legs.

4. To test the feasibility and limits of the proposed method in an extensive way
under ideal conditions by using a high frequency and low noise dataset pub-
lished by Carnegie Mellon University (CMU) (see [10] for more information).
On the one side, the high frequency of the dataset will help the algorithms
to properly learn the dynamics of different activities and will increase the
probability of finding a similar test observation in the trained data without
missing intermediate observations. On the other side, low noise models will
improve the prediction when working with noisy test samples.

5. To test the proposed method with noisy observations. Thereby, a single-frame
pedestrian skeleton estimation algorithm based on point clouds extracted
from a stereo vision system and geometrical constraints will be described.
These algorithm enables to use other pedestrian features that are not consid-
ered in other works.

6. To establish a guideline of event-labelling, i.e. when a pedestrian starts or
finishes an event such as crossing, starting or stopping. Addressing this issue
is imperative in order to establish a standard criterion which enables to make
comparisons among approaches in similar conditions.





Chapter 3

The Gaussian Process
Dynamical Model

Modelling high-dimensional datasets composed of observations of multiple vari-
ables is a widespread practice in machine learning. Nonetheless, some of these
measured variables are less significant than others to understand the underlying
phenomena of interest. For that reason, techniques such as PCA, Factor Analysis
(FA), Probabilistic Principal Component Analysis (PPCA), GPLVM or GPDM are
applied to reduce the dimensionality of the original data in order to extract the
most relevant information and represent them as a set of new variables called latent
or hidden variables. The problem can be stated as follows: given the d-dimensional
vector of observed variables y = (y1, ..., yd)T , a lower dimensional representation
is obtained through the q-dimensional vector of latent variables x = (x1, ..., xq)T

with q ≤ d.

These dimensionality reduction techniques can be classified into two groups:
linear and non-linear. The former computes the latent variables as a linear combi-
nation of the original variables such as:

x = WT y (3.1)

where W specifies the linear transformation between the data space and the latent
space. PCA, FA, Independent Component Analysis (ICA) or Linear Discriminant
Analysis (LDA) are some representative techniques of this group. On the other
hand, non-linear methods, also referred to as manifolds learning algorithms, are
mainly based on the idea of a dataset lying along a low-dimensional manifold em-
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bedded in a high-dimensional space. Whereas the low-dimensional space reflects
the underlying parameters, the high-dimensional space corresponds to the feature
space so that the Euclidean distance in the new space is a meaningful measure
of distance between any pair of points. The GPLVM, GPDM, Isomap and Lo-
cally Linear Embedding (LLE) are representative methods of this category. More
information can be found in [6, 28].

This chapter presents the theoretical basis of the GPDM to reduce the dimen-
sionality of a dataset in a non-linear way taking into account the dynamics of the
data. For the sake of a better understanding of the process, the chapter starts ex-
plaining the most familiar linear method of dimensionality reduction, PCA. Then,
how this technique can be developed under a probabilistic framework is explained.
In the next section, the GPLVM is illustrated. Then, the theoretical development
of the GPDM and B-GPDM is outlined. Finally, the main conclusions of this
chapter are described in Section 3.5.

3.1. Principal Component Analysis

PCA is a well-known multivariate analysis technique to describe the structure of
datasets with a large number of correlated variables or features, and observations.
This method projects the dataset to a new orthonormal coordinate system, which
is determined by the eigenvectors and eigenvalues of the covariance matrix, max-
imising the retained variance and minimising the least square reconstruction error.
Thereby, it converts the original variables into a set of uncorrelated variables, called
principal components, through linear transformations. Many applications of data
compression, image processing, visualisation or pattern recognition apply PCA on
large datasets to reduce the dimensionality while retaining as much as possible of
the variation present in them. Multiple works about PCA can be found in the
literature such as [29,30], but, in this section, the method is briefly described.

Given a set of observations of multiple variables Y = (y1,y2, . . . ,yn)T , where
d is the number of variables and n the number of observations, PCA works deter-
mining the following eigen-decomposition of its covariance matrix S to obtain the
principal components:

S = U∆UT (3.2)

where U and ∆ represents, respectively, the orthonormal matrix whose columns
are the eigenvectors and the diagonal matrix whose elements are the eigenvalues
of S. Before applying PCA, it is important to analyse the nature of the dataset
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since, when the variables are measured in different units, those whose variances
are largest will tend to dominate the first principal components. For that reason,
it is appropriate to scale the variables by subtracting the mean and dividing each
one by its standard deviation in order to standardise them to have zero-mean and
unit-variance. It is worth remarking that the covariance matrix is a positive semi-
definite matrix so that the eigen-decomposition always exists, the eigenvalues are
real positive or nulls and the eigenvectors are pairwise orthonormal when their
eigenvalues are different. Therefore, it is possible to create the orthonormal matrix
with the eigenvectors which define the principal component axes.

In general, once the eigenvectors are found from S, the next step is to sort
them in descending order according to their associated eigenvalues in order to
form the orthonormal matrix W. Since the eigenvalues indicate the variances
of the principal components, the maximal variance is achieved by selecting the
eigenvectors with the highest eigenvalues. Thus, the first principal component is
the linear combination with the largest variance. The second principal component
is the linear combination with the second largest variance and orthonormal to the
first principal component, and so on. This property allows to select the q ≤ d

principal components to map a high-dimensional dataset to a lower dimensional
space with minimal loss of information.

The eigen-decomposition can also be done in a similar way applying the Singular
Value Decomposition (SVD) technique to the zero-mean set of observations Y′

computed from Y:
Y′ = UΣVT (3.3)

where U is the matrix of left singular vectors corresponding with the eigenvectors
of the matrix Y′Y′T , V is the matrix of right singular vectors corresponding with
the eigenvectors of the matrix Y′T Y′ and Σ is the diagonal matrix whose elements
are the singular values in descending order and corresponds to ((n − 1)∆) 1

2 . As
consequence, the matrix V conforms to the previous orthonormal matrix W.

The values of the latent variables in the low-dimensional space are called factor
scores. These can be interpreted geometrically as the projections of the observations
onto the principal component axes and can be computed by:

x = WT (y− ȳ) (3.4)

where x corresponds to the factor scores, y to the original d−dimensional obser-
vation and ȳ to the d−dimensional mean vector of Y. Because of the principal
components are uncorrelated, the covariance matrix of the factor scores emerges as
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a diagonal matrix whose elements are the eigenvalues of the covariance matrix S.

In addition, given W and x, an observation ŷ can be reconstructed from:

ŷ = Wx + ȳ (3.5)

where ŷ represents the reconstruction of the observation, ȳ the d−dimensional
mean vector of Y and x the factor scores. As expected, the least square recon-
struction error between ŷ and y is minimum.

3.2. Probabilistic Principal Component Analysis

The formulation of PCA presented in the previous section was based on a linear
projection of the data onto a subspace of lower dimensionality than the original data
space. However, PCA can also be expressed as the maximum likelihood solution
of a probabilistic latent variable model, as described in [57, 58]. This probabilistic
formulation for PCA, called PPCA, offers important advantages compared with the
conventional PCA such as dealing with missing values of data or applying Bayesian
inference methods.

PPCA is based on FA, which is one of the most common latent variable models
for dimensionality reduction, where the relationship between a set of centred ob-
servations Y = [y1, ...,yn]T and a set of latent variables X = [x1, ...,xn]T is linear
and corrupted by noise:

y = Wx + u (3.6)

where the d × q matrix W relates a d−dimensional vector of observed variables
y and an q−dimensional vector of latent variables or common factors x, while
u represents the error model or specific factors. The motivation is that, with
q < d, the latent variables will offer a more concise explanation of the dependencies
between the observed variables. Conventionally, given that there is no analytic
solution, the common factors are defined to be independent and Gaussian with
unit variance, p(x) = N(x|0, I). Hence, the W contains the correlations between
the observed variables and the common factors. Likewise, the error model is also
specified Gaussian, p(u) = N(u|0,Ψ), with a d × d diagonal matrix Ψ. In this
way, the covariance matrix of the set of observations Y can be divided into two
parts, S = WWT + Ψ, where WWT represents the variances of each observed
variable that are shared with the other variables and Ψ represents the variances
of the specific factors, that is, the variances of each observed variable that are not
shared with the other variables. The idea of the algorithm is to determine the
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values of W and Ψ. Since, as mentioned above, there is no analytic solution, their
values have to be obtained via an iterative procedure, mainly applying a maximum
likelihood estimation. Thus, the corresponding Gaussian marginal distribution for
the observed variables, i.e. the marginal likelihood, p(y|W,Ψ) = N(y|0,WWT +
Ψ) is derived to estimate the values of W and Ψ.

In essence, FA explains the observed covariance structure of the data by rep-
resenting the independent variance associated with each variable in the matrix Ψ
and capturing the covariance between variables in the matrix W. This is in con-
trast to PCA which treats the inter-variables dependencies and the independent
noise identically. Additionally, unlike PCA, in FA the subspace defined by the
maximum-likelihood estimates of W will generally not correspond to the principal
subspace of the observed data.

Regarding PPCA, it differs from FA in that the conditional distribution of
the observed variables y given the latent variables x is taken to have an isotropic
covariance rather than a diagonal matrix Ψ. The use of the isotropic Gaussian
noise model p(u) = N(u|0, σ2I) in conjunction with Equation 3.6 implies that the
likelihood for a data point can be written as:

p(y|x,W, σ2) = N(y|Wx, σ2I) (3.7)

and if it is assumed independence across data point then:

p(Y|X,W, σ2) =
n∏

i=1
N(yi|Wxi, σ

2I) (3.8)

The marginal likelihood for the observed data is obtained by integrating out
the latent variables such as:

p(Y|W, σ2) =
n∏

i=1

∫
p(yi|xi,W, σ2)p(xi)dx =

n∏
i=1

N(yi|0,C) (3.9)

where the covariance model is specified by C = WWT + σ2I and the Gaussian
prior over the latent variables is defined as:

p(X) =
n∏

i=1
p(xi) =

n∏
i=1

N(xi|0, I) (3.10)

The maximum-likelihood estimator for W and σ2 can be obtained by an itera-
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tive minimisation of the negative log-likelihood function defined as:

L = d

2 ln(2π) + 1
2 ln |C|+ 1

2 tr(C−1S) (3.11)

where S corresponds to the covariance matrix, n−1YT Y, of the set of centred
observations Y. However, in contrast to FA, the maximum-likelihood estimator
for W and σ2 can be obtained explicitly in PPCA. In fact, stationary points of
the marginal likelihood function occur where W is a matrix whose columns are
scaled eigenvectors of the covariance matrix S, and σ2 is the average variance in
the discarded dimensions. In particular, the maximum-likelihood estimators for
WML and σ2

ML can be expressed in closed form from:

WML = Uq(∆q − σ2I) 1
2 R (3.12)

σ2
ML = 1

d− q

d∑
j=q+1

λj (3.13)

where the q column vectors in the d×q matrix Uq are the principal eigenvectors of
S, with the associated eigenvalues in the q×q diagonal matrix ∆q, R is an arbitrary
q×q orthogonal rotation matrix and λj corresponds to the eigenvalue associated to
the eigenvector j. Thus, from Equation 3.12, the latent variable model defined by
Equation 3.7 effects a mapping from the latent space into the principal subspace
of the observed data.

To implement PPCA, the usual eigen-decomposition of the covariance matrix
S is firstly computed. Then, σ2

ML is estimated from Equation 3.13 and, finally,
the values of WML are found from Equation 3.12. For simplicity, the matrix R is
chosen as R = I.

The posterior distribution of the latent variables given the observed variables
can be calculated by:

p(x|y) = N(M−1WML
T y, σ2

MLM−1) (3.14)

where M = WML
T WML +σ2

MLI. Whereas M is of size q×q, C is of size d×d. In
this way, the optimal least-squares linear reconstruction of the data can be obtained
from:

ŷ = WML(WML
T WML)−1WML

T x (3.15)
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3.3. The Gaussian Process Latent Variable Model

As mentioned above, PPCA relates a vector of latent variables x to a vector of
observed variables y through a linear relationship given by W. The latent variables
are then marginalised and the values of W are found when the marginal likelihood
is maximised. However, the GPLVM, as explained in [40, 41], arises from a novel
interpretation of PPCA referred to as Dual Probabilistic Principal Component
Analysis (DPPCA) which, unlike PPCA, marginalises W and optimises the latent
variables.

In DPPCA, the marginal likelihood for the observed data takes the form:

p(Y|X, σ2) =
∫ d∏

i=1
p(y:,i|X,W, σ2)p(W)dW =

d∏
i=1

N(y:,i|0,K) (3.16)

where K = XXT +σ2I, y:,i represents the ith column of Y and the Gaussian prior
over the parameters W is defined as:

p(W) =
d∏

i=1
N(wi|0, I) (3.17)

Moreover, the maximum-likelihood estimator for X and σ2 is obtained from an
iterative minimisation of the negative log-likelihood function defined as:

L = n

2 ln(2π) + 1
2 ln |K|+ 1

2 tr(K−1S) (3.18)

where S is the covariance matrix, d−1YYT . However, as in PPCA, a closed-form
solution can be applied. In particular, the values of X and σ2 which maximise the
marginal likelihood are given by:

XML = U(∆− σ2I)− 1
2 R (3.19)

σ2
ML = n− q∑n

j=q+1 λj
(3.20)

where U is an N × q matrix whose columns are the first q eigenvectors of YYT , ∆
is a q × q diagonal matrix with the eigenvalues associated with the q eigenvectors
of d−1YYT , R is an arbitrary q×q orthogonal rotation matrix and λj corresponds
to the eigenvalue associated to the eigenvector j.

The marginal likelihood given in Equation 3.16 can be seen as a product of
d independent GPs with a linear covariance function K where each process is
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associated with a different dimension of Y (see [50] for more information about
GPs). Therefore, a natural extension of DPPCA is the non-linearisation of the
mapping from the latent space to the data space through the introduction of a
non-linear covariance function. In this way, the GPLVM emerges as a probabilistic
generalisation of PCA:

p(Y|X) =
d∏

i=1
N(y:,i|0,K) (3.21)

being K the kernel or covariance function that can be either linear or non-linear.

The main advantage of the GPLVM is that a smooth mapping from the latent
to the data space can be obtained. That is, points that are close in the latent
space are close in the data space, however, this does not imply that close points
in the data space are close in the latent space. For that reason, in [42], certain
constraints in the model are examined in order to figure out this problem. On
the other hand, unlike PPCA and DPPCA, there is no closed-form solution for
the GPLVM. Iterative procedures have to be applied to find the optimal values
of the latent variables X and the kernel parameters through the minimisation of
the negative log-likelihood function L. In order to optimise the function, these
iterative procedures normally rely on gradient descent algorithms, such as Scaled
Conjugate Gradient Algorithm (SCG), which is described in [44]. The gradient of
the negative log-likelihood function with respect to the kernel is computed as:

∂L

∂K = K−1YYT K−1 − dK−1 (3.22)

and applying the chain rule with ∂K
∂X allows to obtain the optimal values of X.

Furthermore, gradients with respect to the parameters of the kernel matrix can
be computed and used to optimise the latent variables and the parameters of the
kernel.

