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sido lo mismo. A mis chicos del laboratorio de arriba, Javi y Rober, por darme ánimos
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Carlos y Raúl (¡y Llorca!), a pesar de que últimamente no os veo mucho (sé que soy una
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Resumen

En los últimos años, el número de aplicaciones para smartphones y tablets ha crecido
rápidamente. Muchas de estas aplicaciones hacen uso de las capacidades de localización
de estos dispositivos. Para poder proporcionar su localización, es necesario identificar la
posición del usuario de forma robusta y en tiempo real. Tradicionalmente, esta localiza-
ción se ha realizado mediante el uso del GPS que proporciona posicionamiento preciso en
exteriores. Desafortunadamente, su baja precisión en interiores imposibilita su uso.

Para proporcionar localización en interiores se utilizan diferentes tecnoloǵıas. Entre
ellas, la tecnoloǵıa WiFi es una de las más usadas debido a sus importantes ventajas
tales como la disponibilidad de puntos de acceso WiFi en la mayoŕıa de edificios y que
medir la señal WiFi no tiene coste, incluso en redes privadas. Desafortunadamente,
también tiene algunas desventajas, ya que en interiores la señal es altamente dependiente
de la estructura del edificio por lo que aparecen otros efectos no deseados, como el efecto
multicamino o las variaciones de pequeña escala. Además, las redes WiFi están instaladas
para maximizar la conectividad sin tener en cuenta su posible uso para localización, por
lo que los entornos suelen estar altamente poblados de puntos de acceso, aumentando las
interferencias co-canal, que causan variaciones en el nivel de señal recibido.

El objetivo de esta tesis es la localización de dispositivos móviles en interiores uti-
lizando como única información el nivel de señal recibido de los puntos de acceso existentes
en el entorno. La meta final es desarrollar un sistema de localización WiFi para dispo-
sitivos móviles, que pueda ser utilizado en cualquier entorno y por cualquier dispositivo,
en tiempo real.

Para alcanzar este objetivo, se propone un sistema de localización jerárquico basado en
clasificadores borrosos que realizará la localización en entornos descritos topológicamente.

Este sistema proporcionará una localización robusta en diferentes escenarios, pres-
tando especial atención a los entornos grandes. Para ello, el sistema diseñado crea una
partición jerárquica del entorno usando K-Means. Después, el sistema de localización
se entrena utilizando diferentes algoritmos de clasificación supervisada para localizar las
nuevas medidas WiFi. Finalmente, se ha diseñado un sistema probabiĺıstico para seguir
la posición del dispositivo en movimiento utilizando un filtro Bayesiano. Este sistema se
ha probado en un entorno real, con varias plantas, obteniendo un error medio total por
debajo de los 3 metros.

Palabras clave: Servicios Basados en Localización, Localización WiFi en Interiores,
Aprendizaje Automático, Computación Flexible.





Abstract

Recent years have seen a rapid growth of smartphone and tablet applications. Many of
these applications make use of the localization capabilities of these devices in what are
called Location Based Services. To be able to provide this kind of services, a reliable and
real time identification of the user location is needed. Traditionally, global localization
has been carried out through GPS, which provides accurate localization when working
outdoors. Unfortunately, the use of GPS is affected by Non-Line-Of-Sight, making GPS
localization in indoor environments not suitable.

Different technologies are being used to provide indoor localization, among them,
WiFi is a common choice due to its important advantages: there are WiFi access points
in most buildings and measuring WiFi signal is free of charge even for private WiFi
networks. Unfortunately, it also has some disadvantages: when working indoors the
signal strength is strongly dependent on the building structure and some other non-
desired effects appear, such as the multipath effect, signal absorption and the small scale
variations. Moreover, since WiFi networks are deployed with the goal of maximizing
connectivity and disregarding localization tasks, there are usually many access points
distributed over the environment increasing the so-called co-channel interferences, which
cause high variations in the received signal strength from the access points.

The goal of this thesis is the localization of mobile devices in indoor environments
using as the only available information the signal received from the already existing
access points in the environment. Since WiFi is pre-installed in most of the buildings,
there is no need to either modify the environment or add new devices to it. Then, the
final research objective is to achieve robust WiFi real-time localization for mobile devices,
available to be deployed in any environment and to be used by any device.

To achieve this objective, a hierarchical fuzzy-based approach is proposed to perform
localization in topologically described environments. This new approach is able to deal
with multi-floor large environments that have been previously neglected in the literature.
To do so, the system creates a hierarchical partition of the environment using similar-
ity clues in a K-Means-based approach. Then, the localization system is trained using
different supervised learning algorithms to classify the new WiFi samples through the
hierarchical tree of the environment partition. Finally, a Bayesian filter to track the po-
sition of a device in motion has been designed. This approach was tested in a multi-floor
real environment, obtaining an overall mean error distance under 3 metres.

KeyWords: Location Based Services, WiFi Indoor Localization, Machine Learning,
Soft Computing.
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Chapter 1

Introduction

1.1 Motivation

The development and history of the mobile phone has seen a tremendous number of
changes since the first cell phones were introduced. It was at the beginning of the 1980s
when mobile phone technology started to be deployed commercially. Since then, there
have been many new mobile phone systems introduced, and many improvements have
been made in this form of radio communications technology. The mobile phones them-
selves as well as the associated equipment have become much cheaper and far smaller.

The first systems to be launched were based on analogue technology. These early
phones were very large and could certainly not be placed in a pocket like the phones of
today (Figure 1.1).

Figure 1.1: Martin Cooper with the handset he used to make the first mobile phone call
on April 1973.
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The first mobile phones helped people to be connected everywhere. While the initial
phones had reduced connectivity capabilities, allowing only to make calls or send SMS,
as the usage of phones increased new possibilities emerged using the phones for data
transfer. They could be used to download information from the Internet or to send video
but, at a very low rate speed. The introduction of the first commercial mobile phone with
a built-in Global Positioning System (GPS), developed by the Finnish company Benefon
at the end of 1999, allowed the use of these phones for localization. The third generation
(3G) systems aim was to provide a relatively high-speed data transfer capability. These
3G systems were able to provide a significant improvement in capability over the previous
ones.

At this point, the first Apple’s iPhone made everybody realise that connectivity alone
was not enough. With the introduction of a multi-touch touchscreen and the app store,
where many applications could be found, a new understanding of the mobile phone in-
dustry appeared. The mobile phones were not just to make calls anymore, but they could
be used for gaming, being connected to social media, etc. That is how the era of the
smartphones started (Figure 1.2).

Figure 1.2: Mobile phones evolution.
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By 2009, it had become clear that, at some point, 3G networks would be overwhelmed
by the growth of bandwidth-intensive applications like streaming media. Consequently,
the industry began looking to data-optimized fourth generation (4G) technologies, with
the promise of speed improvements up to 10-fold over existing 3G ones.

With all these advances in the mobile phone industry, the use and availability of
smartphone and tablet applications have grown rapidly [BI Intelligence, 2013] (Figure
1.3).

Figure 1.3: Cumulative number of apps downloaded from the Apple App Store, Android
Google Play and Windows Phone Store from June 2008 to January 2014.

Many of these applications provide Location-Based Services (LBSs) making use of
the localization capabilities of these devices. An LBS can be defined as a service that
integrate a mobile device’s location or position with other information to provide added
value to the user.

As part of its annual Mobile Life study [TNS, Kantar Group, 2012], TNS found a
19% of the world’s 6 billion mobile users were already using LBSs, with a 62% of the non
LBS’s users aspiring to do so in the future. Navigation with maps and GPS is currently
the most popular motivation behind LBSs (46%). But, besides the classic navigation, the
use of LBSs allows for applications in very different areas:

• Marketing:

– Store or services locators. Using location-based intelligence, customers can
quickly find the nearest store location, restaurant, bank, movie theatre, etc.

– Proximity-based marketing. Local companies can push ads only to individuals
within the same geographic location. Location-based mobile marketing delivers
ads to potential customers within that city who might actually act on the
information.
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• Social:

– Social events recommendation based on the user’s location and preferences
[Quercia et al., 2010].

– Places recommendation based on the users’ location and their social network
profile [Saiph Savage et al., 2012] [Cheng et al., 2013].

• Healthcare systems:

– Staff and equipment location and tracking in hospitals [Molina and Alba, 2011]
[Ekahau, 2014].

– Patient location and tracking. Tracking the position and actions of the pa-
tients is required for medical observation or accident prevention [Pourhomay-
oun et al., 2012].

– Healthcare workers assignment. Assigning the closest home healthcare worker
to assist a patient’s call [Christensen et al., 2007].

• Intelligent Transportation Systems:

– Travel information. An LBS can deliver real-time information to the smart-
phone, such as traffic updates or weather reports, so that the user can plan
accordingly [Stamoulakatos and Sykas, 2003].

– Roadside assistance. In the event of a blown tire or accident, many roadside
assistance companies provide an application that allows them to track the user
exact location without the need for giving directions [eCall, 2007].

– Toll charging. Automatic payment for the use of road infrastructures through
a smartphone LBS [Satelise, 2010].

• Security:

– Object search. An LBS can track the position of different objects allowing
anti-theft/anti-lost of them or preventing of stray children [Jeon and Kim,
2013].

– Fraud prevention. An LBS can create another level of security by matching
a customer’s location through the smartphone to a credit card transaction.
Tying the smartphone’s location to a credit card allows to flag transactions
made across several geographic locations over a short time [Choey et al., 2003].

• Logistics:

– Mobile workforce management. For companies that employ individuals out in
the field or at multiple locations, an LBS allows employees to check-in at a
location using their mobile device.

– Inventory control at warehouses [Zhao and Zhang, 2011].

• Guidance at museums or public buildings [Hammadi et al., 2012].
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• Gaming: The user location can be part of the game play increasing the user expe-
rience [Guo et al., 2012].

• Augmented reality: Virtual information depending of the location is added to real
environments to simplify its interpretation or provide it in a more attractive way
[Chang, 2011] [Alappanavar et al., 2013] [Google Glass, 2014].

To be able to provide this kind of services, LBSs need to accurately identify the
location of the user. This has boosted the need for a reliable and real time localization
for mobile devices.

Traditionally, global localization has been carried out through GPS [Enge and Misra,
1999], which provides accurate localization when working outdoors. This way, GPS has
become the main technology for positioning in outdoor environments. Encouraged by the
accuracy of the GPS outdoors and due to the fact that almost every new smartphone
and tablet have built-in GPS receivers, most of the currently existing LBSs are oriented
to outdoor environments. However, in indoor environments LBSs are of equal interest in
a wide range of personal and commercial applications (Figure 1.4).

Figure 1.4: Indoor location-based services application.

All these applications require accurate indoor localization for the strategic planning of
the navigation or to provide guidance to the final target. Unfortunately, the use of GPS
is affected by Non-Line-Of-Sight (NLOS), satellite signals are attenuated and scattered
by roofs, walls and other objects making GPS localization in indoor environments not
suitable. Providing indoor localization requires the use of other technologies.

Different technologies are being used to provide indoor localization: infrared [Want
et al., 1992], ultrasound [Priyantha et al., 2000], laser [Barber et al., 2002], computer
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vision [Krumm et al., 2000], Radio Frequency (RF) [Bahl and Padmanabhan, 2000] [Gar-
ćıa-Valverde et al., 2013] or Global System for Mobile Communications (GSM) [Parodi
et al., 2006].

The decision about using one of these technologies is mainly determined by the ac-
curacy required by the final application and the cost of the system deployment. The
required accuracy for indoor LBSs is usually in the order of metres [Mautz, 2012].

Some of the previously named technologies, such as ultrasound or laser, may accom-
plish the accuracy requirements, but they require the use of additional hardware. Some
other, such as Ultra Wide Band (UWB) or Radio Frequency IDentification (RFID) re-
quire the installation of artificial marks in the environment increasing the cost of the
system and forcing for an specific deployment on every target environment.