3.4. The Gaussian Process Dynamical Model

The GPDM, described in [62, 63], is directly inspired by the GPLVM. The
GPDM provides a framework for transforming a sequence of feature vectors, which
are related in time, into a low dimensional latent space. In order to apply this
transformation, the observation and dynamics mappings are computed separately
in a non-linear form as the GPLVM does, marginalising out both mappings and
optimising the latent variables and the hyperparameters of the kernels. The incor-
poration of dynamics not only allows to make predictions about future data but
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also helps to regularise the latent space for modelling temporal data. Therefore, if
the dynamic process defined by the latent trajectories in the latent space is smooth,
the models will tend to make good predictions. Additionally, to learn smoother
models, the B-GPDM is an alternative learning approach.

In the GPDM, the conditional probability of Y given X, θ and W for the
observation mapping is defined as:

p(Y|X,θ,W) = |W|n√
(2π)nd|KY|d

exp (−1
2 tr (KY

−1YW2YT )) (3.23)

where Y is the centred observed dataset, X represents the latent positions on the
model, KY is the kernel matrix with hyperparameters θ = [θ1, θ2, ..., θn], n is the
number of samples, d is the dimension of the dataset and W is the diagonal scaling
matrix which model the variance in each data dimension. The elements of the
kernel matrix for the observation mapping are normally computed using:

k(xi,xj) = θ1exp (−θ2

2 (xi − xj)T (xi − xj)) + θ3δi,j (3.24)

where δi,j is the Kronecher delta function. Nonetheless, another definition of the
kernel function can be specified depending on the application considered.

The dynamic mapping on the latent coordinates is defined as:

p(X|β) = p(x1)√
(2π)(n−1)q|KX|q

exp (−1
2 tr (KX

−1X2:nXT
2:n)) (3.25)

where X2:n = [x2, ...,xn]T , q is the model dimension, and KX is the kernel matrix
constructed from X1:n−1 = [x1, ...,xn−1]T using the kernel function:

k(xi,xj) = β1exp (−β2

2 (xi − xj)T (xi − xj)) + β3xT
i xj + β4δi,j (3.26)

where β = [β1, β2, ..., βn] are the kernel hyperparameters. Nonetheless, as before,
another definition of the kernel function can be specified depending on the appli-
cation considered.

The combination of the observation and dynamics mappings defines the model:

p(X,Y,θ,β,W) = p(Y|X,θ,W)p(X|β)p(β)p(θ)p(W) (3.27)
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where the priors of θ, β and W are defined as:

p(θ) ∝
∏

i

θ−1
i (3.28)

p(β) ∝
∏

i

β−1
i (3.29)

p(W) =
d∏

i=1

2
κ
√

2π
exp(− w2

i

2κ2 ) (3.30)

where κ is a constant.

The goal of learning the GPDM is to find the latent positions X and the ker-
nel hyperparameters θ and β with respect to the observations Y by iteratively
minimising the negative log-posterior function −ln p(X,θ,β,W|Y) that is given
by:

L = LY + LX +
∑

j

ln θj + 1
2κ2 tr (W2) +

∑
j

ln βj (3.31)

where
LY = d

2 ln |KY|+
1
2 tr (KY

−1YW2YT )− n ln |W| (3.32)

LX = q

2 ln |KX|+
1
2 tr (KX

−1X2:nXT
2:n) + 1

2xT
1 x1 (3.33)

In order to increase the smoothness of the learned trajectories in the latent
space, a modified version of the GPDM can be used by changing the weight of
LX by means of a λ element. A value for λ of d

q is recommended in [59]. This
modification is known as the B-GPDM.

Moreover, given a latent position, a feature vector and its variance can be
reconstructed by:

µY(x) = YT KY
−1kY(x) (3.34)

σ2
Y(x) = kY(x,x)− kY(x)T KY

−1kY(x) (3.35)

where Y is the centred dataset, KY
−1 the inverse matrix of the kernel for the

observation mapping provided by Equation 3.24, kY(x) is a column vector with
elements kY(x,xj) for all other latent position xj in the model and kY(x,x) is
a value of computing the kernel function provided by Equation 3.24 for a latent
position x.

The GPDM also provides the grounds for predicting the next position in the
latent space based on the current latent position. Thus, the next latent position
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and its variance can be obtained by:

µX(x) = XT
2:nKX

−1kX(x) (3.36)

σ2
X(x) = kX(x,x)− kX(x)T KX

−1kX(x) (3.37)

where X2:n = [x2, ...,xn]T , KX is the kernel matrix constructed from X1:n−1 =
[x1, ...,xn−1]T using the kernel function provided by Equation 3.26, kX(x) is a
column vector with elements kX(x,xj) for all other latent position xj in the model
and kX(x,x) is the kernel function provided by Equation 3.26 for a latent position
x. Thereby, a prediction of k latent positions ahead can be obtained computing
Equation 3.36 iteratively.

3.5. Conclusions

Throughout this chapter, the theoretical basis of the GPDM was presented. It
starts describing how the dimensionality of a dataset can be reduced in a linear
way applying PCA. Then, PPCA and DPPCA are introduced, taking into account
how PCA can be expressed as the maximum likelihood solution of a probabilistic
latent variable model. As mentioned in previous sections, PPCA marginalises the
latent positions and optimises the linear transformation matrix, however DPPCA
marginalises the matrix and optimises the latent positions. Additionally, this last
approach can be extended by the non-linearisation of the mapping from the latent
space to the data space through the introduction of a non-linear covariance func-
tion. In this way, the GPLVM emerges as a generalisation of PCA. However, it
is not a dynamical model. To solve this problem, the GPDM, which is inspired
by GPLVM, provides a framework for transforming a sequence of feature vectors,
which are related in time, into a low dimensional latent space computing the ob-
servation and dynamics mappings separately in a non-linear form as the GPLVM
does.

In this thesis, the B-GPDM is applied to predict pedestrian intentions and
paths. It allows to reduce the dimensionality of a set of pedestrian motions, i.e. a
set of feature vectors related in time, and infer future positions on the latent space
given the latent position corresponding to the current observation. Unfortunately,
learning a generic B-GPDM for all kind of pedestrian motions or combining them
is a difficult task. In the next chapter, the implementation of an approach based
on B-GPDMs to make pedestrian path, pose and intention predictions is explained
in detail.





Chapter 4

Development

The main goal of research methods centred on pedestrian path, poses and in-
tention predictions is to develop commercial systems set up in moving vehicles
equipped with stereo cameras and LIDAR. These systems are mainly orientated
to avoid vehicle-pedestrian collisions automatically. Nonetheless, not many works
have been published so far about this field once the pedestrians are detected. Gen-
erally, all these works should tackle two challenges simultaneously. One is related
with the information that could be more relevant to predict future pedestrian
states and the other is concerned with the learning of that information. Modelling
it properly may provide more accurate pedestrian estimations.

This thesis describes a method based on B-GPDMs which learns 3D time-related
information from pedestrian joints in order to predict paths, poses and intentions
up to 1 second in advance. As mentioned in Section 3.4, the GPDM and B-GPDM
can reduce the dimensionality of a set of feature vectors related in time and infer
future latent positions. Likewise, given a latent position from the latent space,
the corresponding feature vector can also be reconstructed. However, as claimed
in [63], learning a generic model for all kind of pedestrian activities or combining
some of them into a single model normally provides inaccurate estimations of future
observations. For that reason, the proposed method learns multiple models of each
type of pedestrian activity, i.e. walking, stopping, starting and standing, and
selects the most appropriate among them to estimate future pedestrian states at
each instant of time. A general description of the method is shown in Figure 4.1.
A training dataset of pedestrian motion sequences is split into 8 subsets based
on typical crossing orientations, that is, from left to right and from right to left,
and type of activity. Then, a B-GPDM is obtained for each sequence contained in
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the dataset. On the other hand, given a new pedestrian observation, the current
activity is determined. Thus, the selection of the most appropriate model among
the trained ones is centred solely on that activity. Finally, the selected model is
used to predict the future latent positions and reconstruct the future pedestrian
path and poses.

Training 
Dataset

B-GPDM
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Observation
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Model 
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Figure 4.1: General description of the pedestrian path, pose and intention prediction
method.

In this chapter, the dataset of pedestrian motion sequences and the informa-
tion which is extracted and learned to create the models are firstly described in
Section 4.1. Then, in Section 4.2, a pedestrian skeleton estimation algorithm is
detailed. This algorithm enables to obtain noisy pedestrian observations by means
of a stereo vision system. In Section 4.3, an exhaustive analysis about the learn-
ing methods is done considering different model dimensionalities, activities and
pedestrian joints. After that, in Section 4.4, the algorithm to recognise pedestrian
activities is explained. Then, how pedestrian pose, path and intention predictions
are computed is discussed in Section 4.5. Finally, the main conclusions of this
chapter are described in Section 4.6.
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4.1. Dataset Description

One of the goals of this thesis is to test the feasibility and limits of the proposed
method in an extensive way under ideal conditions by using a high frequency and
low noise dataset published by CMU (see [10] for more information). On the one
side, the high frequency of the dataset will help the algorithms to properly learn the
dynamics of different activities and will increase the probability of finding a similar
test observation in the trained data without missing intermediate observations.
On the other side, low noise models will improve the prediction when working
with noisy test samples. The CMU dataset contains sequences in which people are
carrying out multiple activities captured by a Vicon motion capture system, which
consists of 12 infrared MX-40 cameras, in a working volume of approximately 3 x
8 meters (see [60] for more information). In several of these sequences, people are
simulating typical pedestrian activities at the same time that 3D coordinates of 41
joints along their bodies are being gathered at 120 Hz. An example of a walking
pedestrian pose from different points of view is shown in Figure 4.2.
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Figure 4.2: Example of pedestrian pose extracted from the dataset published by CMU
in which 41 joints, represented by blue markers, are shown.

Nevertheless, not all gathered joints offer discriminative information about the
current and future pedestrian activities. In fact, joints located along the arms do
not contribute to distinguish walking, starting, stopping or standing activities. For
that reason, a subset of 11 joints has been selected in order to determine whether
the detection of only shoulder and leg motions are enough to infer future states.
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In [35], head positions, centres of gravity, feet and their respective velocities are
analysed during the gait initiation. The study deduces that, whereas the centres of
gravity and head positions are the least sensitive information, feet position changes
indicate more reliably the gait initiation. An example of a pedestrian pose of this
subset from different points of view is shown in Figure 4.3.
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Figure 4.3: Example of pedestrian pose extracted from the dataset published by CMU
in which 11 joints, represented by red markers, are shown.

Because of the large number of activities in the dataset published by CMU,
an extraction of valid sequences or subsequences were performed. The criterion
adopted for this process was based on the premises that a pedestrian does not
change the orientation along the sequence and only carries out one or several of
the activities considered in this thesis. In such a way, 490 sequences composed of
302470 pedestrian poses from 31 subjects were extracted. Hereafter, this set of
sequences will be named as University of Alcalá (UAH) dataset.

After this extraction, the UAH dataset was hierarchically divided into 8 sub-
sets. The first division was based on the orientation of typical crossing activities,
i.e. left-to-right and right-to-left. The second one was based on the type of ac-
tivity, i.e. walking, starting, stopping and standing. Those sequences with more
than one activity were cropped into subsequences with only one action. However,
as mentioned in Section 2.3, none of the works reviewed in this thesis offers a dis-
cussion about the best method of event-labelling, i.e. how to identify the instant
that a pedestrian starts or finishes an event such as crossing, starting or stopping.
Consequently, a guideline is proposed in Section 4.1.1.
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Moreover, it is worth mentioning that each pedestrian observation is composed
of 3D positions which belong to 41 or 11 joints, depending on the dataset chosen,
and their displacements between two consecutive instants of time. These displace-
ments are essential features for two main reasons. Firstly, they make possible the
reconstruction of future pedestrian paths considering single-frame evaluation. And,
secondly, they will help to recognise more accurately the pedestrian activity since
the only consideration of the body pose would not enable to determine whether a
pedestrian is moving or not.

4.1.1. Event-labelling Methodology

In this section, a guideline of event-labelling orientated to typical pedestrian
activities is proposed. This guideline allows to identify the instant that a pedes-
trian starts or finishes an event such as starting or stopping. Thereby, a starting
activity is defined as the action that begins when the pedestrian moves one knee
to initiate the gait and ends when the foot of that leg touches the ground again.
In addition, a stopping activity is defined as the action that begins when a foot
is raised for the last step and finishes when that foot treads the ground. Exam-
ples of transitions manually labelled from standing to starting, starting to walking,
walking to stopping and stopping to standing are shown in Figures 4.4, 4.5, 4.6
and 4.7 respectively. This criterion was adopted because these events happen in all
UAH sequences in which starting or stopping activities are included and because
they are easily labelled by human experts, thus enabling the creation of reliable
groundtruths. A breakdown of the UAH dataset based on the number of sequences
and pedestrian poses is shown in Table 4.1 .

Orientation Walking Starting Stopping Standing Total
Sequences Left-to-right 240 142 56 224 662
Sequences Right-to-left 191 121 27 156 495

Total sequences 431 263 83 380 1157

Pedestrian poses Left-to-right 107324 10732 2522 43151 163729
Pedestrian poses Right-to-left 95113 10940 1276 31412 138741

Total pedestrian poses 202437 21672 3798 74563 302470

Table 4.1: Breakdown of UAH dataset based on the number of sequences and pedestrian
poses for each type of activity.
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Figure 4.4: Example of transition manually labelled from standing to starting.
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Figure 4.5: Example of transition manually labelled from starting to walking.
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Figure 4.6: Example of transition manually labelled from walking to stopping.
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Figure 4.7: Example of transition manually labelled from stopping to standing.
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4.2. Pedestrian Skeleton Estimation

Additionally, to test the proposed method with noisy observations, a single-
frame pedestrian skeleton estimation algorithm based on point clouds extracted
from a stereo vision system and geometrical constraints is implemented. The stereo
pair is composed of two colour cameras with a resolution of 1920 x 1200 pixels and
a focal length of 12.5 millimetres which captures images at a frequency of 120 Hz.
A baseline of 40 centimetres was set in order to detect pedestrians in a range from
5 to 15 metres. The estimated skeletons are composed of 11 3D points placed along
the pedestrian body which represent the shoulders, hips, knees, ankles and toes.
It is worth mentioning that this set of points is the same set described in Section
4.1. The algorithm assumes that a pedestrian is standing and his highest point
corresponds to the head.

4.2.1. Pedestrian 3D Point Cloud Extraction

Although the motivation of this thesis is not to develop a complex pedestrian
detection algorithm, a good segmentation is required for the skeleton estimation.
For this reason, a simple pedestrian segmentation method is implemented by apply-
ing a Gaussian mixture model background subtraction, described in [67, 68], from
depth maps. This method avoids errors caused by shadows and pixels with similar
values in the original images which pertain to the background and pedestrians.
Nevertheless, some errors could arise if pedestrians are close enough to an object
from the background and their feet could not be segmented correctly due to the
fact that their values on the depth map are similar to the values corresponding to
the ground floor.

Based on these considerations, the vision-based pedestrian segmentation algo-
rithm works as follows. Firstly, the depth map is computed by means of the Semi
Global Matching (SGM) algorithm. Then, the pixels that represent the ground
floor on the tridimensional scene reconstruction are removed on the depth map.
The intent of this step is to solve the problem related to the pedestrian feet men-
tioned before. After that, the background model from the filtered depth map is
computed for the purpose of generating a foreground mask of moving objects. Fi-
nally, this mask is filtered by removing small clusters of pixels. An example of each
pedestrian segmentation stage in a real crosswalk scenario is presented in Figure
4.8.
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(a) Original colour image captured by a
stereo pair system.

(b) Depth map.

(c) Depth map where values which
correspond to the ground plane were

removed.

(d) Foreground mask of moving objects.

(e) Foreground mask of moving objects
with depth map values.

(f) Filtered foreground mask.

Figure 4.8: Pedestrian segmentation algorithm.

4.2.2. Skeleton Estimation

The skeleton estimation algorithm is based on the extraction of point clouds
corresponding to different pedestrian body parts and the location of 3D joints in
an hierarchical top-down search given anthropometric proportions and geometri-
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cal constraints. These proportions are referred to the pedestrian height, so, with
the intent of calculating this value, the coordinate system is translated from the
stereo pair to the ground floor as shown in Figure 4.9. Thereby, the maximum y-
coordinate point from the pedestrian point cloud provides the expected height, h.
Likewise, the coordinate system translation enables to remove data which belong
to the ground floor in the previous segmentation stage.

y

z
x

Head = 87.5%

Shoulders = 79%

Hips = 50%

Ankles = 7.5%

Knees = 25%

Width = 20%

Figure 4.9: Coordinate system and anthropometric proportions with respect to
pedestrian height used in the skeleton estimation algorithm.

4.2.2.1. Head

Firstly, the point cloud corresponding to the pedestrian head is extracted and
its centroid, chead, computed. It is important to point out that a Linear Least
Squares (LLS) fitting of t ∈ {2, 3, . . . , N} consecutive head positions, chead, enables
to compute the pedestrian heading line, lhead, whose projection onto the ground
plane, l′head, is represented by the red line in Figure 4.12. This fitting is only carried
out when pedestrians are moving since, in any other case, it could produce noisy
measurements.

4.2.2.2. Shoulders and Hips

In the next step, the shoulders positions are estimated. A diagram of this pro-
cess is shown in Figure 4.10. Firstly, the point cloud that belongs to the shoulders
is extracted and its centroid, cshoulders, determined. In the diagram, the point
cloud that is visible is represented in black markers and the occluded body part is
shown in white markers. Due to the occluded point cloud, cshoulders does not cor-
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respond to the middle point between both shoulders. Hence, these are modelled as
a circle whose centre, centreshoulders, is the intersection of the head-based heading
line, lhead, projected onto the plane y = cshouldersy

and the perpendicular line that
passes through cshoulders. The diameter of the circle corresponds to the anthro-
pometric proportion of the pedestrian width. A prior estimation of the shoulders
positions, s′left and s′right, assumes that they are located in this perpendicular line.
Nonetheless, the final locations, sleft and sright, are computed rotating the prior
positions and getting the line that joints both shoulders and has minimum sum
of point-line distance for all points in the cloud. As before, its perpendicular line,
lshoulders, could be used to compute the pedestrian heading, whose projection onto
the ground plane, l′shoulders, is represented by the green line in Figure 4.12.

X

zy

cshoulders

lhead

s'left

s'right

centreshoulders

point cloud

sleft
sright

lshoulders

Figure 4.10: Diagram of pedestrian shoulders estimation.

The point cloud that corresponds to the pedestrian hips is also extracted using
anthropometric proportions. Nonetheless, in this case, the point clouds associated
with the arms and hands are removed before computing these joints. To do this,
the circle that models the shoulders is projected onto the plane y = h

2 . Then,
the points from the pedestrian cloud which are not enclosed by this projection are
removed. After that, the algorithm estimates the pedestrian hips positions in the
same way as the shoulders locations. The pedestrian heading that is based on hips
positions is represented by the purple line in Figure 4.12.
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4.2.2.3. Lower Limbs

The lower limbs are estimated by locating the knees, ankles and toes. A diagram
of this process is shown in Figure 4.11. As before, the point clouds of each body part
are extracted using anthropometric proportions. Regarding the knees, a sphere,
whose centre corresponds to the centre of hips, centrehips, and radius to 25% of
the pedestrian height, is used to extract the point cloud associated with these body
parts. The cloud is composed of all points close to the sphere with a y-coordinate
lower than centrehipsy

. In order to locate the knees positions, two methods were
implemented. The first one detects clusters of points. This method works well
when the pedestrian legs are separated because two clusters are clearly detected.
However, in other cases, only one cluster is observed. Hence, the second method
divides a point cloud into two clusters using a line. This line is selected among
the heading lines previously computed and projected on the ground floor, l′head,
l′shoulders and l′hips. To determine the line, the heading line based on the lower
limbs, llegs, is previously obtained by a LLS fitting of the point cloud extracted
from the pedestrian legs. Its projection onto the ground plane, l′legs, is represented
by the blue line in Figure 4.12. Thus, the maximum angle between l′legs and each
line of the listed before determines the line that divides the original cluster. This
line is represented by a black line in Figure 4.12. In this case, the line corresponds to
l′shoulders. After that, the centroids of each cluster, kleft and kright, are computed.
Nonetheless, it is assumed an occlusion when the second method detects only one
cluster. To solve it, the line which joints the sensor and the non-occluded centroid
is computed and used to determine the position of the occluded knee. Finally, the
distances of each centroid to each hip indicate whether a knee corresponds to the
left or right side of the pedestrian body.

In a similar way, the pedestrian ankles are estimated. In this case, a sphere,
whose centre is also centrehips but its radius value is 42.5% of the pedestrian height,
is modelled to extract the point clouds. Once again, the same two methods are
applied to locate the ankles positions, aleft and aright.

Finally, regarding pedestrian toes, their positions, tleft and tright, are computed
using l′head and the ankles positions, aleft and aright. Firstly, a prior positions, t′left

and t′right, are estimated along the parallel lines to l′head that passes through the
ankles projections onto the ground plane, a′left and a′right. These prior positions are
located at a distance 10% of the pedestrian height from a′left and a′right respectively.
Then, an iterative search of the point clouds corresponding to the tiptoes is done.
This search consists in extending the search radius from t′left and t′right until the
point clouds are located. Finally, their centroids, tleft and tright, are computed.
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Figure 4.11: Diagram of pedestrian limbs estimation.

Figure 4.12: Example of a pedestrian skeleton estimation. Green markers correspond to
3D left joints, blue markers to 3D right joints and red markers to head, centre of

shoulders and centre of hips. The red line indicates the pedestrian heading computed
from consecutive head positions. The blue line represents the heading computed from
the legs. The green line corresponds to the heading based on the shoulders positions.
The purple line is associated with the heading based on the hips positions. Finally, the

black line determines the line that divides the pedestrian legs.



4.3 Learning Pedestrian Motion Sequences 53

4.3. Learning Pedestrian Motion Sequences

As mentioned above, this thesis describes a method based on the B-GPDM
to learn 3D time-related information extracted from pedestrian joints in order to
predict paths, poses and intentions. In contrast to PCA and the GPLVM, the
GPDM and B-GPDM reduce the dimensionality of a set of feature vectors related
in time and infer future latent positions. Likewise, given a latent position from
the latent space, the corresponding observation can be reconstructed. Nonetheless,
learning a generic model for all kind of pedestrian activities or combining some of
them into a single model could produce poor dynamical predictions as claimed in
[63]. For that reason, the proposed method learns multiple models for each type of
pedestrian activity, i.e. walking, stopping, starting and standing, and selects the
most appropriate among them to estimate future pedestrian states at each instant
of time.

Throughout this section, the learning stage is described and a comparison
among the methods, i.e. PCA, GPLVM, GPDM and B-GPDM, is illustrated.
This comparison is done by means of models obtained from 4 sequences, which
correspond to different activities, taking into account different model dimensions
and pedestrian joints.

4.3.1. Learning Stage

The learning stage starts loading all cropped sequences contained in the UAH
dataset. Because of the coordinate system of these sequences is referenced to the
sensor, the 3D translation parameters of each observation are removed so that the
origin of the reference system is relocated in the pedestrian. The deletion of these
parameters let the algorithms deal with pedestrians regardless of their positions
with respect to the sensors.

After that, as noted in Section 3.1, it is appropriate to scale the variables by
subtracting the mean and dividing each one by its standard deviation in order to
have zero-mean and unit-variance data. For this reason, this preprocessed step is
applied to each sequence separately before reducing their dimensionality.

As mentioned before, the learning models based on GPs require iterative pro-
cedures. Hence, the latent positions X, the hyperparameters θ and β, and the
constant κ (see Equations 3.28, 3.29 and 3.30) are initialised. On the one hand,
the latent coordinates are initialised by PCA and, on the other hand, the kernel
parameters and κ are initialised by using the values proposed in [63]. Finally, the
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GPLVMs, GPDMs and B-GPDMs are learned for each sequence. An example of a
B-GPDM corresponding to a pedestrian that is walking 6 steps is shown in Figure
4.13. The green markers indicate the projection of the pedestrian observations onto
the subspace. Additionally, the model variance is represented from cold to warm
colours. Whereas a high variance (warm colours) indicates that illogical pedes-
trian observations can be reconstructed, a low variance (cold colours) indicates
that pedestrian observations similar to the learned sequence may be obtained from
a latent position.
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Figure 4.13: Example of a B-GPDM corresponding to a pedestrian that is walking 6
steps. The projection of the pedestrian motion sequence onto the subspace is represented

by green markers. The model variance is indicated from cold to warm colours.

4.3.2. Comparison among Techniques

Throughout this section, a comparison among PCA, GPLVM, GPDM and B-
GPDM is illustrated by means of models obtained from 4 sequences, which corre-
spond to the activities considered in this thesis, taking into account different model
dimensionalities and pedestrian joints.
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4.3.2.1. Principal Component Analysis

Regarding PCA, examples of 2D and 3D models are shown in Figure 4.14.
These models represent observations of 3D positions and displacements of 41 joints
located along the pedestrian bodies extracted from a standing, starting, stopping
and walking activity respectively. Because of the high frequency and low noise
sequences included in the UAH dataset, the projection of pedestrian observations
related in time onto a PCA subspace emerges as well-defined trajectories. For ex-
ample, walking activities generate cyclic trajectories where each cycle corresponds
to two pedestrian steps. Therefore, it seems that close pedestrian observations are
projected onto close positions in the subspace. An example of a cyclic model with
reconstructed pedestrian observations were shown in Figure 4.13. Furthermore,
starting and stopping activities generate trajectories of a half cycle since only one
step was considered in the event-labelling. Finally, the models that correspond to
standing sequences produce non-cyclic trajectories.
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(a) 2D model of a standing activity
computed by PCA.
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(b) 3D model of a standing activity
computed by PCA.
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(c) 2D model of a starting activity
computed by PCA.
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(d) 3D model of a starting activity
computed by PCA.
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(e) 2D model of a stopping activity
computed by PCA.
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(f) 3D model of a stopping activity
computed by PCA.
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(g) 2D model of a walking activity
computed by PCA.
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(h) 3D model of a walking activity
computed by PCA.

Figure 4.14: Examples of 2D and 3D models accomplished by PCA for a standing,
starting, stopping and walking activity respectively using 3D coordinates and

displacements of 41 joints located along the pedestrian body.

Moreover, examples of 2D and 3D models accomplished by PCA, where obser-
vations extracted from 11 pedestrian joints are only considered, are shown in Figure
4.15. Again, the projection of pedestrian observations onto a subspace emerges as
well-defined trajectories. Concretely, walking activities produce cyclic trajectories
where each cycle represents two pedestrian steps. Starting and stopping activities
generate trajectories of a half cycle which corresponds to only one step and standing
activities produce non-cyclic trajectories. As previously mentioned, it seems that
close pedestrian observations are projected onto close positions in the subspace.
Besides, the sequences whose observations were captured from a lower number of
pedestrian joints produce noisier models than the sequences whose observations
were extracted from 41 joints.
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(a) 2D model of a standing activity
computed by PCA.
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(b) 3D model of a standing activity
computed by PCA.
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(c) 2D model of a starting activity
computed by PCA.
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(d) 3D model of a starting activity
computed by PCA.
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(e) 2D model of a stopping activity
computed by PCA.
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(f) 3D model of a stopping activity
computed by PCA.
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(g) 2D model of a walking activity
computed by PCA.
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(h) 3D model of a walking activity
computed by PCA.

Figure 4.15: Examples of 2D and 3D models accomplished by PCA for a standing,
starting, stopping and walking activity using 3D coordinates and displacements of 11

joints located along the pedestrian body.

4.3.2.2. Gaussian Process Latent Variable Models

A similar analysis can be done in reference to the GPLVM. In particular, ex-
amples of 2D and 3D GPLVMs are shown in Figures 4.16 and 4.17. These figures
also represent models of a standing, starting, stopping and walking activity whose
observations were extracted from 3D coordinates and displacements of 41 and 11
joints respectively. As shown in the figures, very noisy trajectories are produced
in the subspace. This may be caused by the fact that this modelling technique is
mainly focused on pattern recognition instead of modelling time-related data.
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(a) 2D GPLVM of a standing
activity.
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(b) 3D GPLVM of a standing
activity.
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(c) 2D GPLVM of a starting activity.
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(d) 3D GPLVM of a starting activity.
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(e) 2D GPLVM of a stopping activity.
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(f) 3D GPLVM of a stopping activity.
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(g) 2D GPLVM of a walking activity.
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(h) 3D GPLVM of a walking activity.

Figure 4.16: Examples of 2D and 3D GPLVMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 41 joints located along the

pedestrian body.

Furthermore, since the GPLVM is an iterative procedure, the trajectories cre-
ated in the subspace are caused by the latent position initialisation carried out by
PCA and the termination conditions chosen. These conditions are referred to the
maximum number of iterations and the termination tolerance for the minimisation
of the negative log-likelihood function defined in Equation 3.18.
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(a) 2D GPLVM of a standing activity.
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(b) 3D GPLVM of a standing activity.
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(c) 2D GPLVM of a starting activity.
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(d) 3D GPLVM of a starting activity.
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(e) 2D GPLVM of a stopping activity.
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(f) 3D GPLVM of a stopping activity.
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(g) 2D GPLVM of a walking
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Figure 4.17: Examples of 2D and 3D GPLVMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 11 joints located along the

pedestrian body.

4.3.2.3. Gaussian Process Dynamical Models

Certainly, the most interesting analysis is referred to the GPDM and B-GPDM
since they are able to deal with temporal trends. As before, examples of 2D and
3D GPDMs that represent a standing, starting, stopping and walking activity
are shown in Figures 4.18 and 4.19. Once again, the observations were extracted
from 3D positions and displacements of 41 and 11 pedestrians joints respectively.
The green markers indicates the projection of the pedestrian observations onto
the subspace and the model variance is represented from cold to warm colours. A
high variance (warm colours) indicates that illogical pedestrian observations can be
reconstructed and a low variance (cold colours) indicates that observations similar
to an observation from the learned sequence may be reconstructed.

(a) 2D GPDM of a standing activity. (b) 3D GPDM of a standing activity.
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(c) 2D GPDM of a starting activity. (d) 3D GPDM of a starting activity.

(e) 2D GPDM of a stopping activity. (f) 3D GPDM of a stopping activity.

(g) 2D GPDM of a walking activity. (h) 3D GPDM of a walking activity.

Figure 4.18: Examples of 2D and 3D GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 41 joints located along the

pedestrian body.