If the goal is to provide a generic location service available on any device (smartphones,
tablets, laptops, etc.) and in any environment, an already available technology in both
the devices and the environments should be used. With this requirement in mind, the
following technologies can be used:

• GSM: it is a common choice to provide LBSs outdoors. Although some attempts
have been made in providing indoor localization using GSM as in [Varshavsky et al.,
2007], the minimum achieved error was around 7 meters for a 95th percentile for a
floor and, to date, this kind of systems have not been proved useful in distinguishing
between building floors. Moreover, depending on the building structure, it does not
work properly in indoor environments due to signal blockage.

• Cameras: computer vision techniques applied to the images obtained from a cam-
era are commonly used to provide indoor positioning in different areas. But, when
applying these techniques to perform localization using a mobile phone, different
problems appear: computer vision techniques are computationally expensive and
need the camera to be pointing to the environment continuously, decreasing the
usability of the system. Moreover, these systems perform position tracking, so the
initial position is needed in order to be tracked. They are also strongly dependent on
the illumination conditions and have to be calibrated to get accurate information.

Some camera-based systems use the mobile device’s built-in camera to scan codes,
such as Quick Response codes (QRs), to obtain the position of the device [Humanes
et al., 2013]. This kind of systems requires the installation of QR codes over the
environment and to actively scan the codes to update the device’s position.

• RF: A major group of indoor positioning systems utilizes RF signals emitted by
common wireless communication networks. Among all the technologies, WiFi is
arising as the most popular one. This is probably due to the advantages of using
WiFi for indoor localization: WiFi Access Points (APs) are deployed in almost
every building and measuring the WiFi signal is free of charge even for private
networks. This fact allows to install a localization system based on WiFi without
doing any modifications in the environment. Moreover, almost every device is al-
ready equipped with a WiFi interface, and no special requirements are needed to
perform the localization. This way, almost every device can benefit from indoor
LBSs using WiFi.
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Unfortunately, using WiFi for indoor localization also has some disadvantages: al-
though the Received Signal Strength (RSS) decays logarithmically on free space, the
multipath effect [Rappaport, 1996], obstacles and the small scale effect [Youssef and
Agrawala, 2003] make the RSS a complex function of the distance. In addition, the
presence of people heavily affects the RSS absorbing part of the electromagnetic
signal [Bahillo et al., 2009]. As a result, it is very difficult to model the RSS in in-
door environments and the provided accuracy is lower than using other technologies
such as laser.

Although lot of research has taken place in WiFi indoor localization systems, it
remains as an open problem, and their accuracy can still be improved.

1.2 Scope of this thesis

Since 2002, the researchers of the RobeSafe (Robotics and eSafety) Research Group at
the Department of Electronics of the University of Alcalá have been working on the
problem of indoor localization at different areas. Important results have been achieved
mainly in the robotics area, where a navigation system based on WiFi signal strength
and ultrasounds was developed [Ocaña, 2005].

The RobeSafe Group has focused its efforts on some important aspects in order to
develop these localization systems. The group is interested in developing non-invasive
systems, which means to use the own infrastructure of the environment without adding
extra devices or technologies. RobeSafe also aims for systems which do not depend on
a specific technology and can be applied to a high range of devices such as, cellphones,
mobile robots, etc. Finally, developing low-cost solutions is always a constraint for the
RobeSafe group.

This thesis is part of Abstraction, Synthesis and Integration of Information for Hu-
man-Robot Teams (ABSYNTHE) project [Alonso et al., 2012]. The ABSYNTHE project
goal is the development of novel tools and approaches to facilitate communication and
coordination in human-robot teams. Localization is one of the most important infor-
mation when human-robot teams are collaborating. Each team member must be aware
of its own location but also of the location of the others. Robot localization must be
accurate (in the range from zero to three meters) while human localization does not need
to be so accurate but understandable because humans are able to manage poor quality
information about their locations. This thesis is focused in the human localization stage,
but it can also be directly used by robots, or even improved by adding the information
from the robot’s own sensors.

The goal of this thesis is the localization of mobile devices in indoor environments
using as the only available information the signal received from the already existing APs
in the environment. Since WiFi is pre-installed in most of the buildings, there is no
need to either modify the environment or add new devices to it. Then, the final research
objective is to develop a robust WiFi real-time localization for mobile devices, available
to be deployed in any environment and to be used by any device.
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1.3 Document structure

After the introduction in Chapter 1, Chapter 2 contains a brief review of the most sig-
nificant research on WiFi indoor localization.

In Chapter 3 an analysis of the WiFi signal behaviour is exposed. The most important
characteristics of WiFi technology are reviewed and the most important signal variations
to take into consideration when designing a WiFi localization system are analysed.

The problem of the small scale variations on static positions will be tackled using
Fuzzy Rule-Based Classifiers in Chapter 4.

In Chapter 5, the challenge of designing a WiFi localization system for large environ-
ments, crowded with APs and not deployed for localization purposes, will be faced.

Chapter 6 presents an improvement of the system to localize a device in motion using
a Bayesian filter framework. Results for experiments under real conditions are presented
and discussed.

Chapter 7 contains the conclusions and main contributions of this work, and future
research lines that may spring from it.

Finally, Appendix A describes the software developed for topology-based localization
that implements the work described in this thesis and Appendix B summarizes the main
publications derived from this PhD dissertation.



Chapter 2

State of the Art

Indoor localization has been one of the most active fields of research for the last decade.
But, as it was mentioned in the introduction, WiFi indoor localization is still an open
problem. At present, there are some available indoor localization systems based on WiFi.
One of the most famous ones is the Google localization service (Figure 2.1) which combines
GPS, WiFi and GSM on indoor Google Maps [Indoor Google Maps, 2014] to provide
positioning in buildings, but its accuracy is not enough to provide an indoor guidance
service yet. Other systems such as the Active Badge [Want et al., 1992], the Cricket
[Priyantha et al., 2000] and Ekahau positioning engine [Ekahau, 2014] rely on especially
designed hardware. These kind of purpose-built systems can be expensive and hard to
implement on a world-wide scale.

Figure 2.1: Indoor Google Maps.

This chapter presents a brief survey of the state of the art in WiFi indoor localization.
First, the different approaches for WiFi indoor localization are described, providing an
overview of the most remarkable methods and those that are related to the contents of

9



10 State of the Art

the following chapters of this thesis. Then, a discussion on the revised research is carried
out to, finally, point out the specific objectives of the thesis.

2.1 WiFi localization systems

Given the diversity of WiFi localization methods published in the literature, different
classifications of them are possible [Liu et al., 2007]. Even though classification of some
of the methods is not evident and there is a certain degree of overlapping between groups,
they can be classified in terms of the algorithms that are used to solve the localization
problem. Using this criterion, the studies can be separated in the following categories:

• Deterministic:

– Propagation model based: Localization is carried out estimating the dis-
tance to nearby APs by means of a WiFi signal propagation model [Kotanen
et al., 2003] [Bose and Foh, 2007] [Mazuelas et al., 2009] [Yang and Chen,
2009] [Herranz, 2013]. Propagation models describe how the signal is prop-
agated in the environment and they are used to translate the RSS into a
distance. The APs location in the environment is normally known a priori.
Using the distance to the APs and their positions in the environment, the
typical choice is to use lateration algorithms to perform the localization.

– Fingerprint based: These systems use a fingerprint database stored in a
training stage to obtain the estimated position of the device by means of differ-
ent classification algorithms [Bahl and Padmanabhan, 2000] [Yim, 2008] [Men-
gual et al., 2010] [Garćıa-Valverde et al., 2012]. The fingerprint database stores
information, typically the RSS, at certain locations of the environment, mod-
elling the characteristics of the signal using either discrete (fingerprints) or
continuous (surfaces) representations. Classification algorithms are the com-
mon choice for localization in these kind of systems.

• Probabilistic: These methods keep track of the position of the device maintain-
ing a probability distribution over the positions or coordinates of the environ-
ment [Ocaña, 2005] [Youssef and Agrawala, 2008] [Fang and Lin, 2010] [Biswas
and Veloso, 2010].

Generally, these systems provide localization using a map as reference. Two map
representations have been traditionally used: discrete and continuous. On a discrete map
representation, the environment is divided into discrete positions and the localization
is usually obtained in an estimation stage comparing the measures with a previously
stored pattern (fingerprint based methods) [Bahl and Padmanabhan, 2000] [Youssef et al.,
2003]. When the discrete positions are selected based on their topological significance it
is called a topological representation. Topological representations [Kuipers and Byun,
1988] [Kortenkamp, 1993] discretise the environment using nodes that correspond to a
differentiating feature of the environment. These approaches have been especially useful in
WiFi-based localization systems where no movement models are available and topological
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information is more relevant than a metric one (e.g. been at the doorway of office 15
versus being at coordinates x,y,z). On a continuous map representation the environment
is considered continuous and the position is usually obtained using a propagation model
or updating a probabilistic distribution of the position through action and observation
models as in particle filters [Fox et al., 2003] [Hightower and Borriello, 2004]. Continuous
maps are more often used in robotics where the propagation and actuation models are
known, although some attempts have been made to model the human movement using
Inertial Measurement Units (IMUs) as described in [Woodman and Harle, 2008].

2.1.1 Deterministic

2.1.1.1 Propagation model based methods

Since the year 2000, different studies have been presented to estimate a WiFi device
position using propagation models in indoors [Bahl and Padmanabhan, 2000] [Kotanen
et al., 2003] [Bahillo et al., 2009]. Generally, the exact location of the APs in the en-
vironment is needed, so usually, a database with the APs location is built in an offline
process. But sometimes, the position of the APs is unknown or hard to obtain, so the
location of the APs can be estimated using the device’s pose and a model of the signal
propagation [Sichitiu and Ramadurai, 2004] [Caballero et al., 2008] [Zhang et al., 2011].

Signal propagation models are usually adjusted to calculate the signal propagation
path loss. But, due to the multipath effect and shadowing present indoors, path loss
models become environment-specific. So, theoretical models are being used to translate
the difference between the transmitted and the RSS into a distance estimation looking
for the minimum model adjustment requirements.

[Kotanen et al., 2003] proposed the Hata-Okumura model which has become popular
in the last decade for WiFi technology signal modelling in indoors. The RSS from an AP
is converted to distance d as follows:

log(d) =
1

10γ
(PTX − PRX +GTX +GRX + 20 log(λ)− 20 log(4π)−Xα) (2.1)

where, d is the estimated distance between the AP and the receiver in metres, PTX is
the transmitted power level and PRX is the power level measured at the receiver. GTX

and GRX are the antenna gains of the transmitter and the receiver respectively in dBi,
λ is the wavelength of the signal in metres and the γ value denotes the influence of walls
and other obstacles. Error is also included in the equation since Xα is a normal random
variable, whose standard deviation equals to α.

The curve in Figure 2.2 represents the tuned propagation model by [Kotanen et al.,
2003] and every dot corresponds to the mean of measured RSS. As can be seen, there are
differences between the measured values and the model, being the mean absolute error of
1.41 metres.

Hata-Okumura model was revised in [Bose and Foh, 2007] determining the following
values for the variables when using the model in indoors. Since WiFi frequency is 2.4
GHz, λ can be estimated to be 12.5 cm. The standard deviation of Xα is in the range
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Figure 2.2: Hata-Okumura propagation model tuned by [Kotanen et al., 2003].

of 3 dB up to 20 dB, depending on building construction and the number of obstacles
between the AP and the receiver. For free space, γ equals 2, but for obstructed paths in
buildings, γ is between 4 and 5.