Given that the GPDM takes into account the dynamical relationships between
observations, smoother trajectories than the GPLVM are created in the subspaces.
Nonetheless, several discontinuities appear in the trajectories which could produce
errors in latent position predictions. Likewise, as in previous cases, walking ac-
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tivities generate cyclic trajectories where each cycle corresponds to two pedestrian
steps. Starting and stopping activities produce half-cycle trajectories which rep-
resent only one pedestrian step. Finally, in contrast to PCA and GPLVM, stand-
ing activities generate smooth non-cyclic trajectories. Additionally, the sequences
whose observations were captured from a lower number of pedestrian joints do not
produce noisier models than the sequences whose observations were extracted from
41 pedestrian joints as it occurs in PCA.

(a) 2D GPDM of a standing activity. (b) 3D GPDM of a standing activity.

(c) 2D GPDM of a starting activity. (d) 3D GPDM of a starting activity.

(e) 2D GPDM of a stopping activity. (f) 3D GPDM of a stopping activity.
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(g) 2D GPDM of a walking activity. (h) 3D GPDM of a walking activity.

Figure 4.19: Examples of 2D and 3D GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 11 joints located along the

pedestrian body.

4.3.2.4. Balanced Gaussian Process Dynamical Models

Regarding the B-GPDM, examples of 2D and 3D models that represent a stand-
ing, starting, stopping and walking activity are shown in Figure 4.20 and 4.21. Once
again, the observations were extracted from 3D coordinates and displacements of
41 and 11 pedestrians joints respectively. As mentioned above, the green markers
indicate the projection of the pedestrian observations onto the subspace and the
model variance is represented from cold to warm colours. A high variance (warm
colours) indicates that illogical pedestrian observations can be reconstructed and
a low variance (cold colours) indicates that observations similar to an observation
from the learned sequence may be reconstructed. Comparing the models obtained
by the GPDM and B-GPDM, the latter removes discontinuities in the trajectories
and increases the variance when the latent positions get further from the learned
sequence.

(a) 2D B-GPDM of a standing activity. (b) 3D B-GPDM of a standing activity.



4.3 Learning Pedestrian Motion Sequences 65

(c) 2D B-GPDM of a starting activity. (d) 3D B-GPDM of a starting activity.

(e) 2D B-GPDM of a stopping activity. (f) 3D B-GPDM of a stopping activity.

(g) 2D B-GPDM of a walking activity. (h) 3D B-GPDM of a walking activity.

Figure 4.20: Examples of 2D and 3D B-GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 41 joints located along the

pedestrian body.

In the same way as the GPDM, smoother trajectories than the GPLVM are
created in the subspace. Thus, walking activities produce cyclic trajectories where
each cycle corresponds to two pedestrian steps. Starting and stopping activities
generate half-cycle trajectories which represent only one pedestrian step. Finally,
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standing activities produce smooth non-cyclic trajectories. Again, the sequences
whose observations were captured from a lower number of pedestrian joints do
not produce noisier models than the sequences whose observations were extracted
from 41 pedestrian joints as it occurs with PCA. Due to all these considerations,
it seems that the B-GPDM is the most appropriate modelling technique among
the methods analysed in this section in order to predict future observations of
dynamical processes.

(a) 2D B-GPDM of a standing activity. (b) 3D B-GPDM of a standing activity.

(c) 2D B-GPDM of a starting activity. (d) 3D B-GPDM of a starting activity.

(e) 2D B-GPDM of a stopping activity. (f) 3D B-GPDM of a stopping activity.
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(g) 2D B-GPDM of a walking activity. (h) 3D B-GPDM of a walking activity.

Figure 4.21: Examples of 2D and 3D B-GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 11 joints located along the

pedestrian body.

4.4. Activity Recognition

Since several models with different dynamics were previously trained, an activity
recognition from the current pedestrian observation allows to select afterwards the
most accurate model to estimate future pedestrian states. The maximum similarity
between the current observation and each observation of the training dataset may
determine the activity. Nevertheless, if this maximum similarity is applied directly,
that is, without modelling the evolution of the pedestrian activity, higher errors
are achieved in selecting the most appropriate model due to the likeness between
observations of different dynamics. For example, an observation of a pedestrian that
is walking may be similar to an observation belonging to the beginning of a stopping
sequence or to the end of a starting sequence. Thus, if the previous activity were
recognised as walking, then the next dynamics would be determined as walking or
stopping and not as starting. Thereby, the process of how a pedestrian changes its
dynamics over time can be described by a Markov Process, which is represented in
Figure 4.22. At any time, the pedestrian can do one of a set of 4 distinct actions
s = {Standing, Starting, Stopping,Walking}. However, these activities or states
are not observable since only 3D information from joints belonging to the pedestrian
is available. Therefore, the states can be only inferred through the observations
x. For this reason, the implementation of a first-order HMM allows to model the
transitions between activities and to recognise the correct one taking into account
the previous dynamics. A tutorial on HMM is available in [49].

The Viterbi algorithm is a dynamic programming procedure for finding the most
likely state sequence given an observation sequence. That way, choosing sequences
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Figure 4.22: HMM graphical description.

of a single element, the probability of an observation x of being in the j-th state
of s at an instant of time t is formulated as:

P (st
j |xt) =

P (xt|st
j)P (st

j)
4∑

i=1
P (xt|st

i)P (st
i)

(4.1)

where P (st
j) represents the prior probability and P (xt|st

j) the emission probability.

The prior probability is computed as:

P (st
j) ∝ 4max

i=1
[P (st

j |st−1
i )P (st−1

i |xt−1)], t > 1 (4.2)

where P (st
j |s

t−1
i ) corresponds to the probability of changing from the i-th to the

j-th state defined by means of a TPM which is graphically represented in Figure
4.23. The values of transitions between states were experimentally fixed maximising
the success rate (see Section 5.1). P (st−1

i |xt−1) corresponds to the probability of
being in the i-th state of s at the previous instant. The initial probability P (st) is
uniformly distributed since the pedestrian activity is unknown in t = 1.
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Figure 4.23: Probabilities of transitions between pedestrian activities.
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The emission probability P (xt|st
j) is defined as:

P (xt|st
j) ∝ Nmax

i=1

(
1

1 + αi
+ 1

1 + βi

)
(4.3)

where αi ∈ [0,∞] and βi ∈ [0,∞] correspond to the Sum of Squared Errors (SSE)
for the pedestrian pose and the displacements of the joints respectively. The SSE
are computed between the current pedestrian observation and the N observations
of the training data subset belonging to the j-th state of s. Before computing
αi, the pose of the current pedestrian observation and the poses of the training
observations are scaled and referenced to the same joint. The scale factor applied
to each observation is obtained by the sum of ankle-knee and knee-hip distances.
The displacements are not scaled with the intent of finding pedestrians with similar
joint velocities.

4.5. Path, Pose and Intention Prediction

Once the pedestrian activity in t has been estimated, the selection of the most
appropriate model allows to make accurate predictions about the path, poses and
intentions. For this task, a search of the most similar training observation and its
model is computed. This observation corresponds to the i-th element in Equation
4.3. Hence, the most appropriate model is directly selected.

Additionally, the latent position that represents the most similar observation
is used as the starting point for a more accurate search in the selected model
applying a gradient descent algorithm. Due to the fact that close points in the
latent space are also close in the data space, it is expected that a more similar non-
trained observation can be found around this starting point. The function that is
minimised in the gradient descent algorithm is defined by:

ε(x) =
d∑

j=1
((y− µ)2) + 1

2

q∑
j=1

(x2) (4.4)

where y is the current pedestrian observation and µ represents the pedestrian
observation reconstructed from the latent position x (see Equation 3.34). Both
observations are previously scaled and referenced to the same joint. Finally, d
corresponds to the dimension of the original observation and q to the dimension of
the model.

Once the final latent position has been estimated, predictions of N observations
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ahead are made using Equations 3.36 and 3.34 iteratively. Thereby, given the cur-
rent pedestrian location with respect to the sensor, the future pedestrian path can
be computed adding the consecutive N predicted displacements. It is noteworthy
that the reference point to reconstruct the path is the right hip since it corresponds
to a point close to the centre of gravity. Additionally, given the future pedestrian
observations, the future intentions can be estimated through the application of the
activity recognition algorithm explained in Section 4.4 to the N future pedestrian
observations.

An example of the latent position prediction for an observation of a walking
activity is shown in Figure 4.24. The most appropriate model is shown and the
latent position of the most similar observation is represented by a yellow marker.
This latent position corresponds to the initial point for the gradient descent algo-
rithm. The final point is represented by the black marker. Finally, the future latent
positions are shown in red markers. As expected, the predicted latent positions are
close to the trained latent positions.

Figure 4.24: Example of latent positions prediction. The green markers indicate the
projection of a walking sequence onto the subspace. The model variance is represented

from cold to warm colours. The latent position of the most similar observation is
represented by a yellow marker. The final point obtained by the gradient descent

algorithm is represented by the black marker. The future latent positions are shown in
red markers,



4.6 Conclusions 71

4.6. Conclusions

Throughout this chapter, a method based on B-GPDMs, which learns 3D time-
related information from pedestrian joints, has been described with the intent of
predicting paths, poses and intentions up to 1 second in advance. Given that
learning a generic model for all kind of pedestrian activities or combining some
of them into a single model normally provides inaccurate estimations of future
observations, the method learns multiple models of each type of pedestrian activity
and selects the most appropriate among them to estimate future pedestrian states
at each instant of time. This strategy allows to design scalable systems in which new
sequences with different dynamics can be added to the dataset without negatively
impacting the performance.

Additionally, a high frequency and low noise dataset published by CMU is used
in order to test the feasibility and limits of the proposed method. On the one
hand, the high frequency of the dataset helps the algorithms to properly learn the
dynamics of different activities and increases the probability of finding a similar
test observation in the trained data without missing intermediate observations. On
the other hand, low noise models improve the prediction when working with noisy
test samples.

The CMU dataset is composed of sequences where people are simulating typical
pedestrian activities at the same time that 3D coordinates of 41 joints along their
bodies are being gathered at 120 Hz. Nonetheless, due to the fact that not all joints
offer discriminative information about the current and future pedestrian activities,
a subset of 11 joints is also considered. Comparing the models obtained from both
set of joints, it seems that these models are not influenced by the reduction in the
number of joints. In all cases, walking activities produce cyclic trajectories where
each cycle corresponds to two pedestrian steps. Starting and stopping activities
generate half-cycle trajectories which represent only one pedestrian step. And,
finally, standing activities produce smooth non-cyclic trajectories. Due to the B-
GPDM produces smoother trajectories than other models, it can be considered as
the most appropriate modelling technique among the methods analysed to predict
future observations of dynamical processes.

Moreover, a guideline of event-labelling is proposed in this document. A starting
activity is defined as the action that begins when the pedestrian moves one knee
to initiate the gait and ends when the foot of that leg touches the ground again.
In addition, a stopping activity is defined as the action that begins when a foot
is raised for the last step and finishes when that foot treads the ground. This
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criterion was adopted because these events are easily labelled by human experts,
thus enabling the creation of reliable groundtruths.

Additionally, to test the proposed method with noisy observations, a single-
frame pedestrian skeleton estimation algorithm is proposed. This algorithm is
based on the extraction of point clouds corresponding to different pedestrian body
parts and the location of 3D joints in an hierarchical top-down search given an-
thropometric proportions and geometrical constraints.

Finally, since several models with different dynamics were trained, an activity
recognition from the current pedestrian observation allows to select the most accu-
rate model to estimate future pedestrian states. The maximum similarity between
the current observation and each observation of the training dataset will deter-
mine the activity. Nevertheless, if this maximum similarity is applied directly,
that is, without modelling the evolution of the pedestrian activity, higher errors
are achieved in selecting the most appropriate model due to the likeness between
observations of different dynamics. Therefore, a HMM is developed to model the
pedestrian dynamics over time.



Chapter 5

Results

Throughout this chapter, the main results of the algorithms described in Chap-
ter 4 are discussed. All algorithms were tested using the UAH dataset, which
contains 490 sequences composed of 302470 pedestrian poses from 31 subjects,
adopting a one vs. all strategy. This means that all the models generated by one
test subject were removed from the training data before performing tests on this
subject. This strategy was assumed because the number of subjects is not enough
to divide the UAH dataset into two subsets, one for training and other for testing.
Because of the pedestrian displacements are computed from the two initial poses,
301.980 observations are finally analysed. Additionally, the activity recognition
and prediction algorithms were also tested using a sequence of noisy pedestrian
data extracted by the skeleton estimation algorithm. Thereby, a more exhaustive
evaluation is carried out in order to test the algorithms in a more real environment.

This chapter is structured into three main sections. Firstly, the results obtained
by the activity recognition algorithm are examined in detail in Section 5.1. After
that, the path prediction accuracies at several TTEs are explored in Section 5.2.
Furthermore, in Section 5.3, the results of pedestrian pose prediction are examined.
The processing times of each algorithm are analysed in Section 5.4. Finally, the
main conclusions of this chapter are described in Section 5.5.

5.1. Activity Recognition Results

As described in Section 4.1.1, in order to test the performance of the proposed
activity recognition algorithm, all pedestrian poses contained in the UAH dataset
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were manually labelled by a human expert. The adopted event-labelling criteria
defines a starting activity as the action that begins when the pedestrian moves one
knee to initiate the gait and ends when the foot of that leg touches the ground
again. Besides, a stopping activity is defined as the action that begins when a foot
is raised for the last step and finishes when that foot treads the ground. Examples
of transitions manually labelled are shown in Figures 4.4, 4.5, 4.6 and 4.7.

On the other hand, as described in Section 4.4, the process of how a pedestrian
changes his dynamics over time is modelled by a HMM. Therefore, at any time,
a pedestrian is able to carry out one of a set of 4 distinct actions, i.e. standing,
starting, stopping and walking, and the probability of changing from one to another
state is defined by means of the TPM illustrated in Figure 4.23. The transition
values were experimentally fixed by maximising the accuracy and minimising the
number of critical missclassifications, i.e. missclassifications between standing and
walking, and between starting and stopping. The activity recognition results are
summarised on two confusion matrices in Tables 5.1a and 5.1b. Whereas the first
matrix represents the results extracted from 41 pedestrian joints, the second matrix
shows the results when solely 11 joints are used. It is worth remarking that the
pedestrian observations are composed of body poses and displacements.

Predicted
Standing Starting Stopping Walking

Actual

Standing 65979 2306 286 5692
Starting 3171 10522 0 7959
Stopping 181 0 1384 2232
Walking 4163 682 1434 195989

(a) Classification results computed from 41 pedestrian joints.

Predicted
Standing Starting Stopping Walking

Actual

Standing 72011 1396 174 682
Starting 1451 13313 13 6875
Stopping 126 0 1951 1720
Walking 262 494 1508 200004

(b) Classification results computed from 11 pedestrian joints.

Table 5.1: Classification results computed when pedestrian observations composed of
body poses and displacements are used.

As claimed in Section 4.1, the pedestrian displacements help to increase the
activity recognition accuracy since the only consideration of the body pose would
not enable to determine whether a pedestrian is moving or not. This statement is
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confirmed when these last outcomes are compared with the activity recognition re-
sults computed when observations composed solely of body poses or displacements
are considered. The confusion matrices for the first case are summarised in Table
5.2 and the results based on the displacements are shown in Table 5.3.