Although the Hata-Okumura is a well-known model, it is difficult to reproduce the
effect of obstructions, especially by walls. [Bahl and Padmanabhan, 2000] proposed the
Wall Attenuation Factor (WAF) which provides flexibility in accommodating different
building layouts while taking into account large-scale path loss. The authors designed
the propagation model to have a good trade-off between simplicity and accuracy. The
WAF model computes the distance d as follows:

P (d) = P (do)− 10γ log d

(
d

d0

)

−
{

nW ∗WAF , nW < C
C ∗WAF , nW ≥ C

(2.2)

where, γ is the path loss exponent, P (do) is the signal power in dBm at some reference
distance do and d is the distance between the wireless device and the AP. C is the
maximum number of obstructions (walls) up to which the attenuation factor makes a
difference, nW is the number of obstructions (walls) between the transmitter and the
receiver, and WAF is the wall attenuation factor. In general the values of γ and WAF
depend on the building layout and construction material, and are derived empirically. The
value of P (do) can either be derived empirically or obtained from the wireless network
hardware specifications.

[Yang and Chen, 2009] utilized linear regression to discover the relationship between
the RSS and the distance from a wireless device to an AP. This way they are able
to adjust the parameters of the propagation model to their environment. The authors
chose polynomial regression adjusted by least squares. They used M training points
(di, RSSi ) where di is the distance between the wireless device and an AP and RSSi

is the corresponding signal strength reading at the training point to approximate the
polynomial. This approach is more accurate than the previous ones (improving the error
rate around 33%) but it is also less general to be used in different environments.

Once the propagation model has been established, the position of the device has to be
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estimated. Lateration is the most common approach for estimating the position using the
distances to multiple APs. Lateration is defined as the method that estimates the position
of an object by measuring the distance to multiple reference positions [Hightower and
Borriello, 2001]. Calculating the position of an object in two dimensions requires at least
the distance measurements to three non-collinear points (Figure 2.3). In three dimensions,
at least the distance measurements to four non-coplanar points are required, but the
number of required distance measurements can be reduced in some specific applications.
For example, applications based on GPS can estimate the position of a device by using
only three measurements from satellites (Figure 2.4), since it can be assumed that one of
the solutions is almost impossible.

Figure 2.3: 2D Lateration, where d1, d2 and d3 denote the distance to APs 1, 2 and 3
respectively. The crossing point of the circumferences is the estimated position.

[Bahl and Padmanabhan, 2000] proposed RADAR, an RF-based system for locating
and tracking users inside buildings using a basic tri-lateration algorithm. It used three
APs and an empirical propagation model to estimate a mobile position. The RADAR
proposal obtained an accuracy of 4.3 metres for the 50th percentile.

Similarly, [Bose and Foh, 2007] used a lateration algorithm to estimate the location
of a mobile device in a two dimensional plane. The system obtained an average error
of 2.9 metres for a NLOS environment. [Mazuelas et al., 2009] also applied a standard
lateration technique with an optimized propagation model to estimate a robot position.
It achieved a mean error of 4.1 metres for the 50th percentile.

An optimization approach has also been studied to solve the lateration problem. Non-
Linear and Linear Least Squares methods have been proposed in [Yang and Chen, 2009]
to estimate a mobile location. Both methods minimize the sum of the square error of
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Figure 2.4: 3D Lateration. The crossing points of the spheres denote the possible posi-
tions, since one of them is not located on earth it can be discarded.

Equation 2.3 in order to obtain an estimation (x̂, ŷ).

(x̂, ŷ) = argmin
x,y

N∑

i=1

(√

(xi − x)2 + (yi − y)2 − di

)2

(2.3)

where, di represents the range distances, (xi, yi) is the known position of the ith AP, N is
the number of APs, and (x, y) is the position of the mobile device to be estimated. Both
algorithms were validated in a real indoor environment using a WiFi network, improving
the accuracy of standard lateration methods. The median error obtained by Linear Least
Squares was 3.66 metres in contrast to the 3.05 metres error obtained by Non-Linear
Least Squares methods (50th percentile).

Despite these methods are being applied to indoor environments they still have to
face some challenges. The main challenge of these systems is the difficulty to formulate
a reliable radio propagation model due to the fact localization is not carried out in static
indoor environments and the signal usually goes through obstacles that are not known a
priori [Ocaña et al., 2005]. Typical obstacles are opened and closed doors, windows, pieces
of furniture, people, etc. Among these obstacles, the presence of people can be considered
one of the most significant ones, since human body is mainly made up of water, which
absorbs part of the signal, and it may dim significantly the RSS as exposed in [Bahillo
et al., 2009].

The localization systems described in this section have been tested in indoor environ-
ments with a low number and a very uniform distribution of APs over the environment,
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which suggests that they were deployed for localization purposes. This may have affected
the localization results, improving the results in comparison with a real environment
where the APs are deployed for communication.

2.1.1.2 Fingerprint based methods

Fingerprints have been used to have a spatial representation of the signal strength readings
from the surrounding APs. These systems rely on a training phase where the RSS at the
target areas is measured and stored. This way, the characteristics of the WiFi signal at
different areas of the environment are captured and the complex adjustment of the signal
propagation model is avoided. However, such data collection requires significant human
labour and the fingerprint databases have to be stored.

There are two stages for fingerprint based location systems: an offline stage denoted
as “training” stage and an online stage which is called “localization” stage.

Training stage

During this stage, a fingerprint database is built. Its construction begins by dividing
the environment in cells with the help of a floor plan (Figure 2.5). These cells can either
be uniformly distributed over the environment, or arranged covering interest areas in a
topological approach.

Figure 2.5: Environment division for fingerprint based systems.

Then, a site survey is performed and the RSS from the APs is collected at each cell
for a certain period of time and stored into a fingerprint database. The ith element in
the fingerprint database has the form:
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Mi =

({

~RSSij | ∀APj ∈ APs
}

, θi
︸ ︷︷ ︸

Ri∈R

, Ci

)

, i = 1, . . . ,M (2.4)

where Ci is the position of the ith cell. Vector ~RSSij holds the RSS values measured from
the APj . The parameter θi contains any other information needed in the localization
stage. This can be for example the orientation θi ∈ {north, south, east, west} of the
device, such as in the RADAR system [Bahl and Padmanabhan, 2000]. The ith fingerprint
is denoted by Ri and the set of all fingerprints by R = R1, . . . , RM .

The fingerprint database can be modified or preprocessed before the localization stage.
The motivation can be the reduction of the memory requirements to store the fingerprint
database, the reduction of the computational cost of the localization stage or the accuracy
improvement in the localization stage. In addition, different localization methods use
different characteristics.

Most of the systems collect statistical values such as the mean, the standard deviation,
and the median of the corresponding signal strength values [Bahl and Padmanabhan,
2000] [Alonso et al., 2009]. Other systems use histograms [Ladd et al., 2005] or Gaussian
models [Haeberlen et al., 2004]. Some systems also collect data at different times to
generalize the training stage [Prasithsangaree et al., 2002].

In [Mengual et al., 2010] the authors modelled the signal strength by means of a
calibration stage to overcome the relative effect of doors and walls. The calibration
stage was divided into three stages. First, the RSS measurements were normalized to
identify the relative effect of walls and obstacles. Second, neural networks computed the
normalized values to group the measurements in clusters. Finally, the physical topology
was used to optimize the clusters.

[Ferris et al., 2006] approached the modelling problem using Gaussian Processes
(GPs). The key idea underlying GPs is the requirement that the function values at dif-
ferent points are correlated. This dependency can be specified via an arbitrary covariance
function, or kernel k(xp,xq) (Equation 2.5).

k(xp,xq) = σ2

f exp

(

− 1

2l2
|xp − xq|2

)

(2.5)

where xp and xq are the input values, σ2

f is the signal variance and l is the length scale
that determines how strongly the correlation between points drops off. Both parameters
(σ2

f and l) control the smoothness of the functions estimated by the GP. The posterior
GP was estimated from a calibration trace of signal strength measurements annotated
with their locations. Assuming independence between different APs, a GP was estimated
for each AP separately.

[Fink and Kumar, 2010] continued the idea of GPs and used online methods to im-
prove the quality of the models as the environment was explored. Also, other approaches
such as graph representation [Biswas and Veloso, 2010] or neural networks [Paul and Wan,
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2009] have been proposed. In [Biswas and Veloso, 2010] the authors modelled the world as
a WiFi signature map with geometric constraints and introduced a continuous perceptual
model of the environment generated from the discrete graph-based WiFi signal strength
sampling. [Paul and Wan, 2009] proposed to use a radial basis function neural network
to fit nonlinear maps between known calibration locations and RSS measurements.

Besides the previously explained representations, some studies focused on continuous
representations are being used for robotic applications. Usually, continuous fingerprint
surfaces are generated through experimental sampling using interpolation methods for
regions without data samples (Figure 2.6). These surfaces can be used in different ways
to infer the mobile position.

(a) RSS recorded by a robot during a trajectory
over the environment [Howard et al., 2006].

(b) Interpolated RSS surface using the data set
shown in (a) [Howard et al., 2006].

Figure 2.6: RSS interpolation to create fingerprint surfaces.

[Howard et al., 2006] proposed a solution based on a simple interpolation kernel.
An exhaustive study of how to generate fingerprint surfaces was presented in [Zàruba
et al., 2007], which modelled the signal propagation like a map of the expected RSS mea-
surements in the environment. The surface was built in several steps. First, a scaled
floor-plan with all the walls, doors, and windows (and other major obstacles) of the en-
vironment was entered. The number of cells and their positions were defined and added
to the floor-plan, and signal-strength measurements were taken at the same physical lo-
cations. A parametric ray-tracing algorithm [Hassan-Ali and Pahlavan, 1998] was used
to provide a description of signal strengths at the measurement points (e.g., how many
different obstacles do radio wave rays pass through and/or reflect off until they reach
the measurement points). This parametric representation of the signal at the measure-
ment points was approximated using the real measurement values. Finally, the surface
was recalculated by using ray-tracing, but this time with the inserted transmission and
reflection properties of the obstacles obtained in the previous step.

Localization stage

Given the fingerprint database, the objective of the localization stage is to compare
the measures obtained online with the stored ones to infer the location of the device
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(Figure 2.7).

Figure 2.7: Localization stage for fingerprint based systems.

In the last years, machine learning research has greatly developed, and its advances
have been applied to the localization problem.

[Liu et al., 2007] refers as classifier-based methods to the algorithms that first use a
training stage to collect fingerprints of an environment and then estimate the location of
an object by matching online measurements with the closest fingerprint location.

[Bahl and Padmanabhan, 2000] is one of the first remarkable work in this area.
The authors proposed RADAR, an in-building user location and tracking system which
adopts a K-Nearest Neighbour (KNN) approach. The error of the RADAR system was
2.94 metres for the 50th percentile and around 9 metres for the 90th percentile. In their
following work [Bahl et al., 2000], RADAR was enhanced adding a tracking stage by a
Viterbi-like algorithm. It got an error of 3.16 metres for the 90th percentile.

[Fang and Lin, 2008] presented a more complex machine learning approach using dis-
criminant adaptive neural networks, which took the RSS from the APs as inputs to infer
the client position. The nonlinear relationship between RSS and the position is modelled
during the network learning phase. Useful information was extracted into discriminative
components. Thus, the nonlinear relationship between RSS and the position was accu-
rately constructed by incrementally inserting the discriminative components and recur-
sively updating the weightings in the network until no further improvement was required.
The authors compared this approach with other machine learning methods obtaining an
improvement of 21.07% for the mean error and 19.89% for the standard deviation with
an error of 4.91 metres for the 90th percentile.

Along the neural networks line, [Mengual et al., 2010] also proposed a solution based on
Self-Organizing Maps (SOMs) neural networks. The authors used the RSS measurements
and the information about the regions (cells) clustered by n SOMs to estimate a mobile
position. The mobile position was figured out based on three criteria: Exact location
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estimation, when the n SOMs output agreed about the same position; region estimation,
when the n SOMs output a region which is possibly different for each SOM, what is settled
by a voting algorithm; optimized region estimation according to the physical distribution
of the space, as above, but only the regions that have points that are close together in
the physical space are taken into account before the result is estimated. By using these
criteria the system was able to obtain a classification rate of 74% which ups to 85% for
80% of the cases.