Predicted
Standing Starting Stopping Walking

Actual

Standing 62614 3118 309 8222
Starting 3304 6784 0 11564
Stopping 270 0 1248 2279
Walking 4221 331 1430 196286

(a) Classification results computed from 41 pedestrian joints.

Predicted
Standing Starting Stopping Walking

Actual

Standing 65245 2017 860 6141
Starting 2610 8475 0 10567
Stopping 109 2 1409 2277
Walking 327 182 1248 200511

(b) Classification results computed from 11 pedestrian joints.

Table 5.2: Classification results computed when pedestrian observations composed of
body poses are used.

Predicted
Standing Starting Stopping Walking

Actual

Standing 72046 1351 69 797
Starting 1600 11393 789 7870
Stopping 95 109 1562 2031
Walking 326 908 1944 199090

(a) Classification results extracted from 41 pedestrian joints.

Predicted
Standing Starting Stopping Walking

Actual

Standing 72173 1255 29 806
Starting 150 11887 659 7956
Stopping 57 48 1553 2139
Walking 237 968 2107 198956

(b) Classification results extracted from 11 pedestrian joints.

Table 5.3: Classification results computed when pedestrian observations composed of
displacements are used.
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5.1.1. Discussion

An exhaustive data assessment of the previous confusion matrices is represented
in Table 5.4 where the activity recognition results are compared taking into account
the pedestrian features, number of joints and activity.

Features Pose + Disp Pose Disp

Joints 41 11 41 11 41 11

Overall Accuracy 90.69% 95.13% 88.39% 91.28% 94.76% 94.23%

Precision

Standing 89.77% 97.51% 88.93% 95.54% 97.27% 98.04%
Starting 77.88% 87.57% 66.30% 79.38% 82.79% 83.96%
Stopping 44.59% 53.51% 41.78% 40.06% 35.79% 35.72%
Walking 92.50% 95.57% 89.89% 91.35% 94.90% 94.81%

Recall

Standing 88.85% 96.97% 84.31% 87.86% 97.01% 97.19%
Starting 48.60% 61.49% 31.33% 39.14% 52.62% 54.90%
Stopping 36.45% 51.38% 32.87% 37.11% 41.14% 40.90%
Walking 96.90% 98.88% 97.04% 99.13% 98.43% 98.36%

F1-Score

Standing 89.31% 97.24% 86.56% 91.54% 97.14% 97.61%
Starting 59.85% 72.25% 42.55% 52.43% 64.34% 66.39%
Stopping 40.11% 52.42% 36.79% 38.53% 38.28% 38.13%
Walking 94.65% 97.20% 93.33% 95.08% 96.63% 96.55%

Table 5.4: Evaluation of activity recognition results based on pedestrian features,
number of joints and activity.

5.1.1.1. Joints

These results verify that shoulder and leg motions are more valuable sources
of information than other body parts to recognise the current pedestrian action.
More specifically, the maximum accuracy rate, 95.13%, is achieved when obser-
vations composed of poses and displacements from only 11 joints are taken into
consideration. However, the accuracy rate falls to 90.69% whether 41 joints are
used. Likewise, by considering only body poses, a similar conclusion is drawn since
the maximum accuracy rate is 91.28% and 88.39% for 11 and 41 joints respectively.
Finally, when the observations are composed solely of pedestrian displacements, the
activity recognition results are not significantly influenced by the number of joints.
It is noteworthy that these results are in accordance with those of [35] where it is
deduced that gait initiations are recognised more reliably by means of feet position
changes.
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5.1.1.2. Activities

Regarding the distinction among activities, the pedestrian displacements
achieve a better differentiation of standing actions from the rest of activities. How-
ever, with respect to starting and stopping actions, a larger number of critical
missclassifications are produced. This means that the displacements do not allow
to reliably distinguish whether a pedestrian is carrying out the first or last step.
Therefore, the body poses along with the displacements offer a more discriminative
information in these cases. It is worth mentioning that the poses are not usually
applied to predict paths and intentions, as reviewed in Section 2.1.1. Given that
humans are not rigid objects, the motion analysis of each body part should be
taken into account for these tasks. The non-use of body poses and, thus the use of
only motion features, may be due to the fact that only two dynamical behaviours
are usually considered in other works, i.e. standing and walking. However, when
a large number of dynamical activities are considered, such as standing, starting,
stopping and walking, the body pose is an important feature. Beyond that, consid-
ering the body pose as the only feature, standing actions are repeatedly recognised
as walking activities since, when the pedestrian legs are closed, the poses from both
states are very similar in those instants of time. Therefore, the displacements are
valuable information in those cases. On the other hand, including the acceleration
as an additional feature may improve the recognition of starting and stopping ac-
tivities. However, in walking activities, when the pedestrian legs are completely
opened, the acceleration is minimum and it is maximum when the legs are closed.
Hence, the body pose is again an essential information to distinguish standing and
walking actions. As a conclusion, at least two types of features are needed in the
activity recognition when more than two states are considered, either body poses
and displacements or body poses and accelerations. The advantage of using body
poses along with displacements is that only two pedestrian observations are needed
for the activity recognition.

Considering observations composed of body poses and displacements, the most
frequent missclassifications are produced by delays or pedestrians with low-speed
movements. The first cause is related to the event-labelling methodology selected
by the human expert. It seems that the first half of the first step and the sec-
ond half of the last step contain the most perceptible information to determine
starting and stopping actions respectively. Hence, the rest of these steps are nor-
mally recognised as walking action. It is worth mentioning that, unlike other
event-labelling methodologies discussed in Section 2.3, the event-labelling method
proposed in this document takes into account four transitions among activities in-
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stead of only two dynamical changes. Thereby, the labelling of starting-walking
and walking-stopping transitions can be objectively done when the first and last
steps are completely marked. In any other cases, the event-labelling depends on the
human expert. On the other hand, when body poses and displacements are used,
walking activities are recognised as starting or stopping actions when pedestrians
with low-speed movements are tested. Nonetheless, all these last missclassifications
are not critical from the point of view of the path estimation since these actions
have similar dynamics. Likewise, the beginning of a starting action and the ending
of a stopping movement contains body poses which are equivalent to poses labelled
as standing actions. Hence, a significant number of missclassifications are also pro-
duced between these activities. Recognising all these dynamical changes as soon
as possible is a major challenge in order to increase the effectiveness of AEBSs
and pedestrian protection systems. As will be discussed later, the delays obtained
by the proposed method are in accordance with the results analysed from other
significant works in Section 2.3.1.

In order to graphically show the previous statements, a sequence example is
analysed. The classification probabilities using 41 and 11 joints along with the
groundtruth are shown in Figures 5.1 and 5.2. Several examples of pedestrian poses
at different instants of time are illustrated in the top of the figures. These poses
are represented in different colours according to the classification result. Black
represents a standing activity, green a starting action, red a walking action and
blue a stopping activity. In the middle, the probabilities of each activity at each
instant of time are shown. Finally, at the bottom, a zoom in of the transitions are
illustrated.

As mentioned above, the figures show that starting-walking and walking-
stopping transitions usually happen in the middle of the first and last steps, thus
obtaining non-critical missclassifications. Additionally, in Figure 5.1, an example
of missclassifications between standing and starting is illustrated in the standing-
starting transition. Likewise, short delays appear in the standing-starting and
stopping-standing transitions. These delays will be discussed later. On the other
hand, throughout walking actions, local maxima and local minima of walking prob-
abilities appear in the graph when the pedestrian legs are open and closed respec-
tively. This is due to the fact that, when the legs are open, these observations are
totally distinguishable from others contained in the rest of states. However, an
observation from a pedestrian whose legs are closed may be similar to observations
from any other state.
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Figure 5.1: Example of activity recognition probabilities when poses and displacements
extracted from 41 joints are used. Black represents a standing activity, green a starting

action, red a walking action and blue a stopping activity. Top: pedestrian poses at
significant instants of time. Middle: probabilities for each activity. Bottom: zoom in of

the transitions.

5.1.1.3. Transitions and Delays

In Tables 5.5, 5.6 and 5.7, and Figures 5.3 and 5.4, the transitions from standing
to starting, starting to walking, walking to stopping and stopping to standing are
analysed in detail. This assessment is focused on the number of detected and
non-detected transitions and delays, where the mean, standard deviation, median,
maximum and minimum values using 41 and 11 joints are exposed. The evaluation
criteria fixes a range of [−500, 500] milliseconds around the event labelled by the
human expert. Within this range, a multiframe validation algorithm is applied in
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Figure 5.2: Example of activity recognition probabilities when poses and displacements
extracted from 11 joints are used. Black represents a standing activity, green a starting

action, red a walking action and blue a stopping activity. Top: pedestrian poses at
significant instants of time. Middle: probabilities for each activity. Bottom: zoom in of

the transitions.

order to ensure the transition detection and reduce false positive changes produced
by missclassifications. The number of frames is fixed to 6, which corresponds to
50 milliseconds. Thereby, the algorithm detects a transition when 6 consecutive
pedestrian observations are recognised as the same activity but this is different
to the action classified in t − 6. Finally, the activity detection delay is computed
from the instant of time where the event was marked by the human expert and the
instant of time where the transition were detected by the algorithm.

Regarding the number of detected and non-detected transitions, a breakdown
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is shown in Table 5.5. When 41 joints are used, the number of transitions correctly
and incorrectly detected is 508 and 159 respectively, i.e. the accuracy rate is
76.16%. This low accuracy rate is mainly produced by a large number of non-
detected standing-starting transitions (one example is shown in Figure 5.1) since a
high uncertainty is obtained in the recognition of these activities. Another reason
is the large number of non-detected starting-walking transitions due to the range
chosen for the evaluation criteria. That is, when longer starting steps are tested,
delays in starting-walking transitions are longer than 500 milliseconds. On the
other hand, the number of transitions correctly and incorrectly detected when 11
joints are used is 622 and 45 respectively, i.e. the accuracy rate is 93.25%. In
this case, most of the transitions which are not detected corresponds to walking-
stopping changes. This could be due to the fact that the number of observations
in the dataset belonging to a stopping activity is significantly smaller than other
actions and stopping steps are usually faster than starting steps. An analysis of
the starting and stopping steps in the groundtruth confirms this last hypothesis.
The mean lengths of both steps along with their standard deviations are 686.06±
202.91 and 381.22 ± 78.92 milliseconds respectively. It is worth mentioning that
missclassifications produced in a transition negatively influence in the non-detection
of future transitions. This does not happen when only one transition, such as
standing-walking or walking-standing, is considered, as several works reviewed in
Section 2.3.1 do. Nonetheless, the selection of four pedestrian dynamics influences
positively in the path estimation.

Transition Detected Non-Detected Accuracy

41 Joints 11 Joints 41 Joints 11 Joints 41 Joints 11 Joints

Standing - Starting 174 238 69 5 71.60% 97.94%
Starting - Walking 220 250 42 12 83.97% 95.42%
Walking - Stopping 51 61 31 21 62.20% 74.39%
Stopping - Standing 63 73 17 7 78.85% 91.25%

Overall 508 622 159 45 76.16% 93.25%

Table 5.5: Breakdown of detected and non-detected transitions for a different number of
joints. The pedestrian observations are composed of body poses and displacements.

Regarding the delays of the detected transitions, the results show that these are
not significantly influenced by the number of joints since the multiframe validation
algorithm filters most of the missclassifications. Moreover, it should be pointed
out that starting-walking transitions have negative delays since the first half of the
first step contains the most perceptible information to determine starting actions.
However, as shown in Figures 5.3d and 5.4d, a bimodal distribution clearly arises



82 Chapter 5. Results

Transition Mean Std Median Max Min

Standing - Starting 63.94 ms 147.73 ms 50.00 ms 525.00 ms -450.00 ms
Starting - Walking -140.42 ms 188.09 ms -154.17 ms 283.33 ms -466.67 ms
Walking - Stopping 33.50 ms 206.15 ms 50.00 ms 525.00 ms -458.33 ms
Stopping - Standing 99.47 ms 142.82 ms 66.67 ms 358.33 ms -366.67 ms

Table 5.6: Delays in milliseconds of detected transitions when 41 joints are used. The
pedestrian observations are composed of body poses and displacements.

Transition Mean Std Median Max Min

Standing - Starting 57.98 ms 120.87 ms 50.00 ms 525.00 ms -441.67 ms
Starting - Walking -154.30 ms 183.66 ms -208.33 ms 341.67 ms -446.67 ms
Walking - Stopping 102.05 ms 157.86 ms 66.67 ms 416.67 ms -450.00 ms
Stopping - Standing 89.84 ms 131.48 ms 58.33 ms 450.00 ms -466.67 ms

Table 5.7: Delays in milliseconds of detected transitions when 11 joints are used. The
pedestrian observations are composed of body poses and displacements.

in this transition due to the fact that the walking actions are detected before and
after the events. The delays of each detected transition along with the histogram,
mean, median and standard deviation values are illustrated in Figures 5.3 and 5.4.

Additionally, a more comprehensive assessment can be addressed comparing
the results with the delays accomplished in other works that were reviewed in
Section 2.3.1. The method proposed in this document recognises starting intentions
125 milliseconds after the gait initiation with an accuracy rate of 80% when 11
joints are considered. These results are similar to the delays achieved in [35, 36].
Nonetheless, it should be pointed out that a multiframe validation of 50 milliseconds
is carried out in order to filter missclassifications and a higher number of different
dynamics are modelled in the proposed method. This means that the consideration
of only one transition, i.e. standing-walking, instead of two dynamical changes, i.e.
standing-starting and starting-walking, could accomplish better results. However,
if only two states are taken into account, as several works reviewed in Section 2.3.1
do, the path prediction could be negatively influenced by this decision.

On the other hand, an analysis of delays from walking-stopping transitions to
the standing events labelled by the human expert is shown in Table 5.8 and Figure
5.5. This analysis is important in order to estimate the prediction time before a
standing event carried out by a pedestrian. As shown, most standing events can
be predicted several tens of milliseconds in advance. More specifically, the method
proposed in this document recognises stopping intentions 58.33 milliseconds before
the event with an accuracy rate of 70% when 11 joints are considered. This data is
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(g) Delays of stopping-standing
transitions.
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Figure 5.3: Delays in seconds of detected transitions when 41 joints are used. Left
graphs show the delays of each transition along with the mean, median and standard
deviation values. Right images show the corresponding histograms. The pedestrian

observations are composed of body poses and displacements.
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(g) Delays of stopping-standing
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Figure 5.4: Delays in seconds of detected transitions when 11 joints are used. Left
graphs show the delays of each transition along with the mean, median and standard
deviation values. Right images show the corresponding histograms. The pedestrian

observations are composed of body poses and displacements.
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slightly worse than the results accomplished in [31,32,36] due to the non-detection
of walking-stopping transitions previously discussed. However, once again, it should
be pointed out that a multiframe validation over 50 milliseconds is carried out in
order to filter missclassifications and a larger number of different dynamics are
considered in the proposed method. Likewise, the smaller number of stopping
sequences with respect to other states and the lengths of the last steps, which
were previously analysed, explain the data difference. As before, if only two states
are taken into account, as several works propose, the path prediction could be
negatively influenced as well.