Other work from the field of machine learning proposed the use of Support Vector
Machine (SVM). [Brunato and Battiti, 2005] proposal was based in the main idea of the
SVM which is to map the input vectors into a feature space with a higher number of
dimensions, and to find an optimal separating hyperplane in the feature space. The SVM
algorithm displayed an error rate of 5.12 metres for the 90th percentile. Moreover, SVM
presented a low algorithmic complexity in the normal operating phase with respect to
other algorithms. [Figuera et al., 2012] studied how including a priori information in the
learning machine algorithm can enhance the performance of the location system. The au-
thors proposed three advanced SVM-based algorithms which include a priori information
obtaining a mean error of 3 metres.

Decision tree algorithms are also being used with fingerprint databases. The basic
idea involved in decision tree algorithms is to break up a complex decision into the union
of several simpler decisions, hoping that the final solution would resemble the desired
one. [Yim, 2008] proposed a decision tree method which was built during the training
phase. The study also compared the complexity of decision trees and other classifier
methods such as KNN and neural networks concluding that decision trees are a much
more efficient solution than the other ones in terms of complexity.

Despite the fact that fingerprint methods are able to solve the indoor localization
problem, most of these systems do not manage well enough the noise that affects wireless
signals in indoors. Fuzzy logic [Zadeh, 1965] [Zadeh, 1973] is used in a number of studies
[Astrain et al., 2006] [Alonso et al., 2009] [Parwekar and Reddy, 2013] to deal with this
uncertainty, especially with the small scale effect [Youssef and Agrawala, 2003]. These
systems take advantage of the robustness of fuzzy logic to infer a mobile position without a
high number of samples. The feasibility of fuzzy logic in real-scenarios was demonstrated
by obtaining a classification rate close to 90%. Moreover, the results showed that fuzzy
logic-based system can use a lower number of samples to estimate a mobile position
[Alonso et al., 2011].

[Dharne et al., 2006] proposed a Fuzzy Rule-Based Classifier (FRBC) able to get
good results while reducing the computation time thanks to the use of a grid-based map
describing the environment under consideration. Moreover, they reduced the computa-
tional cost by taking into account only significant grid-points. [Chen et al., 2008] proposed
the use of an adaptive FRBC which updated a manually created set of rules using online
measures. Rules were created using the relations of the RSS from four different APs
achieving a classification rate of 59%.

More interesting is the system developed in [Garćıa-Valverde et al., 2012]. They
also created an adaptive FRBC in a real environment with up to 90 APs with no prior
knowledge about their locations. They proposed an incremental online learning method
to extend the rule base to adapt the system to new environment conditions. They obtain
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a classification rate of 76.40% using training and test data collected on the same day
without using the adaptive method, getting down to 10% when using data from different
days to train and test the system. Using the online learning method the system was able
to maintain the accuracy around 77%.

Similarly to the presented propagation model based localization systems, the localiza-
tion systems described in this section, except the system developed in [Garćıa-Valverde
et al., 2012], were carried out in indoor environments with a low number and a very uni-
form distribution of APs over the environment, which suggests that they were deployed
for localization purposes. This may have affected the localization results, improving the
results in comparison with a real environment where the APs are deployed for communi-
cation.

2.1.2 Probabilistic methods

Probabilistic methods have been used in a vast number of applications in order to track
the dynamic system’s state from observable and noisy measurements [Fox et al., 2003].
These techniques maintain a probability distribution that captures the knowledge about
the state of the system at a given instant of time. The distribution changes over time,
following the transition model of the system and is updated with each observation by
means of a probabilistic sensor model. Standard filtering techniques, such as Kalman or
Particle filters have been used to solve the localization problem with WiFi technology.
Typically, these techniques require to have an observation model of the signal such as
propagation models or fingerprint databases.

The Horus system [Youssef and Agrawala, 2008] proposed a joint clustering technique
for location estimation, which used a probabilistic distribution to model the noise of
WiFi technology. Each candidate location coordinate was regarded as a class or category.
In order to minimize the distance error, a location was chosen while its likelihood was
the highest. The experiment results showed that this technique acquired an accuracy of
more than 90% within 2.1 metres. The authors suggested that increasing the number of
samples at each sampling location could improve the system accuracy.

[Yim et al., 2008] presented the design and implementation of a WLAN-based Ex-
tended Kalman Filter (EKF) positioning method. It used a RF propagation loss model to
estimate the distances between the mobile and the APs. The EKF performance was com-
pared with trilateration and fingerprinting methods. The experimental results showed
that the proposed EKF positioning method improved the results of the trilateration
method without the filtering (3.52 metres versus 4.1 metres mean error). However, using
a simple KNN (1-NN) fingerprinting algorithm they obtained more accurate results (2.4
metres mean error) than their proposed EKF method. Along the same line, [Wu et al.,
2007] used an EKF in combination with neural networks to recursively estimate the po-
sition of a mobile. The authors chose the EKF because it can blend the information
optimally minimizing the variance of the estimation error. They showed that the EKF
provided a solution with an error of 2 metres in a fully controlled environment. In [Fang
and Lin, 2010], the authors exploited the information about the system state with an
EKF which used a fingerprint representation of the environment. The EKF obtained a
mean error of 3.5 metres for the 75th percentile.
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Other authors proposed solutions based on Particle Filters (PFs). PFs can cope
with arbitrary distributions enabling global localization, or can maintain multi-modal
distributions to deal with ambiguities. Moreover, the probabilistic observation model
of WiFi sensors is strongly nonlinear and leads to distributions that could be barely
approximated by using Gaussians only.

[Zàruba et al., 2007] proposed the use of PFs which used a fingerprint database repre-
sentation of the expected RSS measurements in the environment. The authors chose PFs
techniques to efficiently estimate the multi-modal distribution of the mobile’s position.
Simulated experiments showed that the filters estimate the mobile’s location obtaining an
average precision around 2.1 metres. [Widyawan et al., 2008] proposed a variant of PFs,
the so-called Backtracking Particle Filter (BPF). BPF is a technique for refining state es-
timates based on exclusion of invalid particle trajectories (Figure 2.8). Categorization of
invalid trajectory determined during importance sampling step of the PF. BPF obtained
an enhancement in the mean error (1.34 metres) up to 25% compare to PF only (1.82
metres) in a simulated experimentation.

(a) Detecting the invalid particles. (b) Backtracking the invalid trajectories.

(c) Backtracking the estimated states.

Figure 2.8: Backtracking Particle Filter used in [Widyawan et al., 2008].

In [Biswas and Veloso, 2010], the authors also considered a PF-based localization
approach where a WiFi fingerprint database along with a robot’s odometry is used to
obtain the robot’s location. The system got an error of 2.5 metres for the 90th percentile.
Finally, in [Ferris et al., 2006] the authors incorporated the likelihood model into a PF
operating in indoor environments using a signal representation based on GPs. The average
error was 2.12 metres obtained over a 3 km trajectory.
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2.2 Discussion

Previous sections have introduced a number of published methods for indoor localization
using WiFi technology. This section presents a discussion and a comparison of the most
important work for WiFi indoor localization.

WiFi localization research arose with the introduction of the RADAR system [Bahl
and Padmanabhan, 2000] which provides good performance and robustness. The RADAR
lateration method allows a fast implementation without the need of arduous training
stages. The RADAR fingerprint approach provides a solution for any problem that
requires to determine the position of a mobile in medium-size indoor environments. Both
solutions were an inspiring start point for many other researches and, to date, it is still
being used as a baseline to compare new systems.

Localization with WiFi technology is still a very open problem. In order to show
a general view of the performance of these methods, Table 2.1 shows a comparison of
some of the algorithms referred above in terms of the used positioning algorithm and the
achieved results. Error values are given by authors in several different forms, usually as
the mean error or the maximum error for a data percentile. Some fingerprint systems
that estimate the position using a discrete number of cells provide their results as the
percentage of the data correctly classified into the corresponding cell.

Since the experimental evaluation of these systems has been performed using datasets
specifically captured for each of them, results are not directly comparable. Most of them
compare their solutions with “standard” algorithms published in the literature, which
limits the validity of a real comparison because results in WiFi localization systems are
very environment dependent. In addition, many authors do not provide numeric values
for the size of their environments, and only present pictures or graphs of them. To be able
to get a general view of the achieved results by the different systems, the environment
size is approximately indicated in the “Environment size” column of the table, and the
cell size (important in the fingerprint systems) is shown in the “Cell size” column of the
table.

Several conclusions can be drawn from the analysis carried out in previous sections
and the information in Table 2.1:

• Propagation model based methods are the most precise systems if the propagation
model is well adjusted for the environment. Unfortunately, this is hard to achieve
in indoors, being the main reason of the low acceptance of this kind of systems for
WiFi indoor localization. Theoretically, one propagation model could be used for
localization in different environments; this is true when working outdoors but in
indoors it is usually necessary to do some site-survey to adjust the model, loosing
their main advantage.

The error achieved using these systems is around 4 metres for the 50th percentile,
being reduced to 3 metres for the 50th percentile if an environment-adjusted prop-
agation model is used.
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Reference Positioning Algorithm Environment Size Cell size Results

Propagation model based methods

[Bahl and Padmanabhan, 2000] Trilateration: WAF 979m2 Continuous 4.3m (50th percentile)

[Bose and Foh, 2007] Lateration: Hata-Okumura ≃ 100m2 Continuous 2.9m (mean error)

[Mazuelas et al., 2009] Lateration: Optimization ≃ 2500m2 Continuous 4.1m (50th percentile)

[Yang and Chen, 2009] Lateration: Non-linear opt. 3438m2 Continuous 3.05m (50th percentile)

Fingerprint based methods

[Bahl and Padmanabhan, 2000] KNN 979m2 0.5m− 5m 2.94m (50th percentile)

[Bahl et al., 2000] KNN+Viterbi algorithm 979m2 1.75m− 3.5m 3.16m (90th percentile)

[Fang and Lin, 2008] Neural Networks 690m2 1m− 2m 4.91m (90th percentile)

[Mengual et al., 2010] Neural Networks ≃ 350m2 2m− 5.5m 74% (classification rate)

[Brunato and Battiti, 2005] SVM 750m2 1m− 1.5m 5.12m (90th percentile)

[Figuera et al., 2012] SVM 559m2 1m 3m (mean error)

[Yim, 2008] Decision Tree ≃ 80m2 ≃ 1m 2.3m− 3.9m (mean error)

[Chen et al., 2008] FRBC 1762m2 Room size 59% (classification rate)

[Garćıa-Valverde et al., 2012] FRBC ≃ 50m2 Room size 77.22% (classification rate)

Probabilistic methods

[Youssef and Agrawala, 2008] Fingerprints: Bayesian 1766m2/424m2 ≃ 1.5m/2.1m 0.86m/1.32m (90th percentile)

[Yim et al., 2008] Prop. Model: EKF ≃ 2100m2 Continuous 3.5m (mean error)

[Wu et al., 2007] Prop. Model: EKF 109m2 Continuous 2m (mean error)

[Fang and Lin, 2010] Fingerprints: EKF 690m2 1m 3.5m (75th percentile)

[Biswas and Veloso, 2010]
Fingerprint surface: PF +

odometry
≃ 3000m2 Continuous 2.5m (90th percentile)

[Ferris et al., 2006] Fingerprint surface: PF 3000 ∗ 3 floors m2 Continuous 2.1m (mean error)

Table 2.1: A comparison of WiFi indoor localization methods.
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• Fingerprint based systems are only valid for the environment where they were
trained, but with the necessary training stage they can be used in environments
with any characteristics.

The main disadvantage using this kind of systems is the necessity of site-survey for
the fingerprint database construction, especially if the required resolution is high
(which means more cells to site-survey). But recently, some systems are arising for
automate or at least simplify the site-survey task [Chintalapudi et al., 2010] [Wu
et al., 2012] [Wang et al., 2012] [Rai et al., 2012] [Yang et al., 2012] allowing to
develop this kind of system reducing the effort required during the training stage.