Joints Mean Std Median Max Min

41 -352.61 ms 212.51 ms -333.33 ms 25.00 ms -933.33 ms
11 -279.92 ms 158.59 ms -291.67 ms 66.67 ms -875.00 ms

Table 5.8: Analysis of delays from walking-stopping transitions to the standing events
labelled by the human expert. The pedestrian observations are composed of body poses

and displacements.
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Figure 5.5: Delays from walking-stopping transitions to standing events labelled by the
human expert. The pedestrian observations are composed of body poses and

displacements.
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5.1.2. Noisy Observations

In this section, the activity recognition is examined using a sequence example
of noisy observations extracted by the single-frame pedestrian skeleton estimation
algorithm described in Section 4.2. In Figure 5.6, images extracted from the se-
quence are presented. The sequence length is around 3.75 seconds and the time
step value between each image is 0.25 seconds. As shown, the sequence corresponds
to a pedestrian that is walking on a zebra crossing from the left to right.

Figure 5.6: Images extracted from the sequence example. The sequence length is around
3.75 seconds and the time step value between each image is 0.25 seconds.

Furthermore, in Figure 5.7, the tridimensional reconstructions of the scenes
along with the skeleton estimations and the pedestrian headings extracted from
consecutive head locations are illustrated from two different points of view. These
reconstructions correspond to the scenes of the third column in Figure 5.6. As
shown, all joints are correctly extracted despite the fact that the left knee is oc-
cluded in the last scenario.

In Figure 5.8, the activity recognition probabilities when poses and displace-
ments computed from the sequence by using the skeleton estimation algorithm are
represented. As in Figures 5.1 and 5.2, where an example of activity recognition
by means of poses and displacements extracted from the UAH dataset is illus-
trated, the black line represents the probability of standing activity, the green line
corresponds to the probability of starting action, the red line to the probability
of walking action and, finally, the blue line represents the probability of stopping
activity. On the top of the figure, the pedestrian point clouds extracted by the
pedestrian segmentation algorithm and the skeleton estimations at different in-
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Figure 5.7: Tridimensional reconstructions of the scenes along with the skeleton
estimations and the pedestrian headings extracted by means of consecutive head

positions. The reconstructions are shown from two different points of view.

stants of time are shown. These skeletons correspond to the scenes of the third
column in Figure 5.6 and the reconstructions of the scenes illustrated in Figure
5.7. The graph shows that the activity has been correctly recognised in the whole
sequence and the probability values for each activity are similar to the values shown
in Figures 5.1 and 5.2.
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Figure 5.8: Activity recognition probabilities when poses and displacements extracted
from the skeleton estimation algorithm are used. The black line represents the

probability of standing activity, the green line corresponds to the probability of starting
action, the red line to the probability of walking action and the blue line represents the
probability of stopping activity. Top: pedestrian poses at significant instants of time.

Bottom: probabilities for each activity.

5.2. Pedestrian Path Prediction Results

As mentioned in Section 2.3.1, the RMSE and MED between estimated pedes-
trian positions and the groundtruth are often chosen as measure of accuracy for
pedestrian path evaluations. Nonetheless, some measures provide a better idea of
how well a system works than others. For example, the MED used in [19, 20, 55]
gives a more precise physical interpretation of the predicted pedestrian positions
with respect to a groundtruth than the RMSE used in [22]. Likewise, the mean and
standard deviation of the per-sequence RMSE used in [31,32] provide vague infor-
mation of the system performance since the RMSE for each sequence does not offer
information about the similarity between predicted positions and the groundtruth
at discrete time steps. Besides, although most of the works reviewed in Section 2.3.1
consider that the evaluation should be done for each type of activity separately, it
is not clear what methodology is the most appropriate in order to standardise the
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path evaluation. Thereby, a reliable comparison of path prediction approaches has
not been done for the moment. For all these reasons, in this thesis, the measure of
accuracy chosen for the path evaluation is the MED at different TTEs.

Throughout this section, the evaluation of path prediction results is performed
considering 41 and 11 joints. Firstly, the outcomes of this task are shown assuming
the best activity recognition results which were examined before. That is, the
activity recognition is performed by means of 11 joints. After that, in Section
5.2.2, the path prediction results are shown assuming that the activity recognition
has an accurate rate of 100%. This assessment enables to estimate the influence
of the activity recognition in the path prediction task. Finally, in Section 5.2.3,
the path prediction performed by means of noisy observations extracted by the
skeleton estimation algorithm are analysed.

5.2.1. Pedestrian Path Prediction Results with Activity
Recognition

As explained in Section 4.5, once the pedestrian activity is estimated, the most
appropriate model is selected and the prediction of future observations is iteratively
performed using that model. Accordingly, a good path prediction depends strongly
on a good activity recognition. In this section, a path prediction evaluation is
performed considering the activity recognition results previously discussed. This
evaluation makes reference to MEDs between the predicted pedestrian locations
and the groundtruth for time horizon values up to 1 second. Due to the fact that
the most dangerous traffic situations related to pedestrians usually happen when
they start to cross or whether they will stop before crossing, the evaluation is done
around these situations. Thereby, the MEDs are computed at different TTEs, i.e.
time to start walking and time to stop walking. It is noteworthy that positive
TTE values make reference to instants of time before the event and negative values
to instants of time after the event. Moreover, as mentioned in Section 4.5, the
reference point to reconstruct the pedestrian path corresponds to the right hip.

In Tables 5.9 and 5.10, and Figure 5.9, the combined longitudinal and lateral
MEDs along with the standard deviation are shown. Regarding starting activities,
the errors before the event are mainly produced due to to the fact the algorithm
assumes zero displacements when the pedestrian activity is recognised as stand-
ing, however, this is not the case in the groundtruth since small movements were
gathered. On the other hand, the errors after the event exponentially grows up
since, as explained in Section 5.1.1.3, the recognition of a starting activity has a
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mean delay around 60 milliseconds and the pedestrian is accelerating. However,
it seems that, when the pedestrian finishes to speed up, the MEDs tend to be
linear. Additionally, due to the fact that the B-GPDM is a dimensionality reduc-
tion technique, the errors are not significantly influenced by the number of joints.
In order to contextualise the errors, the mean displacement for starting activities
belonging to the UAH dataset was computed. Throughout a starting activity, the
pedestrian has a mean displacement value of 193.98±78.52 millimetres. Likewise,
the mean displacement at 1 second after and before the event is 467.92±264.97 and
41.24±67.91 millimetres respectively. It is worth mentioning that other dynami-
cal changes could happen within the TTE range of [1-0] seconds. For example, a
stopping-standing transition could be carried out by the pedestrian a few hundreds
of milliseconds before the event.

These results, focused on starting activities, are similar to the results achieved
in other works which were reviewed in Section 2.3.1. More specifically, in [19] a
MED value of 315 millimetres is accomplished for a time horizon of 1.2 seconds.
This value is similar to the value obtained by the approach described in this thesis
for a TTE of 0 seconds and a time horizon of 1 second (331.93 millimetres when
11 joints are used). Nonetheless, the event-labelling methodology proposed in that
work changes with respect to the described in this document. The authors define
a starting activity from 1 second before the initial movement to approximately 3
seconds after reaching the steady state velocity. Besides, the predictions are eval-
uated for all time steps instead of being assessed at different TTEs. In [20], the
MED at a starting event for a time horizon of 0.6 seconds is 80 millimetres. How-
ever, the method described in this thesis achieves a MED value of 88.07 millimetres
(whether 41 joints are used) at the instant of a starting event for a time horizon
of 0.5 seconds. In [22], a RMSE value of 334 millimetres at 1 second is obtained,
this value is slightly lower than the RMSE obtained by the approach described
in this document for a TTE of 0 seconds and a time horizon of 1 second (418.09
millimetres when 11 joints are used). However, the predictions of this work need
a temporal windows of n trajectory points to be performed instead of using two
observations as the method described in this thesis do. Moreover, the predictions
are evaluated for all time steps instead of being assessed at different TTEs.

Regarding stopping activities, the errors before the event tend to be linear since,
as mentioned in Section 5.1.1.3, the mean length of stopping steps are 381.22±78.92
milliseconds and the second half of the last step contain the most perceptible in-
formation to determine stopping actions. Thereby, an appropriate model could
not be chosen until a few hundreds of milliseconds before the event. Moreover, as
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Transition Standing-Starting Stopping-Standing

TTE
(sec)

Horizon
(sec)

0.25 0.5 0.75 1 0.25 0.5 0.75 1

1 MED
±Std

8.69
±10.77

15.33
±17.55

20.79
±27.16

38.86
±54.07

49.05
±59.41

90.94
±103.91

152.29
±154.67

238.01
±206.93

0.75 MED
±Std

11.11
±17.40

19.33
±31.51

39.94
±60.86

72.96
±94.61

43.97
±58.86

91.98
±77.68

175.41
±233.19

289.33
±239.60

0.5 MED
±Std

10.42
±13.60

28.33
±33.52

61.07
±71.68

141.79
±140.89

50.54
±72.14

150.83
±223.89

294.00
±397.80

462.06
±567.53

0.25 MED
±Std

21.25
±27.73

55.45
±65.14

137.62
±129.87

290.77
±207.63

38.41
±38.22

105.71
±85.09

241.39
±142.72

333.61
±202.10

0 MED
±Std

31.22
±35.77

89.10
±88.38

192.82
±164.96

331.93
±254.73

48.51
±36.80

100.66
±88.64

162.78
±155.60

244.23
±250.99

-0.25 MED
±Std

46.24
±59.76

111.90
±119.04

202.03
±184.70

302.40
±247.43

44.68
±61.04

83.11
±127.20

129.60
±202.91

189.73
±292.71

-0.5 MED
±Std

48.69
±59.26

116.00
±113.39

202.58
±168.16

296.23
±228.83

11.54
±9.09

20.16
±19.49

40.69
±52.16

64.34
±95.74

-0.75 MED
±Std

42.39
±50.36

89.43
±96.36

145.89
±144.80

206.80
±210.75

9.92
±10.60

39.17
±46.70

67.47
±97.17

121.64
±163.10

-1 MED
±Std

35.56
±46.90

79.17
±93.07

120.19
±144.91

161.14
±186.36

21.63
±29.10

51.24
±67.85

100.53
±120.69

183.66
±183.17

Table 5.9: Combined longitudinal and lateral MED±Standard Deviation in millimetres
at different TTEs for predictions up to 1 second when 11 joints are solely considered.

mentioned before, delays in the transition detection could negatively influence in
the path estimation. On the other hand, after the event, the error decreases and
tend to be logarithmic. However, at a TTE value of -1 second, the errors grow up
due to the fact that a new pedestrian dynamical change could happen. Once again,
in order to contextualise the errors, the mean displacement for stopping activities
belonging to the UAH dataset was computed. Throughout these activities, the
pedestrian has a mean displacement value of 164.37±63.33 millimetres. Likewise,
the mean displacement at 1 second after and before the event is 102.15±63.50 and
679.15.37±306.77 millimetres respectively.

Comparing the results with the outcomes achieved by other works, these are
similar. In particular, in [19], a MED value of 224 millimetres is accomplished for
stopping activities at 1.2 seconds. The method proposed in this thesis achieves a
MED value of 238.01 millimetres for a TTE of 1 second and a time horizon of 1
second when solely 11 joints are used. In [22], a RMSE value of 292 millimetres at
1 second is obtained, this value is slightly lower than the RMSE obtained by the
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Transition Standing-Starting Stopping-Standing

TTE
(sec)

Horizon
(sec)

0.25 0.5 0.75 1 0.25 0.5 0.75 1

1 MED
±Std

8.75
±10.95

16.91
±25.61

21.95
±34.98

38.61
±57.77

47.78
±62.53

109.83
±126.24

179.06
±200.33

270.04
±258.83

0.75 MED
±Std

12.10
±22.62

19.78
±35.04

39.20
±62.18

71.60
±96.10

39.49
±34.14

86.70
±64.18

159.45
±97.29

282.92
±146.71

0.5 MED
±Std

9.84
±9.72

28.43
±33.62

62.22
±73.90

142.12
±141.09

47.69
±45.90

113.06
±89.04

222.37
±160.40

363.58
±257.84

0.25 MED
±Std

19.22
±27.77

51.20
±60.00

127.64
±119.99

274.49
±198.19

42.84
±33.98

118.84
±92.40

243.12
±172.19

374.97
±255.41

0 MED
±Std

28.36
±29.99

88.07
±97.03

200.23
±177.98

334.97
±262.16

49.48
±35.74

106.93
±99.45

179.31
±183.19

256.95
±275.81

-0.25 MED
±Std

47.07
±62.48

109.52
±118.79

198.80
±183.59

298.44
±253.08

44.19
±56.91

83.02
±118.75

126.38
±191.16

189.68
±281.58

-0.5 MED
±Std

57.31
±105.49

126.35
±155.67

207.71
±206.81

305.50
±282.90

14.20
±20.28

17.83
±21.08

35.33
±42.62

58.73
±88.89

-0.75 MED
±Std

38.59
±54.03

85.56
±104.30

143.41
±167.24

212.88
±252.28

10.07
±10.81

34.47
±43.50

62.51
±93.63

112.76
±161.74

-1 MED
±Std

35.58
±63.23

73.94
±108.35

120.22
±181.21

170.60
±244.03

14.31
±15.22

35.55
±46.40

79.05
±97.14

148.71
±172.87

Table 5.10: Combined longitudinal and lateral MED±Standard Deviation in millimetres
at different TTEs for predictions up to 1 second when 41 joints are solely considered.

approach described in this document for a TTE of 1 second and a time horizon
of 1 second (314.5 millimetres when 11 joints are used). However, the algorithm
described in that work needs a temporal windows of n trajectory points to per-
formed the predictions instead of using two observations as the method described
in this thesis do. Moreover, the predictions are evaluated for all time steps instead
of being assessed at different TTEs. In [55], the lateral MED for a time horizon of 1
second at 1 second before the event is 140±180 millimetres. The method described
in this document achieves a lateral MED value of 226.99±208.01 millimetres when
solely 11 joints are considered.

Additionally, walking activities were also analysed at different time horizons.
The MEDs achieved by the method described in this thesis at 0.25, 0.5, 0.75 and 1
second are 33.03±43.84, 70.87±89.69, 113.34±140.64 and 159.48±196.19 millime-
tres respectively when 11 joints are used. These errors are similar or lower than the
outcomes obtained in other works. For example, in [19], a MED value of 230 mil-
limetres is accomplished for walking activities at 1.2 second. Furthermore, in [22],



5.2 Pedestrian Path Prediction Results 93

−2−1.5−1−0.500.51
0

100

200

300

400

500

TTE (seconds)

M
E

D
 (

m
ill

im
e

te
rs

)

 

 
TTE 1 sec

TTE 0.75 sec

TTE 0.5 sec

TTE 0.25 sec

TTE 0 sec

TTE −0.25 sec

TTE −0.5 sec

TTE 0.75 sec

TTE 1 sec

Event

(a) For starting events and 41 joints.
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(b) For starting events and 11 joints.
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(c) For stopping events and 41 joints.
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(d) For stopping events and 11 joints.

Figure 5.9: Combined longitudinal and lateral MED in millimetres at different TTEs for
predictions up to 1 second.

a RMSE value of 250 millimetres at 1 second is achieved, however, the proposed
algorithm accomplishes a value of 252.83 millimetres. Finally, in [55], the lateral
MED value of 190±220 is obtained. The algorithm developed in this thesis achieves
a lateral MED value of 149.88±194.75. Once again, in order to contextualise the
errors, the mean displacement for walking activities from the UAH dataset at 1
second is 816.47±315.45 millimetres.

5.2.2. Pedestrian Path Prediction Results without Activity
Recognition

With the motivation of determining the influence of the activity recognition
algorithm into the path prediction, the method is also tested assuming that the
activity recognition has an accurate rate of 100%. In Tables 5.11 and 5.12, and
Figure 5.10, the combined longitudinal and lateral MEDs along with the standard
deviations are shown. Regarding starting activities, similar to the previous case,
the errors before the event are mainly produced due to to the fact the algorithm
assumes zero displacements when the pedestrian activity is recognised as standing,
however, small movements were gathered in the groundtruth. On the other hand,
the errors after the event exponentially grows up since the pedestrian is acceler-
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ating. Once again, it seems that, when the pedestrian finishes to speed up, the
MEDs tend to be linear. Additionally, because of the B-GPDM is a dimensionality
reduction technique, the errors are not significantly influenced by the number of
joints. Likewise, as before, other dynamical changes could happen within the TTE
range of [1-0] seconds. It is worth remarking that, throughout a starting activity,
the pedestrian has a mean displacement value of 193.98±78.52 millimetres and the
mean displacement at 1 second after and before the event is 467.92±264.97 and
41.24±67.91 millimetres respectively

Transition Standing-Starting Stopping-Standing

TTE
(sec)

Horizon
(sec)

0.25 0.5 0.75 1 0.25 0.5 0.75 1

1 MED
±Std

8.60
±10.67

15.25
±17.12

20.50
±25.46

37.48
±47.52

49.93
±59.54

92.74
±105.63

154.94
±159.89

240.67
±215.22

0.75 MED
±Std

9.67
±10.15

16.44
±18.97

34.53
±40.87

67.14
±81.03

44.37
±58.93

92.02
±77.68

175.07
±233.25

289.12
±239.69

0.5 MED
±Std

9.40
±8.96

27.47
±32.70

60.52
±72.29

142.00
±142.13

52.26
±71.57

157.56
±222.07

309.96
±395.41

484.63
±562.94

0.25 MED
±Std

19.79
±24.66

53.95
±62.21

137.49
±130.46

292.64
±210.86

25.65
±27.73

77.62
±62.66

156.91
±101.30

265.14
±157.27

0 MED
±Std

36.46
±34.66

82.71
±70.43

151.46
±119.88

247.82
±195.70

57.78
±28.41

80.88
±41.14

90.62
±44.63

100.75
±63.22

-0.25 MED
±Std

40.83
±48.92

109.06
±113.78

207.49
±185.12

320.32
±258.63

25.43
±20.07

38.56
±29.68

53.46
±64.24

79.28
±134.63

-0.5 MED
±Std

54.25
±60.56

139.35
±117.57

241.31
±173.72

352.48
±241.57

10.87
±5.97

21.35
±18.09

35.94
±39.91

62.77
±91.09

-0.75 MED
±Std

44.07
±50.46

93.53
±97.45

151.00
±146.33

212.78
±213.55

9.84
±10.63

82.53
±148.90

129.33
±211.86

183.77
±248.93

-1 MED
±Std

35.46
±46.72

78.92
±93.24

118.92
±144.49

159.44
±185.10

32.98
±39.26

79.07
±80.22

136.84
±128.23

230.54
±196.37

Table 5.11: Combined longitudinal and lateral MED±Standard Deviation in millimetres
at different TTEs when 11 joints are solely considered.

These results, focused on starting activities, are similar or even slightly better
than the results achieved in other works which were reviewed in Section 2.3.1.
More specifically, in [19], a MED value of 315 millimetres is accomplished for a
time horizon of 1.2 seconds. This value is higher than the value obtained by the
approach described in this thesis for a TTE of 0 seconds and a time horizon of
1 second (247.82 millimetres when 11 joints are used). Nonetheless, as mentioned
before, the event-labelling methodology proposed in that work changes with respect



5.2 Pedestrian Path Prediction Results 95

to the described in this document. Besides, the predictions are not assessed at
different TTEs. In [20], the MED value at a starting event for a time horizon of 0.6
seconds is 80 millimetres. However, the method described in this thesis achieves
a MED value of 82.71 millimetres (whether 11 joints are used) at the instant of
a starting event for a time horizon of 0.5 seconds. In [22], a RMSE value of 334
millimetres at 1 second is obtained. This value is slightly higher than the RMSE
obtained by the approach described in this document for a TTE of 0 seconds and
a time horizon of 1 second (315.52 millimetres when 11 joints are used). However,
in that work, the predictions need a temporal windows of n trajectory points to be
performed instead of using two observations as the method described in this thesis
do. Moreover, the predictions are evaluated for all time steps instead of being
assessed at different TTEs.

Transition Standing-Starting Stopping-Standing

TTE
(sec)

Horizon
(sec)

0.25 0.5 0.75 1 0.25 0.5 0.75 1

1 MED
±Std

8.95
±11.57

17.04
±26.13

21.76
±33.84

38.52
±57.30

47.78
±62.53

109.83
±126.24

179.06
±200.33

270.04
±258.83

0.75 MED
±Std

11.47
±20.53

18.45
±29.71

36.79
±53.03

69.40
±90.73

39.94
±34.37

86.77
±64.20

159.17
±97.34

282.90
±146.71

0.5 MED
±Std

9.40
±8.78

27.03
±30.82

59.64
±70.08

139.69
±140.13

52.62
±46.08

127.53
±93.91

244.14
±165.14

394.92
±259.51

0.25 MED
±Std

19.79
±24.66

53.95
±62.21

137.49
±130.46

292.64
±210.86

45.32
±45.09

102.18
±92.04

180.84
±133.85

274.58
±193.52

0 MED
±Std

32.46
±30.97

83.68
±83.31

168.94
±144.48

264.42
±218.94

57.78
±28.41

80.88
±41.14

90.62
±44.63

100.75
±63.22

-0.25 MED
±Std

37.55
±39.98

106.64
±109.40

207.44
±184.46

320.16
±265.96

25.43
±20.07

38.56
±29.68

53.46
±64.24

79.28
±134.63

-0.5 MED
±Std

59.08
±92.94

141.30
±146.71

236.42
±206.58

354.17
±298.25

10.69
±5.24

15.84
±10.60

38.08
±44.29

65.24
±95.49

-0.75 MED
±Std

40.98
±55.00

90.88
±106.13

150.61
±174.09

218.68
±239.69

11.65
±10.77

70.14
±121.18

110.07
±165.81

164.38
±210.11

-1 MED
±Std

35.96
±63.22

73.83
±107.33

119.50
±178.52

168.03
±237.19

32.47
±38.57

72.46
±87.07

130.83
±122.56

220.78
±196.17

Table 5.12: Combined longitudinal and lateral MED±Standard Deviation in millimetres
at different TTE when 41 joints are solely considered.

Regarding stopping activities, the errors before the event tend to be linear since,
as mentioned before, the mean length of stopping steps are 381.22±78.92 millisec-
onds and the second half of the last step contain the most perceptible information
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to determine stopping actions. Hence, an appropriate model could not be chosen
up to a few hundreds of milliseconds before the event. Likewise, after the event, the
error decreases and tend to be logarithmic. However, at a TTE value of -1 second,
the errors grow up due to the fact that a new pedestrian dynamical change could
happen. Once again, in order to contextualise the errors, it is worth remarking that
the mean displacement for stopping activities is 164.37±63.33 millimetres. In addi-
tion, the mean displacement at 1 second after and before the event is 102.15±63.50
and 679.15.37±306.77 millimetres respectively.
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(a) For starting events and 41 joints.
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(b) For starting events and 11 joints.
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(c) For stopping events and 41 joints.
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(d) For stopping events and 11 joints.

Figure 5.10: Combined longitudinal and lateral MED in millimetres at different TTEs.

Comparing the results with the outcomes achieved by other works, these are
similar. In particular, in [19], a MED value of 224 millimetres for stopping activities
at 1.2 second is obtained. The method proposed in this thesis achieves a MED value
of 240.67 millimetres when 11 joints are used for a TTE of 1 second and a time
horizon of 1 second. Moreover, in [22], the RMSE value obtained at 1 second is 292
millimetres. This value is slightly lower than the RMSE obtained by the approach
described in this document for a TTE of 1 second and a time horizon of 1 second
(321.94 millimetres when 11 joints are used). However, the algorithm described
in that work needs a temporal windows of n trajectory points to performed the
predictions instead of using two observations as the method described in this thesis
do. Finally, in [55], the lateral MED for a time horizon of 1 second and at 1 second
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before the event is 140±180 millimetres. The method described in this document
achieves a lateral MED value of 240.67±215.22 millimetres.

Furthermore, walking activities were also analysed at different time horizons.
The MEDs achieved by the method described in this thesis at 0.25, 0.5, 0.75 and 1
second are 32.12±42.95, 68.74±87.14, 109.54±137.65 and 153.62±192.40 millime-
tres respectively. These errors are similar or lower than the outcomes obtained in
other works. For example, in [19], a MED value of 230 millimetres for walking
activities at 1.2 second is achieved. Additionally, in [22], a RMSE value of 250
millimetres at 1 second is obtained, however, the algorithm described here accom-
plishes a value of 246.20 millimetres. Finally, in [55], the lateral MED value of
190±220 millimetres is obtained. The algorithm developed in this thesis achieves
a lateral MED value of 143.83±190.82. Once again, in order to contextualise the
errors, the mean displacement for walking activities from the UAH dataset at 1
second is 816.47±315.45 millimetres.

5.2.3. Noisy Observations

In this section, the path prediction algorithm is examined using a sequence
example of noisy observations extracted by the single-frame pedestrian skeleton
estimation algorithm described in Section 4.2. In Figure 5.6, images extracted from
the sequence were presented. As shown, the sequence corresponds to a pedestrian
that is walking on a zebra crossing from the left to right.

In Figure 5.11, the MEDs in millimetres for predictions up to 1 second when
poses and displacements computed from the sequence by using the skeleton es-
timation algorithm are represented. The method achieves lateral MEDs values
of 131.71±57.89, 250.95±89.00, 355.80±123.37 and 448.84±157.39 millimetres at
0.25, 0.5, 0.75 and 1 second respectively. However, the combined lateral and longi-
tudinal MEDs are significantly longer. This is due to the fact that the pedestrian
is not walking perpendicular to the sensor. As explained in Section 4.1, the train-
ing dataset is composed of people with left-to-right and right-to-left heading with
a variance in the longitudinal component close to zero. Hence, the future path
reconstruction is corrupted by the predicted displacement vectors. To solve this
problem, the observations in the training set and test set should be normalised by
means of rotations to have the same orientation with respect to the sensor. In this
way, the method could predict future paths regardless the pedestrian direction.
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(a) Lateral MEDs.
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(b) Height MEDs.
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(c) Longitudinal MEDs
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(d) Combined lateral and longitudinal
MEDs.

Figure 5.11: MEDs in millimetres for predictions up to 1 second in the sequence
example.

5.3. Pedestrian Pose Prediction Results

Throughout this section, the evaluation of pose prediction results is performed
considering 41 and 11 joints. Firstly, as in other sections, the assessment is per-
formed assuming the activity recognition with 11 joints. After that, in Section
5.3.2, the pose prediction results assuming that the activity recognition has an ac-
curate rate of 100% are analysed with the motivation of estimating the influence
of this task in the results. Finally, in Section 5.3.3, the pose prediction performed
by means of noisy observations extracted by the skeleton estimation algorithm are
examined.

5.3.1. Pedestrian Pose Prediction Results with Activity
Recognition

In this section, the evaluation of pose prediction results is performed assum-
ing an activity recognition with 11 joints. In Figure 5.12, the averaged RMSEs
of pedestrian joints, i.e. the pedestrian posture, for different time horizons and
TTEs are shown. As expected, when the pedestrian is standing, low errors are
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obtained since all postures are similar for this activity. In fact, the low pose recon-
struction error in the prediction t = 0 is especially significant since it denotes the
low variability in the pedestrian poses. Thereby, a similar training posture to the
test pedestrian pose is usually found when the most appropriate model is selected.
However, higher errors in the reconstruction of the future poses are achieved when
the pedestrian is moving. In this case, the pose reconstruction error in the predic-
tion t = 0 denotes that a higher number of pedestrians should be included in the
dataset in order to find similar pedestrian postures.
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(a) For starting events and 41 joints.
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(b) For starting events and 11 joints.
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(c) For stopping events and 41 joints.
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(d) For stopping events and 11 joints.

Figure 5.12: Averaged RMSEs of pedestrian joints for time horizons up to 1 second and
different TTEs.

Furthermore, in Figure 5.13, the averaged RMSEs of pedestrian displacements,
i.e. the joint displacements between samples, for different time horizons and TTEs
are illustrated. A similar analysis to the previous one can be done. As expected,
when the pedestrian is standing, low errors are obtained since low displacements
are gathered for this activity. Again, the low displacement reconstruction error in
the prediction t = 0 denotes the low variability in the pedestrian displacements.
However, higher errors in the reconstruction of the future displacement are achieved
when the pedestrian is moving. In this case, the reconstruction error in the pre-
diction t = 0 denotes that a higher number of pedestrians should be included in
the dataset in order to find similar pedestrian displacements. Likewise, at a TTE
value of -1 second, the errors grow up due to the fact that a new pedestrian dynam-
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(a) For starting events and 41 joints.
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(b) For starting events and 11 joints.
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(c) For stopping events and 41 joints.
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(d) For stopping events and 11 joints.

Figure 5.13: Averaged RMSEs of pedestrian displacements for time horizons up to 1
second and different TTEs.

ical change could happen. It is worth remarking that the path errors are directly
influenced by the displacement reconstruction errors.

5.3.2. Pedestrian Pose Prediction Results without Activity
Recognition

In this section, the evaluation of pose prediction results is performed assuming
an activity recognition accurate rate of 100%. In Figure 5.14, the averaged RMSEs
of pedestrian joints, i.e. the pedestrian posture, for different time horizons and
TTEs are shown. As expected, when the pedestrian is standing, low errors are
obtained since all postures are similar for this activity. As before, the low pose
reconstruction error in the prediction t = 0 is especially significant since it denotes
the low variability in the pedestrian poses. Thereby, a similar training posture
to the test pedestrian pose is usually found when the most appropriate model
is selected. However, higher errors in the reconstruction of the future poses are
achieved when the pedestrian is moving. In this case, the reconstruction error in
the prediction t = 0 denotes that a higher number of pedestrians should be included
in the dataset in order to find similar pedestrian postures.

Additionally, in Figure 5.15, the averaged RMSEs of pedestrian displacements,
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(a) For starting events and 41 joints.
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(b) For starting events and 11 joints.
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(c) For stopping events and 41 joints.
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(d) For stopping events and 11 joints.

Figure 5.14: Averaged RMSEs of pedestrian joints for time horizons up to 1 second and
different TTEs.