Among the different algorithms used in fingerprint based systems the classic KNN
remains as a good choice while SVM and FRBCs are arising as the ones providing
the best results.

The error of fingerprint based systems in indoors is lower than the error obtained
using propagation models, reaching an error around 5 metres for the 90th percentile.

• Probabilistic methods improve the performance of the WiFi localization systems,
getting a mean error from 2 to 3 metres. Using the WiFi RSS along with the
information provided from other sensors reduces the error in the localization. It
does not seem to be one probabilistic method overcoming the others, so the selection
of one of them depends on the restrictions of the system, the available information
or the results achieved in an specific environment.

2.3 Objectives

After the review of the state the art, and considering the discussion presented in the
introduction, the objectives of this thesis are as follows:

1. To study the WiFi signal behaviour in indoor environments. Finding the main
challenges to face when using WiFi RSS to develop a localization system.

2. To record sufficiently representative datasets in different real indoor environments
with different characteristics. To date, there are no available datasets of WiFi
RSS recorded in real indoor environments. These datasets will be used to test the
methods proposed in this work, and made available to the public. Compare the
designed system with other systems presented in the literature.

3. To develop aWiFi indoor topology-based localization system taking into account the
previous conclusions. It must comply with the restrictions of a production system
(work with different devices, real-time execution, robustness to signal interferences,
tested in real environments with several floors) which are not dealt with in most of
the systems in the state of the art. Assess the performance of the proposed system
with different configurations.

4. To improve the developed system using probabilistic based methods to locate a de-
vice in motion. It must comply with the previously described restrictions. Perform
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experiments during different trajectories to get an idea of the maximum expectable
accuracy.

5. To develop a WiFi localization application to perform user-friendly localization
available for different devices (smartphones, tablets, laptops, etc.).





Chapter 3

WiFi Signal Analysis

WiFi was not originally intended to be used as a localization technology, so some intrinsic
performance limitations appear when it is used for this purpose. Most of the commercial
devices equipped with WiFi technology use 802.11b/g standards which work at 2.4 GHz.
This is a free frequency, where some other devices such as bluetooth and microwave ovens
work, making the WiFi RSS a noisy signal. Although in outdoor environments the WiFi
RSS decreases with the distance to the emitter [Rappaport, 1996], when working indoors
the RSS is strongly dependent on the building structure and some other non-desired
effects appear. Most of these effects are due to the multipath effect [Elnahrawy et al.,
2004]. Another important issue is the absorption of part of the signal by people moving
around in the environment, which significantly diminishes RSS [Bahillo et al., 2009].

In addition, the small scale variations cause the RSS vary when the WiFi device moves
distances in the range of the wavelength (λ = 12.5cm). This effect makes very difficult
to estimate the correct location because small variations in the position can lead to high
variations in the RSS.

Moreover, since WiFi networks are deployed with the goal of maximizing connectivity
and disregarding localization tasks, there is usually a high number of APs distributed
over the environment increasing the so-called co-channel interferences, which cause high
variations in the RSS from the APs.

Some interesting conclusions regarding the WiFi signal behaviour have been pointed
out in previous researches: In [Bahl and Padmanabhan, 2000], the authors determined
that the device orientation could cause a variation up to 5 dB. The authors of [Kae-
marungsi and Krishnamurthy, 2004] found that the RSS is noisier when people are present
during the measurement.

In Section 3.1, the most important characteristics of WiFi technology will be reviewed.
Next, Sections 3.2 to 3.5 will show a deeper analysis of the most important effects to take
into consideration when designing a WiFi localization system. The conclusions extracted
from this analysis will be taken into account to develop the system with the necessary
knowledge about WiFi signal behaviour.

27
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3.1 WiFi technology

The WiFi Alliance defines WiFi as “any Wireless Local Area Network (WLAN) product
that is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 stan-
dards”. IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY)
specifications based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoid-
ance) for implementing WLANs in the 2.4, 3.6, 5 and 60 GHz frequency bands. They
were created and maintained by the IEEE 802 Standards Committee. While each amend-
ment is officially revoked when it is incorporated in the latest version of the standard, the
commercial world tends to maintain them because they concisely denote the capabilities
of their products.

There are multiple versions of the IEEE 802.11 standard, being the following ones the
most important among them:

• 802.11b: It offered transmission rates of 11 Mbps at 2.4 GHz and it was ratified in
1999.

• 802.11g: This version also works on the 2.4 GHz band, increasing the maximum
transmission rates to 54 Mbps. The 802.11g amendment was ratified by 2003.

• 802.11n: It operated on both the 2.4 GHz and 5 GHz bands being the support for
the 5 GHz band optional. Since most of the devices on the market were already
using 2.4 GHz, some of the 802.11n APs did not include the hardware needed to
work on 5 GHz. It provides maximum data rates of 600 Mbps and it appeared in
2009.

• 802.11ac: This version works on the 5 GHz band at a maximum data rate of 1
Gbps. It was ratified in January 2014.

The most extended are the 802.11b/g versions, working at the 2.4 GHz frequency
band (Figure 3.1). This is the Industrial, Scientific and Medical (ISM) international
band, which is a free band available worldwide. However, because of this choice of
frequency band, 802.11b/g equipment may occasionally suffer interferences from other
devices working at the same frequency, such as Bluetooth, microwave ovens and cordless
telephones.

Inside the 2.4 GHz ISM frequency band, there are multiple channels utilizing the 2.4 -
2.5 GHz spectrum. The spectrum is sub-divided into 14 channels of 22 MHz each spaced
5 MHz apart, so adjacent channels overlap (Figure 3.2).

Channel 14 is only allowed in Japan, while channels 12 and 13 are allowed in most
parts of the world, except the USA, where only Channels 1 to 11 are legal to use. So,
there are only three non-overlapped channels allowed worldwide: 1, 6 and 11.

APs coverage range is usually from 25 to 140 metres for 802.11b/g standards, but it
depends on the hardware and the environment where the AP is located.

Finally, RSS values collected by the WiFi cards are discretised in integral steps of 1
dB, usually ranging from -10 dBm to -100 dBm.
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Figure 3.1: WiFi technology in the frequency spectrum.

Figure 3.2: WiFi channels in the 2.4 GHz band.
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3.2 Co-Channel interferences

Co-channel interferences are crosstalk from two different APs using the same frequency
(working at overlapped channels). To study how the co-channel interferences affect the
signal, the RSS from an AP emitting in channel 6 was measured during 4 hours, while
an AP emitting in channel 7 was on in the surroundings. The second AP was configured
to be turned off after two hours.

Figure 3.3 shows how the RSS from an AP is altered when another AP, working in
an overlapped channel, is turned off (sample 7100). As can be seen, the RSS kept stable,
around -61 dBm ± 2 dB, during the first two hours. After the second AP was turned off,
the RSS fell around 10 dB, keeping stable again around -71 dBm ± 2 dB. This variation
in the RSS can increase error in localization since changes in one AP can lead to changes
in the near ones.
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Figure 3.3: Co-channel interferences.

3.3 Temporal variations

Temporal variations are those which are produced when the measurement interface stands
at a fixed position, being the time the only variable that changes between the different
samples.

These variations are usually caused by environment changes, such as people walking
around, opening or closing doors, etc. To obtain a reliable localization system, these
variations must be minimal.

To study the effect of temporal variations, the RSS from different APs were measured
during 24 hours at different positions. Figure 3.4(a) depicts the RSS from an AP at one of
the positions. Figure 3.4(b) shows the same measures, but averaged using 4 samples. As
can be seen, the RSS variation is ± 2 dB and about 1 dB when the measures are averaged.
This effect is similar for the RSS from all the APs at all the positions. This shows that the
RSS at a static position is stable enough to assure the feasibility of localization systems
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development using WiFi. To support this statement the spatial stability, introduced
in [Ocaña, 2005], is studied.
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(a) RSS without averaging.
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(b) RSS averaged using 4 samples.

Figure 3.4: Temporal variations: RSS received from an AP at a fixed position.

The spatial stability is defined as the RSS stability for an AP at each position of
the environment for measurements collected at different times. To analyse the spatial
stability, 300 samples were measured at 9 positions (reference data), obtaining another
set of measurements at the exact same positions on a different day (test data). Both
sets of measurements were averaged for each position and dataset. These measurements
have been collected avoiding the presence of any people or RF devices to avoid undesired
effects.

Figure 3.5 shows the RSS from an AP for both datasets. As can be seen, the maximum
deviation between them is 0.5 dB at position 5, suggesting that the RSS tends to be stable
for long periods of time, as long as other undesired effects do not affect the RSS.
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Figure 3.5: Spatial stability for two datasets at the exact same positions on different days.
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3.4 Large scale variations

The large scale variations causes the RSS decrease with the distance to an AP due to
attenuation of the signal [Rappaport, 1996]. These variations are desirable as they lead
to differentiation between the locations of the environment. This has been used for
localization purposes especially in outdoor environments.

To analyse this effect, the RSS from 4 APs was measured using a robot moving along
a corridor (Figure 3.6). The frequency of acquisition was 4Hz and the robot speed 0,2
m/s, this way a new sample from all the four APs was obtained every 5 centimetres.

Figure 3.6: Large scale variations: Experimental set-up.

Figures 3.7 and 3.8 show the variation of the RSS from the 4 APs. As can be seen, the
RSS varies with the distance to the AP. This way, as the device gets closer to the position
of the AP the RSS increases (a variation of 20 dB corresponds to distances around 6-10
metres). But, it can also be seen that the noise in the RSS is very high, making very
difficult to obtain a propagation model to calculate the distance to an AP using the RSS.
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Figure 3.7: Large scale variations: RSS over distance from AP1 and AP2.
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Figure 3.8: Large scale variations: RSS over distance from AP3 and AP4.

3.5 Small scale variations

Small scale variations cause the RSS vary when the WiFi device moves distances in the
range of the wavelength [Youssef and Agrawala, 2003]. For 802.11b/g networks, working
at 2.4 GHz, the wavelength λ is 12.5 cm (Equation 3.1). This effect makes very difficult
to estimate the correct location because small variations in the position can lead to high
RSS variations.

λ =
c

f
≈ 3 · 108m/s

2.4 · 109Hz
= 12, 5cm (3.1)

This effect is one of the main problems to deal with when using WiFi for localization
since it is hard and not practical for a person or robot to place in the exact same location
where the measurements for the radio-map where collected.

With the aim of studying the small scale variations, the RSS was acquired at equally
separated points, at distances under the wavelength.

These measures were acquired as detailed below:

• A grid of 12.5 cm x 12.5 cm divided in 1 cm side squares was created. It is shown in
Figure 3.9. This way, the points where the device should be placed at each position
to collect the different measures are clearly identified.

• Initially, the device is placed at point A0 (Figure 3.10) and 300 samples are collected.
This point is used as reference (λ0).

• From point λ0, new measurements are collected in three different directions to check
the variations in the RSS caused by the small scale variations:

1. Horizontally: RSS is measured on λ0 (A0), λ0 + 3cm (A3), λ0 + 6cm (A6),
λ0 + 9cm (A9), λ0 + 12cm (A12). These points are shown with blue circles in
Figure 3.9.
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Figure 3.9: Measurement points for small scale variations analysis.

Figure 3.10: Small scale testing grid (Laptop at reference position A0).
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2. Vertically: RSS is measured on λ0 (A0), λ0+3cm (D0), λ0+6cm (G0), λ0+9cm
(J0), λ0 + 12cm (M0). These points are shown with red diamonds in Figure
3.9.

3. Diagonally: RSS is measured on λ0 (A0), λ0+3
√
2cm (D3), λ0+6

√
2cm (G6),

λ0 + 9
√
2cm (J9), λ0 + 12

√
2cm (M12). These points are shown with green

squares in Figure 3.9.