−2−1.5−1−0.500.51
0

1

2

3

4

5

6

TTE (seconds)

A
v
e

ra
g

e
d

 R
M

S
E

 (
m

ill
im

e
te

rs
)

 

 
TTE 1 sec

TTE 0.75 sec

TTE 0.5 sec

TTE 0.25 sec

TTE 0 sec

TTE −0.25 sec

TTE −0.5 sec

TTE 0.75 sec

TTE 1 sec

Event

(a) For starting events and 41 joints.
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(b) For starting events and 11 joints.
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(c) For stopping events and 41 joints.
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Figure 5.15: Averaged RMSEs of pedestrian displacements for time horizons up to 1
second and different TTEs.
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i.e. the joint displacements between samples, for different time horizons and TTEs
are shown. A similar analysis to the previous cases can be done. As expected,
when the pedestrian is standing, low errors are obtained since low displacements
are gathered for this activity. Again, the low displacement reconstruction error in
the prediction t = 0 denotes the low variability in the pedestrian displacements.
However, higher errors in the reconstruction of the future displacement are achieved
when the pedestrian is moving. In this case, the reconstruction error in the predic-
tion t = 0 denotes that a higher number of pedestrians should be included in the
dataset in order to find similar pedestrian displacements.

When the results with and without the application of the activity recognition
algorithm are compared, the influence of the transition delays in the reconstruction
of the observations comes to light. The case especially significant is the stopping
activity. After the event, the displacements, when the activity recognition has an
accurate rate of 100%, have lower errors than the displacements when the activity
recognition is applied. This difference in the errors explains the difference in the
path prediction since, as mentioned in Section 4.5, the future pedestrian paths are
computed adding N consecutive displacements.

5.3.3. Noisy Observations

In this section, the pose prediction algorithm is examined using a sequence
example of noisy observations extracted by the single-frame pedestrian skeleton
estimation algorithm described in Section 4.2. In Figure 5.6, images extracted from
the sequence were presented. As shown, the sequence corresponds to a pedestrian
that is walking on a zebra crossing from the left to right.
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(b) Displacement.

Figure 5.16: Averaged RMSE in the observation reconstruction for predictions up to 1
second.

In Figure 5.16, the averaged RMSEs in the pose and displacement reconstruc-
tions for predictions up to 1 second are illustrated. As shown, due to the fact
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that noisy test observations are analysed, the reconstruction errors are higher than
the errors with less noisy observations which were analysed in Section 5.3.1. It
is worth remarking that the motivation of this thesis is not to develop a complex
pedestrian skeleton estimation algorithm. Hence, it is expected that strong gains
could be made in the performance of the method described in this document if
more sophisticated systems are applied in the pedestrian pose extraction.

5.4. Processing Time

This section resumes the processing times of each step carried out by the method
described in Chapter 4. In Figure 5.13, the processing times in milliseconds of the
training step are represented for each activity. As mentioned in [63], the compu-
tational bottleneck for the B-GPDM is the inversion of the kernel matrices, which
is necessary to evaluate the likelihood function and its gradient. As expected, the
longer the sequence, the higher the processing time due to the fact that the dimen-
sions of the kernel matrices depends on the number of samples in the sequence.
For this reason, the processing time tends to be exponential with the number of
samples in the sequences. Moreover, the SCG algorithm is sometimes unable to
correctly optimise the models, thus accomplishing short processing times. It is
worth noting that the training has been performed using MATLAB 2014 64-bits
with a processor Intel i7-2600K 3.40GHz.

Joints 41 11

Activity Recognition

Mean 85.0 43.6
Std 29.7 21.0
Min 33.5 23.9
Max 858.5 242.2

Path Prediction

Mean 868.3 829.7
Std 1284.4 1232.6
Min 11.4 10.6
Max 117685.7 129173.4

Total

Mean 741.5 670.5
Std 1183.2 1129.8
Min 34.8 25.1
Max 117766.0 129215.5

Table 5.13: Processing times in milliseconds of each prediction step per pedestrian
observation.

On the other hand, the path prediction and activity recognition has been
performed by means of MATLAB 2016 64-bits with a processor Intel i7-7700K
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(a) Sequences of standing activities for 41
joints.
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(b) Sequences of standing activities for 11
joints.
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(c) Sequences of starting activities for 41
joints.
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(d) Sequences of starting activities for 11
joints.
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(e) Sequences of stopping activities for 41
joints.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

Samples

T
im

e
 (

s
e
c
o
n
d
s
)

(f) Sequences of stopping activities for 11
joints.
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(g) Sequences of walking activities for 41
joints.
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(h) Sequences of walking activities for 11
joints.

Figure 5.17: Processing times in milliseconds of the training step. The data are shown
by pedestrian activity and number of joints.
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4.20GHz. The processing times are showed in Table 5.13. The path prediction de-
pends on the model selected in order to estimate the future pedestrian trajectory.
If this model corresponds to a long sequence, the processing time is higher because
the path prediction compute the inversion of the kernel matrix, which is necessary
to evaluate the likelihood function and its gradient between the test observation
and the reconstructed observation from the model (see Equation 4.4). Besides, the
mean total processing time is shorter than the the mean path prediction time due
to the fact that when the activity is recognised as standing, the path prediction is
not performed.

5.5. Conclusions

An exhaustive assessment about activity recognition and path prediction algo-
rithms has been performed throughout this chapter. Concerning activity recogni-
tion, the results verify that shoulder and leg motions are more valuable sources
of information than other body parts to recognise the current pedestrian action.
More specifically, the maximum accuracy rate, 95.13%, is achieved when observa-
tions composed of a few joints placed along the legs and shoulders are taken into
consideration. However, the accuracy rate falls to 90.69% whether a higher number
of joints located along the whole body are used. Additionally, at least two types of
features are needed in the action recognition when more than two dynamical be-
haviours are considered, either body poses and displacements, or displacements and
accelerations. The advantage of using the former is that only two pedestrian ob-
servations are needed for the activity recognition. Regarding this task, the method
proposed in this document detects starting intentions 125 milliseconds after the
gait initiation with an accuracy rate of 80% and recognises stopping intentions
58.33 milliseconds before the event with an accuracy rate of 70% when joints from
shoulders and legs are considered.

Concerning the path prediction results, similar errors are obtained with respect
to other works. However, some measures of accuracy used by other methods provide
a vague idea of how well a system works. For example, the MED gives a more
precise physical interpretation of the predicted pedestrian positions with respect
to a groundtruth than the RMSE or the mean and standard deviation of the per-
sequence RMSE. Hence, in this thesis, the measure of accuracy chosen for the path
evaluation is the MED at different TTEs that gives objective information of the
path prediction performance. Besides, although other works accomplished slightly
errors than the method proposed in this document, their prediction algorithms
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need a temporal window of n trajectory points instead of using two observations
and the errors are evaluated for all time steps instead of being assessed at different
TTEs.

On the other hand, the algorithms have been also tested using noisy observa-
tions extracted by a single-frame pedestrian skeleton estimation algorithm. Al-
though the motivation of this thesis is not to develop a complex procedure for
this task it is expected that strong gains could be made in the performance of the
method described in this document if more sophisticated systems are applied in
the pedestrian pose extraction.



Chapter 6

Main Contributions and
Future Work

This chapter presents the global conclusions and discusses the main contribu-
tions introduced and developed along the chapters of this thesis. Finally, in Section
6.2, several futures lines of research which this thesis leaves open are drawn.

6.1. Main Contributions

This thesis proposes a single-frame method to predict pedestrian path, poses
and intentions up to 1 second ahead in time by means of the B-GPDM and a
HMM. The B-GPDM reduces the dimensionality of a set of feature vectors related
in time and infers future latent positions. Likewise, given a latent position from the
latent space, the corresponding feature vector can also be reconstructed. However,
as claimed in [63], learning a generic model for all kind of pedestrian activities or
combining some of them into a single model normally provides inaccurate estima-
tions of future observations. For that reason, the method proposed in this thesis
learns multiple models of each type of pedestrian activities, i.e. walking, stopping,
starting and standing, and selects the most appropriate among them to estimate
future pedestrian states at each instant of time. This strategy allows to design
scalable systems in which new sequences with different dynamics can be added to
the dataset without negatively impacting the performance.

Additionally, a event-labelling methodology was proposed. This methodology
allows to identify the instant of time that a pedestrian starts or finishes an event
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such as starting or stopping. Thereby, a starting activity was defined as the action
that begins when the pedestrian moves one knee to initiate the gait and ends
when the foot of that leg touches the ground again. Besides, a stopping activity
was defined as the action that begins when a foot is raised for the last step and
finishes when that foot treads the ground. This criterion was adopted because
these events happen in all sequences in which starting or stopping activities are
included and because they are easily labelled by human experts, thus enabling the
creation of reliable groundtruths. Moreover, to test the proposed method with
noisy observations, a single-frame pedestrian skeleton estimation algorithm was
proposed. This algorithm is based on the extraction of point clouds corresponding
to different pedestrian body parts and the location of 3D joints in an hierarchical
top-down search given anthropometric proportions and geometrical constraints.

On the other hand, one of the goals of this thesis was to test the feasibility and
limits of the proposed method in an extensive way under ideal conditions by using
a high frequency and low noise dataset published by CMU. The high frequency
of the dataset helps the algorithms to properly learn the dynamics of different ac-
tivities and increases the probability of finding a similar test observation in the
trained data without missing intermediate observations. Besides, low noise models
improve the prediction when working with noisy test samples. The CMU dataset is
composed of sequences where people are simulating typical pedestrian activities at
the same time that 3D coordinates of 41 joints along their bodies are being gath-
ered at 120 Hz. Because of the high frequency and low noise sequences included
in the dataset and the the event-labelling methodology chosen, the projection of
pedestrian observations related in time onto the different subspaces compared in
this thesis emerges as well-defined trajectories. For example, walking activities
generate cyclic trajectories where each cycle corresponds to two pedestrian steps,
starting and stopping activities generate trajectories of a half cycle since only one
step was considered in the event-labelling. Finally, the models that correspond
to standing sequences produce non-cyclic trajectories. Unlike other dimensionality
reduction techniques such as PCA, PPCA, GPLVM or GPDM, B-GPDM obtains
smoother trajectories onto the learned subspaces which provide more accurate esti-
mations of future pedestrian states. It is worth mentioning that GPLVM produces
very noisy trajectories in the subspace caused by the fact that this modelling tech-
nique is mainly focused on pattern recognition instead of modelling time-related
data.

Moreover, due to the fact that not all gathered joints in the CMU dataset offer
discriminative information about the current and future pedestrian activities, two



6.1 Main Contributions 109

different set of joints are compared in order to determine whether the detection
of only shoulder and leg motions are enough to infer future states. It seems that
the models are not influenced by the reduction in the number of joints. However,
with respect to the activity recognition, using a less number of joint provides more
accurate results. Therefore, the results verify that shoulder and leg motions are
more valuable sources of information than other body parts to recognise the cur-
rent pedestrian action. More specifically, the maximum accuracy rate, 95.13%,
is achieved when observations composed of poses and displacements from only 11
joints were taken into consideration. However, the accuracy rate falls to 90.69%
whether 41 joints are used. Likewise, by considering only body poses, a similar
conclusion is drawn since the maximum accuracy rate is 91.28% and 88.39% for
11 and 41 joints respectively. Finally, when the observations are composed solely
of pedestrian displacements, the activity recognition results are not significantly
influenced by the number of joints.

Regarding the distinction among activities, the pedestrian displacements
achieve a better differentiation of standing actions from the rest of activities. How-
ever, with respect to starting and stopping actions, a larger number of critical
missclassifications are produced. This means that the displacements do not allow
to reliably distinguish whether a pedestrian is carrying out the first or last step.
Therefore, the body poses along with the displacements offer a more discrimina-
tive information in these cases. Besides, it seems that the first half of the first
step and the second half of the last step contain the most perceptible information
to determine starting and stopping actions respectively. Beyond that, considering
the body pose as the only feature, standing actions are repeatedly recognised as
walking activities since, when the pedestrian legs are closed, the poses from both
states are very similar in those instants of time. Therefore, the displacements are
valuable information in those cases. Thereby, when a large number of dynami-
cal activities are considered, such as standing, starting, stopping and walking, the
body poses and displacements are important features. Moreover, including the
acceleration as an additional feature may improve the recognition of starting and
stopping activities. However, when the pedestrian legs are completely opened, the
acceleration is minimum and it is maximum when the legs are closed. Hence, the
body pose is again an essential information to distinguish standing and walking
actions. As a conclusion, at least two types of features are needed in the activ-
ity recognition when more than two state are considered, either body poses and
displacements, or displacements and accelerations. The advantage of using body
poses and displacements is that only two pedestrian observations are needed for
the activity recognition.
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Regarding the delays of the transitions between activities, the results show that
these are not significantly influenced by the number of joints. Moreover, it should
be pointed out that starting-walking transitions have negative delays due to the
fact that the first half of the first step contains the most perceptible information
to determine starting actions. The method proposed in this document recognises
starting intentions 125 milliseconds after the gait initiation with an accuracy rate
of 80% when 11 joints are considered. These results are similar to the delays
achieved in other works. On the other hand, standing actions are recognised 58.33
milliseconds before the event with an accuracy rate of 70% when 11 joints are
considered.

Concerning the path prediction results, similar errors are obtained with respect
to other works. However, some measures of accuracy used by other methods provide
a vague idea of how well a system works. For example, the MED gives a more
precise physical interpretation of the predicted pedestrian positions with respect
to a groundtruth than the RMSE or the mean and standard deviation of the per-
sequence RMSE. Hence, in this thesis, the measure of accuracy chosen for the path
evaluation is the MED at different TTEs that gives objective information of the
path prediction performance. Besides, although other works accomplished slightly
errors than the method proposed in this document, their prediction algorithms
need a temporal window of n trajectory points instead of using two observations
and the errors are evaluated for all time steps instead of being assessed at different
TTEs.

On the other hand, the algorithms have been also tested using noisy observa-
tions extracted by a single-frame pedestrian skeleton estimation algorithm. Al-
though the motivation of this thesis is not to develop a complex procedure for
this task it is expected that strong gains could be made in the performance of the
method described in this document if more sophisticated systems are applied in
the pedestrian pose extraction.

Finally, four publications were presented from this thesis in different interna-
tional conferences about ITS, i.e. [46–48, 64]. It is worth mentioning that the
[48] were awarded with the Best Paper of Workshop on 18th IEEE International
Conference on Intelligent Transportation Systems 2015.

6.2. Future Work

From the results and conclusions of the present work, several lines of work can
be proposed. They correspond to different aspect that have not been solved or
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need a further analysis to improved the performance:

1. A higher number of sequences should be considered since children or elderly
people are not included in the CMU dataset. As claimed in [45], elderly
pedestrians select more dangerous decisions than younger people despite the
fact that they normally take more time to make them.

2. Testing all algorithms with different type of features or combining them may
improve the performance of the method proposed in this thesis. For example,
motion features obtained by means of optical flow or motion history images
instead of pedestrian displacements extracted from body poses can be used
as well. Additionally, in a higher level, the combination of context-based in-
formation along with a situation criticality evaluation and a pedestrian body
language analysis would allow to develop more reliable AEBSs. Thus, scene
understanding, pedestrian detection and prediction algorithms are interesting
lines of research in the ITS field.

3. In order to obtain more accurate pedestrian skeletons, markerless motion
capture approaches based on Convolutional Neural Networks (CNNs) such
as the algorithm proposed in [13] could be developed instead of algorithm
based on geometrical constrains.

4. Comparing the B-GPDM and other modelling technique which are able to
predict future observation such as ANNs and KFs using high frequency and
low noise datasets and body pose features.

5. Creating a extensive dataset of real pedestrian situations would make possible
to compare different approaches in similar conditions. The event-labelling
methodology proposed in this thesis would help to human experts determine
the different pedestrian activities.

6. Testing the algorithms in moving vehicles. To do that, the ego-motion should
be compensated every instant of time.
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