These measurements were collected at different locations of the environment trying to
avoid other effects, controlling which APs were emitting in the environment and without
people moving around.

Firstly, the variations in the RSS from a single AP are analysed. Figure 3.11 shows
the RSS histogram from the closest AP at all the test points. As can be seen, small
scale variations may cause differences up to ±10 dB for very close points (under the
wavelength λ). A difference about 20 dB is large enough to induce misclassification
between two different positions separated in the range of 6 to 10 meters, as explained in
Section 3.4 (page 32).
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Figure 3.11: Small scale variations: RSS histogram from the closest AP at all the points
around a position.

When analysing the histograms of the RSS from different APs at the same location
(Figure 3.12), it can be seen that the variations caused by the small scale variations do not
follow any pattern. As also stated in [Youssef and Agrawala, 2003], the RSS variations
caused by this effect can be assumed chaotic and thus, can not be modelled.

Finally, Figure 3.13 shows the RSS histogram from the same AP at two different
locations. As in the previous experiment, the histograms do not follow any pattern.

These experiments were repeated at different positions and using different APs, ob-
taining the same results. This way, it can be affirmed that the small scale variations
are not related either with the position of the environment or the AP from which the
measurements are collected.
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Figure 3.12: Small scale variations: RSS histogram from different APs.
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Figure 3.13: Small scale variations: RSS histogram from the same AP at two different
positions.
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By analysing the previous results it can be seen that small scale variations cause
important variations in the RSS, being one of the main causes of error in WiFi localization
systems. This way, if the measurements to test the localization system are collected a
few centimetres apart from the position where the train measurements were collected, the
possibilities of obtaining the correct position decrease.

3.6 Conclusions

In this chapter, the influence of different effects on the WiFi RSS have been analysed.
The following conclusions can be drawn:

• Co-channel interferences cause a high variation in the RSS if new APs emitting in
overlapped channels with the existing ones are installed in the environment, or if
existing APs are removed or turned off. This effect is hard to avoid in the real
world, since it can not be assured that an AP will not break or new APs will
not be installed, unless the localization system is deployed in a fully controlled
environment.

• Spatial stability analysis shows that the RSS at a static position on different days is
stable enough to assure the feasibility of localization using WiFi. When introducing
other effects, such as people moving around, doors opening or interferences from
devices emitting in the same frequency, the RSS is noisier but still stable enough.
Although glitches can be observed in the 24 hours RSS analysis, the use of multiple
APs should be enough to filter most of them.

• The RSS varies with the distance allowing the differentiation of the positions of the
environment. Ideally, if the RSS were only influenced by the large scale variations,
it would be possible to estimate the position inside an environment using a generic
propagation model. But, since there are other effects that affect the RSS, it is very
difficult to adjust a model for an environment, and unlikely that the designed model
adjusts well to different environments.

• Small scale variations cause important variations in the RSS, being one of the main
sources of localization error. If the test measurements are collected a few centimetres
away from the position where the train measurements were collected, the RSS can
be very different. This effect is also hard to avoid, since in a realistic application
the position of the device can not be forced to the exact same location where the
train measures were collected. So, it is necessary to use techniques that cope with
this effect to implement a realistic WiFi localization system.

• Some other error sources that affect WiFi RSS, such as the orientation of the device,
are considered as not critical because their contribution to the RSS will be masked
by more critical error sources like the small scale variations.





Chapter 4

Fuzzy Rule-based Classifiers to

deal with Small Scale Variations

Small scale variations have been identified in the previous chapter as one of the main
sources of uncertainty when determining the position of a device using WiFi. Different
techniques have been used to tackle this problem. The most interesting one can be found
in [Youssef and Agrawala, 2003]. In this work the authors proposed “the perturbation
technique” to handle the small scale variations. This technique was based on restrictions
over the motion a device can suffer. In order to detect small scale variations, the system
calculated the distance between the current estimated location and the previous one. If
this distance was above a threshold, the system assumed that small scale variations were
affecting the signal strength.

To compensate for these small scale variations, the system perturbed the received
vector and re-estimated the location using it. For example, if the received signal strength
vector was (RSS1, RSS2, . . . , RSSn), the system perturbed this vector to obtain a set of
vectors: (RSS1(1+x), RSS2(1+x), . . . , RSSn(1+x)), where x ∈ {−d, 0, d} was the noise
value used to perturb the signal strength (0 for no perturbation). This means building 3n

vectors to cover all the combinations. However, the authors said that since the small scale
variations depended heavily on the strength of the RSS, perturbing only the component
corresponding to the strongest AP can be enough. This approach has been proved useful
in an environment non crowded of APs where the averaged distance error was reduced
around a 25%. This technique can be only applied when the device is in motion and
the measurements are collected continuously since it makes use of information about the
previous position of the device and the distance from it.

In this thesis, the problem of the small scale variations on static positions will be
tackled using Fuzzy Rule-Based Classifiers (FRBCs). FRBCs have been selected because
of their ability dealing with complex or uncertain information.

In the next sections, a brief introduction to FRBCs design will be presented, the steps
and parameters for FRBCs development will be explained and finally, the results using
the designed FRBCs will be analysed and compared to other methods.

39



40 Fuzzy Rule-based Classifiers to deal with Small Scale Variations

4.1 Designing fuzzy rule-based classifiers

Fuzzy sets, introduced by Zadeh [Zadeh, 1965], allow a mathematical representation of
concepts using imprecise boundaries. Compared to traditional binary sets (where only
two crisp values are admissible: true or false, 1 or 0) fuzzy sets may have any value in the
0 to 1 range. The use of binary sets is a strong limitation when dealing with real-world
problems where the available information is noisy or uncertain.

Fuzzy modelling [Hellendoorn and Driankov, 1997] has been studied to deal with
complex uncertain systems, in which conventional mathematical models may fail to obtain
satisfactory results.

An important problem in the development of fuzzy models is to define the member-
ship functions and the fuzzy rules [Mamdani, 1977] [Zadeh, 1973]. These membership
functions and rules can be constructed by knowledge extraction from human experts.
However, information supplied by humans suffers from certain problems. Firstly, human
knowledge is usually incomplete or not organized since different experts usually make
different decisions. Even the same expert may have different interpretations of the same
observation on different times. Furthermore, knowledge acquisition from experts is not
systematic or efficient and even in some problems there is no expert knowledge available.
These problems have led researchers to build automated algorithms for modelling systems
using fuzzy theories via machine learning and data mining techniques.

The proposed FRBC has been designed and built using Generating Understandable
and Accurate fuzzy models in a Java Environment (GUAJE) [Alonso and Magdalena,
2011], a free software tool for generating understandable and accurate fuzzy models.
It implements Highly Interpretable Linguistic Knowledge (HILK) [Alonso et al., 2008],
which is a fuzzy modelling methodology that focuses on building comprehensible fuzzy
classifiers. Applying fuzzy machine learning techniques, HILK is able to automatically
extract useful pieces of knowledge from experimental data. Such knowledge is represented
by means of linguistic variables and rules under the fuzzy logic formalism.

The whole modelling process is made up of three steps:

• Membership functions design: Automatic generation of fuzzy partitions from
data.

• Rule base learning: Linguistic rules are automatically extracted from data.

• Knowledge base improvement: Iterative refinement of the partitions and rules.

Once the modelling process is finished and the knowledge base is built it is used to
infer the FRBC output.

4.1.1 Membership functions design

Since GUAJE looks for interpretability as well as accuracy, the system variables, auto-
matically extracted from data, are described by a set of linguistic terms represented by
membership functions like the ones in Figure 4.1. As it can be seen the same value xi
is partially Low (0.2) and Medium (0.8), but the addition of both membership degrees
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equals one. This kind of partition, called Strong Fuzzy Partition (SFP) [Ruspini, 1969],
is the best from the comprehensibility point of view because it satisfy all the semantic
constraints (distinguishability, normalization, coverage, overlapping, etc.) demanded to
be comprehensible [Mencar and Fanelli, 2008].

Medium

0.0

0.5

1.0

UuUl

0.2

0.8

xi

Low High

Figure 4.1: A strong fuzzy partition with three linguistic terms.

4.1.2 Rule base learning

Once all the linguistic variables have been defined with a set of linguistic terms and their
associated semantics, they can be used to express linguistic propositions like “RSS from
APi is High”. Then, several propositions are combined to form fuzzy rules describing
the system behaviour:

r: If X1 is Ai
1

︸ ︷︷ ︸

Partial P remise P1

AND . . . AND XI is Aj
I

︸ ︷︷ ︸

Partial P remise PI
︸ ︷︷ ︸

Premise

Then Yr is Cn

︸ ︷︷ ︸

Conclusion

where, given rule r, rule premises are made up of tuples (input variable, linguistic term)
where Xa is the name of the input variable a, while Ai

a represents the label i of such
variable, with a belonging to {1, ..., I} and being I the number of inputs. In the conclusion
part, Cn represents one of the possible output classes, i.e., one position in the case of
WiFi localization.

For instance,

If RSS from APi is High and RSS from APj is Low
Then The device is close to Position k

In order to generate these rules from data, different methods can be found in the
literature [Hüllermeier, 2005]. Among them, the two following methods have been chosen
to generate the rules from data with the previously defined fuzzy partitions:

• Wang and Mendel (WM) [Wang and Mendel, 1992]: It generates complete
rules (considering all the available variables) which are quite specific. WM starts
by generating one rule for each data pair of the training set and then, new rules
will compete with existing ones.
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• Fuzzy Decision Trees (FDT) [Ichihashi et al., 1996]: It generates a neuro-fuzzy
decision tree (directly from data) which is translated into quite general incomplete
rules (only a subset of input variables is considered). In addition, inputs are sorted
according to their importance (minimizing the entropy). FDT is a fuzzy version of
the decision trees defined by Quinlan in [Quinlan, 1986] and improved in [Quinlan,
1996].

4.1.3 Knowledge base improvement

After defining the linguistic variables and rules, HILK offers a powerful and flexible sim-
plification procedure which affects to the whole knowledge base including both partitions
and rules. The goal is getting a more compact and general FRBC, keeping high accuracy
while increasing comprehensibility and reducing the system complexity. It starts by look-
ing for redundant elements (terms, variables, rules, etc.) that can be removed without
altering the system accuracy. Then, it tries to merge elements always used together.
Finally, it forces removing elements not contributing to the final accuracy.

4.1.4 Inferring the FRBC output

Once the knowledge base is created, it is used to infer the system output as follows:

First, given an input vector xp = {xp
1
, ..., xpI}, the firing degree (for each rule r) is

computed as the minimum membership degree of xp to all the attached Aj
i fuzzy sets, for

all the I inputs (Equation 4.1):

µr(x
p) = min

i=1,...,I
µ
A

j
i

(xpi ) (4.1)

Then, the output class Ci is derived from the highest µCi(xp) (Equation 4.2) which
is the membership degree of xp to the class Ci. It is computed as the maximum firing
degree of all rules yielding Ci as output class (Equation 4.3).

yFRBC(x
p) = Ci ⇔ µCi(xp) = max

n=1,...,c
µCn(xp) (4.2)

µCn(xp) = max
r=1,...,R

µr(x
p) ⇔ Yr is Cn (4.3)

The output of the FRBC will be one position along with an activation degree that
can be understood as a degree of confidence on the system output. Several output classes
can be activated since several fuzzy rules can be fired at the same time by the same input
vector. This way, the activation degrees of the different classes could be used in order to
make an interpolation among several positions. For instance, if the system output says
that the device is in position A with a confidence degree of 0.2 and in position B with
a confidence degree of 0.8, it can be considered that it is located between A and B but
closer to B.
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4.2 Experimental analysis

This section describes the experimental results obtained on the FRBC development.

4.2.1 Experimental set-up

Exhaustive experiments were carried out in the test-bed environment established at the
Campus of the University of Oviedo, old premises of the European Centre for Soft Com-
puting (ECSC) located at Asturias (Spain).

The layout of the ECSC test-bed is shown in Figure 4.2. It has a surface of about 500
m2 with 15 offices, one main long corridor, and two large open working areas. There are
6 APs distributed over the environment which is discretised into 16 significant topological
positions.

Figure 4.2: Small scale analysis: ECSC environment.

The dataset used for the FRBC generation is composed of the measures corresponding
to λ0 point at each environment position, while the test dataset is composed of the
measures collected at all the other points, as explained in Section 3.5 (page 33). This
way, the system is tested maximizing the small scale variations effect.

4.2.2 Experimental results

Looking for the FRBC providing the best results, the influence of some parameters has
been analysed. These parameters are:

• Input variables.

The RSS and the Signal-to-Noise Ratio (SNR) have been collected from the avail-
able APs. Thus, two different configurations have been considered: using only the
RSS, and using both the RSS and the SNR.



44 Fuzzy Rule-based Classifiers to deal with Small Scale Variations

• Number of linguistic terms defined per input.

Since GUAJE generates FRBCs maximizing both the interpretability and the accu-
racy, it recommends to choose an odd number of linguistic terms equal or smaller to
nine. Therefore, four cases have been analysed: three, five, seven and nine linguistic
terms defined for each input variable.

• Rule induction technique.

Two rule induction algorithms have been considered, Wang and Mendel (WM)
and Fuzzy Decision Trees (FDT), introduced in Section 4.1.2. The WM algorithm
has not any configuration parameters, but for the FDT algorithm two cases are
evaluated: the whole tree (FDT) and the Pruned Fuzzy Decision Trees (PFDT) with
a loss tolerance threshold equal to 0.1. Then, the HILK simplification algorithm has
been executed for the three cases (Wang and Mendel with Simplification (WM-S),
Fuzzy Decision Trees with Simplification (FDT-S) and Pruned Fuzzy Decision Trees
with Simplification (PFDT-S)). Hence, a total of six different methods have been
tested; three different rule induction techniques before and after simplification.

• Number of samples to average at both training and test stages.

Six cases are evaluated: 1 (raw data without averaging), 4, 12, 28, 40, and 60
averaged samples. The time spent collecting the samples is not a problem during
the training stage of the system because it is made offline. However, it becomes a
critical requirement during the localization stage.

In summary, 288 (2 x 4 x 6 x 6) FRBCs covering all the described situations have been
built, evaluating each of them with six test datasets yielding a total of 1728 experiments.

4.2.2.1 Input variables

In this section an analysis of the inclusion of the SNR in the localization system is carried
out. The goal is to find out if the measured SNR information is useful for the localization.
Figure 4.3 shows the results during the training stage using only the RSS or considering
both the RSS and the SNR. On the one hand, the vertical axes represent the accuracy
of the analysed FRBC computed as the percentage of correctly classified samples using
the training dataset. On the other hand, the horizontal axes show the number of samples
averaged to build the training dataset.

From these graphs, comparing left and right columns, it can be observed that the
computed accuracy is slightly worse when working with the RSS alone. When using
the test data, the results are better using only the RSS what suggests that adding the
SNR causes some overfitting effect, as can be seen in Figure 4.4. In Figure 4.4 the
horizontal axes are slightly different since they include pairs of numbers showing the
samples averaged to build the train and test datasets respectively. For instance, 12 − 4
means that the classifier is trained using blocks of twelve samples while the test dataset
is built averaging four samples.

The decrease in accuracy is produced because the SNR measures do not follow a
particular pattern. That is why the generalization ability of the classifiers is strongly
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(a) RSS (three terms). (b) RSS and SNR (three terms).

(c) RSS (five terms). (d) RSS and SNR (five terms).

(e) RSS (seven terms). (f) RSS and SNR (seven terms).

(g) RSS (nine terms). (h) RSS and SNR (nine terms).

Figure 4.3: FRBC design: Varying the inputs. Training stage.
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(a) RSS (three terms). (b) RSS and SNR (three terms).

(c) RSS (five terms). (d) RSS and SNR (five terms).

(e) RSS (seven terms). (f) RSS and SNR (seven terms).

(g) RSS (nine terms). (h) RSS and SNR (nine terms).

Figure 4.4: FRBC design: Varying the inputs. Test stage.
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penalized and the accuracy is reduced for the test data. Moreover, the SNR inputs
usually disappear of the rules after simplification for most of the designed classifiers.
Therefore, it can be concluded that the SNR does not give any reliable information to
the localization system. Furthermore, doubling the number of inputs increase the system
complexity without any advantages, so the SNR can be discarded and the FRBC can be
built using only the RSS.

4.2.2.2 Rule induction technique and number of linguistic terms

Taking advantage of the conclusions derived from the analysis made in the previous
section, a more detailed analysis for both the number of terms and the rule induction
algorithms can be made by focusing only on the FRBCs built using the RSS. The goal
is to find out the best combination of both the number of terms (3, 5, 7, or 9) and the
rule induction method with or without simplification (WM, WM-S, FDT, FDT-S, PFDT,
and PFDT-S). Figures 4.5 and 4.6 show the comparison of the designed FRBCs for both
the training and the test data respectively. As expected, during the training stage the
accuracy increases as the number of terms grows, but the results are almost steady from
seven labels on. This behaviour is not always held on test data where an overfitting effect
sometimes appears when passing from seven to nine terms. Such effect is due to the
excessive specification of rules when working with a large number of linguistic terms.

After comparing left and right graphs in Figure 4.5, it can be deduced that the
simplification procedure gets more compact FRBCs keeping (and sometimes increasing)
the achieved accuracy during the training stage. Nevertheless, this statement is not
always true when looking at test results plotted in Figure 4.6. Simplification does not
alter accuracy when dealing with WM, but it slightly gets worse accuracy for the FDT and
PFDT which usually exhibit a good generalization ability. The simplification procedure
enhances the comprehensibility of the final model at the cost of losing some accuracy,
which is not admissible for a localization application.

FDT using nine linguistic terms provides the most accurate FRBC for both the train-
ing and the test datasets. There are two main reasons for not using more than nine
terms per input variable. A large number of terms leads to overfitting and it may de-
crease the generalization ability of the model, but it also would be less tolerant to slight
modifications in the environment (for instance people moving around).

4.2.2.3 Number of samples to average

In this section the influence of the number of samples to average is analysed for both the
training and the estimation stages.

Keeping in mind the previously drawn conclusions, this section focuses on the results
obtained using the FRBC providing the best results, i.e., the one built considering the
RSS only, nine linguistic terms with their associated uniformly distributed SFPs, and
linguistic rules automatically generated from training data using the FDT algorithm.
Figure 4.7 shows how the accuracy varies depending on the number of samples averaged
at the training stage. As expected, the larger the number of samples averaged, the higher
accuracy is achieved. The accuracy gets 100% for a number of samples greater or equal
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(a) WM (b) WM - S

(c) FDT (d) FDT - S

(e) PFDT (f) PFDT - S

Figure 4.5: FRBC design: Varying the rule induction method and number of linguistic
terms. Training stage.



4.2. Experimental analysis 49

(a) WM (b) WM - S

(c) FDT (d) FDT - S

(e) PFDT (f) PFDT - S

Figure 4.6: FRBC design: Varying the rule induction method and number of linguistic
terms. Test stage.
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to 40. As an effect of averaging, the measured variations are smoother and the accuracy
is higher, but at the cost of a longer acquisition time and a loss of generalization. One
minute is the time needed for acquiring 60 samples if the acquisition frequency is equal
to 1 Hz. This time can be acceptable for training but it could be too much for an online
localization.

Figure 4.7: FRBC design: Varying the number of samples to average. Training stage.

Figure 4.8 illustrates the results on the test stage using different number of samples
to average both the train and the test datasets. It is easy to appreciate that the accuracy
increases as the number of averaged samples decreases. This effect is caused because the
number of samples available to train the system is reduced as the number of averaged
samples increases. This way, having 300 samples per position in the train dataset, makes
300 samples per position in the non-averaged dataset, 75 in the 4 averaged samples
dataset, leaving only 5 samples in the train dataset when averaging using 60 samples.

Figure 4.8: FRBC design: Varying the number of samples to average (using all the
available samples). Test stage.
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To be able to do a fairer comparison, the same number of samples have been used
to build all the classifiers. Figure 4.9 illustrates the results on the test stage using the
different number of samples to average both the train and the test datasets. It is easy
to appreciate that the accuracy on test gets the highest rates when the FRBC is built
using 4 samples to average the training data. The most accurate solution is the one
obtained when testing with 60 averaged samples (around 85%), what means one minute
for acquisition time. From a practical point of view, it is desirable an acquisition time
as small as possible during the test stage. Looking at Figure 4.9 it seems reasonable to
consider only 4 averaged samples, what decreases the acquisition time to 4 seconds while
still keeping a high accuracy around 83% (87% using all the available samples (Figure
4.8)). It yields a good trade-off between the accuracy and the acquisition time.

Figure 4.9: FRBC design: Varying the number of samples to average (using the same
number of samples for the datasets). Test stage.

4.2.3 Using other classifiers to deal with small scale variations

To test the performance of the FRBC dealing with the small scale variations, different
classifiers have been tested using the same train and test datasets. Fuzzy Unordered Rule
Induction Algorithm (FURIA), KNN and SVM have been selected to be compared with
the designed FRBC (from now on, it will be referred as FDT).

Figure 4.10 shows the achieved accuracy obtained using the four classifiers. As can be
seen, the best results in terms of accuracy are achieved using the FDT classifier (86.77%),
a 7.44% higher than the results achieved by the KNN algorithm (79.33%) which provides
the second highest accuracy.

Figure 4.11 shows an analysis of the distance to the real positions achieved by each
classifier. As can be seen, the FDT classifier has the lowest error, obtaining an error of
6 metres for the 95th percentile. Notice that, since a topology-based indoor localization
is performed, the error in distance depends on the distance between the topological po-
sitions (the minimum distance between two positions of the environment is 3.5 metres).
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Figure 4.10: Accuracy using different classifiers to deal with the small scale variations.

The mean distance to the real position using the FDT classifier is 6.45 metres for the
misclassified samples and 0.85 metres taking into account all samples (both correctly and
incorrectly classified) compared to the 7.22 metres and 1.49 metres respectively obtained
using the KNN classifier.
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Figure 4.11: CDF of different classifiers to deal with the small scale variations.

Finally, Figure 4.12 shows the confusion matrix of each classifier. It details the pre-
dicted positions by the classifier related to the positions where the device really was.
Looking at the figure, it can be seen that most of the classification errors occur within
the nearest positions for the FDT classifier, while the other classifiers misclassified more
separated positions. This points out that the small scale effect is reduced by using the



4.3. Conclusions 53

designed FRBC.
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(a) FDT.
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(b) FURIA.
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(c) KNN.
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(d) SVM.

Figure 4.12: Confusion matrix of different classifiers to deal with the small scale variations.

4.3 Conclusions

The uncertainty generated by small scale variations has been reduced with the proposed
system obtaining an accuracy around to 87% using only 4 averaged samples in the test
stage.

Regarding the design of the FRBCs, the following conclusions can be extracted:

• The SNR does not provide any reliable information to the WiFi localization and
increases its complexity, so the SNR can be discarded.

• Accuracy increases when adding more linguistic terms per input during the training
stage. This is due to the fact that the input space is split into smaller cells providing
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a larger granularity and a finer analysis. As a side effect, the number of rules is
increased, rules are more specific and the generalization ability of the FRBCs is
reduced depending on the available data as well as on the selected rule induction
technique (FDT provides more general rules than WM). That is why the larger the
number of linguistic terms the higher the accuracy with FDT and PFDT, while using
WM or the algorithms with simplification the accuracy is higher with a medium
value of linguistic terms.

• In general, the best results are obtained using FDT, in both the training and the
test stages.

• Using WM provides high accuracy in the training stage, but during the test stage
it is slightly lower than using FDT. This is because WM algorithm generates rules
more specific for the available data reducing its generalization.

• Using the simplification procedure with the WM algorithm (WM-S) the accuracy
in the test stage is increased, but not enough to overcome the FDT results.

• Simplification slightly reduces accuracy for the FDT algorithm. The simplification
procedure enhances the comprehensibility of the final model at the cost of losing
some accuracy, which according to localization requirements is not admissible.

• Only 4 samples in both the train and the test stages are needed to achieve an
accuracy around 87%, so during the localization stage it would be necessary to
spend only four seconds to acquire the required number of samples.

• The best results are achieved with the FRBC built using only the RSS as input,
nine linguistic terms with their associated uniformly distributed SFPs, linguistic
rules automatically generated from training data by means of the FDT algorithm
and averaging the data using 4 samples for both the train and the test stages.

Regarding the use of the proposed FRBCs to reduce the effect of the small scale
variations, the following conclusions can be drawn:

• The accuracy was improved around a 7% in comparison with the algorithm provid-
ing the second highest accuracy. The mean error was reduced a 10% when taking
into account only the misclassified samples, and around a 42% when taking into
account all the samples (both correctly and incorrectly classified).

• The misclassified samples using the FDT algorithm were always classified within
the nearest positions.

• The generalization ability of the FDT algorithm should also be able to absorb
slight modifications on RSS, such as the noise produced by people moving around,
punctual interferences from other devices, etc.

• The results were obtained in a relatively small environment, with a small number of
APs, at static positions of the environment. Further conclusions can be extracted by
using the FDT in larger environments and during an online stage when the device’s
position is obtained while it is in motion.



Chapter 5

WiFi Indoor Localization in Large

Environments

In the previous chapters, the main sources of error in WiFi localization systems were
analysed. An FDT algorithm was proposed in Chapter 4 to deal with the main source of
error, the small scale variations, achieving an accuracy close to 87% in a small environment
non crowded with APs. As explained before, most of the systems in the literature are
designed in small or medium sized environments with their APs deployed for localization
purposes, following a grid distribution, and in a much smaller number than the expected
in a real environment.

In this chapter, the challenge of designing a WiFi localization system for a large
environment, crowded with APs not deployed for localization purposes, will be faced.
The main challenges in these environments will be analysed and a WiFi localization
system able to deal with them will be devised.

The remaining of the chapter is organised as follows: First, the performance of the
system in large environments will be analysed in Section 5.1. Then, Section 5.2 will
describe a hierarchical approach proposed to tackle with the loss of performance in large
environments. Next, in Section 5.3 the experimental analysis and results will be exposed
and, finally, in Section 5.4 a critical discussion about the results will be provided.

5.1 Analysis of the performance in large environments

As result of all the effects described in Chapter 3, 2.4 GHz WiFi signal is extremely noisy.
To overcome this problem, the FDT algorithm described in Chapter 4 was proposed to
improve the localization performance, obtaining an accuracy close to 87%. These results
were obtained in a small environment (16 positions and 6 APs).

To evaluate the behaviour of the system in a more realistic context, a large envi-
ronment located in the West wing of the Polytechnic School at the University of Alcalá
(UAH) was site-surveyed. This environment has four floors with a surface of 3000m2

each. WiFi measurements were collected on 133 positions distributed over the four floors
where 216 APs were detected. For a full description of the environment, please refer to
Section 5.3.1.

55
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Figure 5.1 shows the results of the FDT classifier in the large environment. Figure
5.1(a) shows the accuracy variation as the number of the positions increases, while Figure
5.1(b) shows the mean error (computed as the mean distance between the estimated
positions and the real ones). As can be seen, accuracy decreases as the number of positions
increases. This effect seems to cease after certain number of positions (around 50) is
reached. In the same way, the mean error of the system increases with the number of
positions.

20 40 60 80 100 120

40

50

60

70

80

90

100

Number of Positions

A
cc

ur
ac

y 
(%

)

 

 
FDT   

(a) Accuracy variation.
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(b) Mean error variation.

Figure 5.1: FDT: Accuracy and mean error variation with the number of positions.

These experiments have been repeated with other classifiers: FURIA, KNN and SVM
(Figures 5.2, 5.3 and 5.4). As can be seen, the effect is similar for all the classifiers:
accuracy decreases as the number of positions increases and the mean error increases
with the number of positions.
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(a) Accuracy variation.
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(b) Mean error variation.

Figure 5.2: FURIA: Accuracy and mean error variation with the number of positions.
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(a) Accuracy variation.
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(b) Mean error variation.

Figure 5.3: KNN: Accuracy and mean error variation with the number of positions.
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(a) Accuracy variation.
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(b) Mean error variation.

Figure 5.4: SVM: Accuracy and mean error variation with the number of positions.

To tackle this problem the classifiers’ task will be simplified by dividing the environ-
ment into smaller sub-zones, in a hierarchical approach, where the classifiers will have to
assign each sample to a zone, reducing the number of outputs in the first level and the
number of inputs and outputs in the following ones. With this division of the problem,
the effects that appear when the number of positions and APs increases are expected to
be reduced, improving the performance of the localization system.

5.2 Hierarchical approach

This section presents a description of the proposed hierarchical localization approach.
The main objective is to achieve high accuracy even when working in large environments.
To do so, the system will create a hierarchical partition of the environment with the
objective of improving the localization task while decreasing its complexity by reducing
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the number of positions in each one of the partitions. First, a hierarchical partition of the
environment will be created using a clustering algorithm. Then, different classifiers will
be trained to localize the device through the different levels of the hierarchy. This way,
the device will be first located inside the higher subzones, to finally decide the position of
the device inside the lower ones. A block diagram of the entire system is shown in Figure
5.5.

Both training and localization stages will be thoroughly explained in the next subsec-
tions.

Figure 5.5: Hierarchical approach: General architecture of the system.

5.2.1 Training stage

The goal is to obtain a hierarchical localization tree by dividing the environment into
zones. For each zone, a specific classifier will be trained to distinguish between the differ-
ent zones (zone classifiers) and, in the lowest level of each one of the tree branches, one
classifier will be trained to distinguish between the different positions (position classifiers).
The training stage consists of the following steps:

• Visibility dataset generation: First, the RSS is measured for every position of
the environment and stored in RSSTRAINDATA (Equation 5.1).
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RSSTRAINDATA =
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(5.1)

where I is the number of APs, J is the number of positions and S is the number of
samples collected per position.

The division of the environment is performed using the so-called visibility. The
visibility of an AP (APi) at a certain position (Pj) is defined by Equation 5.2:

V ISAPi
(Pj) =

1

S

S∑

s=1

dij(s), dij(s) =

{
1 , RSSAPi

(Pj , s) > RSSthres

0 , otherwise
(5.2)

V ISAPi
(Pj) is computed as the percentage of samples that were collected with

RSSAPi
(Pj , s) greater than a predefined threshold RSSthres. Currently, this thresh-

old is set to the minimum value, this way the sample s is taken into account for
visibility purposes for any RSSAPi

(Pj , s). This threshold could be used to decrease
the visibility of those APs with low RSS.

Once the visibility of all APs for each position is evaluated, the visibility dataset
(V ISTRAINDATA) is generated as described by Equation 5.3:

V ISTRAINDATA =








V ISAP1
(P1) V ISAP2

(P1) . . . V ISAPI
(P1)

V ISAP1
(P2) V ISAP2

(P2) . . . V ISAPI
(P2)

...
...

...
V ISAP1

(PJ) V ISAP2
(PJ ) . . . V ISAPI

(PJ )








(5.3)

• Automatic environment partition: The environment is automatically divided
into zones using the K-Means clustering algorithm [MacQueen, 1967] and the
Caliński-Harabasz Index [Caliński and Harabasz, 1974] over V ISTRAINDATA. Fig-
ure 5.6(a) depicts the flow diagram of the procedure. The environment is iteratively
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divided into zones, in a hierarchical partition that can be represented by a tree (Fig-
ure 5.6(b)). Each zone ZK is divided intoK new sub-zones through K-Means, being
the value of K determined by the Caliński-Harabasz Index. A zone is no further
divided if it has less than 10 positions. This threshold has been experimentally
selected.
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(a) Partition flow diagram. (b) Environment division tree.

Figure 5.6: Hierarchical approach: Partition procedure.

• Zone classifiers training: Once the environment is divided into hierarchical zones,
a classifier is built over the train data with the aim of distinguishing between the
different zones belonging to the same level (squares in Figure 5.6(b)). Four classi-
fication algorithms (FDT, KNN, FURIA and SVM) have been tested.

• Positions classifiers training: Another classifier is trained for each zone in the
lowest level of the tree branches. These classifiers find the closest topological po-
sition to the current location among all the positions belonging to the lower zones
(circles in Figure 5.6(b)). Again, FDT, KNN, FURIA and SVM have been used.

5.2.2 Localization stage

In this stage, the WiFi device will estimate its current position using the RSS from all
the APs. The set of classifiers trained in the previous stage are now used to hierarchically
localize the device, first in the higher zones and, at the end, determining the position of
the device in the lower ones. The localization stage comprises two steps as showed in
Figure 5.5:

• Measurement: Using a WiFi device, 4 RSS samples are collected from every
AP and an averaged sample is generated. This value has been selected from the
experimental analysis carried out in Chapter 4 (page 39).
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• Classification: The averaged sample is classified through the different levels of
the hierarchy previously built in the training stage. Starting from the first level
of zone classifiers, the system finds out the zone the sample belongs to. Then, the
sample is classified again using the second level of classifiers corresponding to the
zone previously identified. This procedure continues until the lowest level in the
tree branch is reached. At the end, the estimated position of the WiFi device is
determined by the position classifier associated to the lowest zone identified in the
previous steps.

5.2.3 Learning algorithms

This section provides a brief revision of the algorithms used to test the hierarchical ap-
proach.

5.2.3.1 Environment division

K-Means clustering algorithm [MacQueen, 1967] along with the Caliński-Harabasz Index
[Caliński and Harabasz, 1974], also known as Variance Ratio Criterion (VRC), is used to
obtain the hierarchical partition of the environment. The objective is to create a partition
of the environment maximizing the intra-cluster similarity.

K-Means [MacQueen, 1967] follows a simple way to assign the samples of a given
dataset through a certain number of clusters (K clusters) fixed a priori. The objective
is to define K centroids, one for each cluster. First, these centroids are placed as far
away as possible from each other. Next, each sample is associated to the nearest centroid
and the K centroids are re-calculated as the barycentre of the clusters resulting from
the previous step. This procedure is repeated until the K centroids do not change their
location anymore.

Setting the right number of clusters becomes a key task. To do so, the VRC performs a
quantitative evaluation of clusters with the aim of finding out the right K. For a solution
with N observations and K clusters, VRC is calculated as described in Equation 5.4,

V RCK =
BGSS

WGSS

N −K

K − 1
(5.4)

where BGSS (Between-Group Sum of Squares) measures the dispersion of the clusters
between each other (Equation 5.5) and WGSS (Within-Group Sum of Squares) measures
the dispersion within each cluster (Equation 5.6). Compact and well-separated clusters
within the feature space are expected to have small values of WGSS and large values of
BGSS. As a consequence, the better the data partition, the greater the ratio between
BGSS and WGSS. The normalization term (N − K)/(K − 1) prevents this ratio to
increase monotonically with the number of clusters, making VRC a maximization criterion
with respect to the number of clusters K.
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BGSS =

K∑

k=1

nk

∥
∥
∥G{k} −G

∥
∥
∥

2

(5.5)

where nk is the number of observations belonging to the cluster k, G{k} is defined as the
dispersion of the barycentre of each cluster, calculated as the mean of all the variables
within the cluster k and G is the barycentre of the whole set of data.

WGSS =

K∑

k=1

∑

d∈Dk

∥
∥
∥M

{k}
d −G{k}

∥
∥
∥

2

(5.6)

where d ∈ Dk are the indices of the observations belonging to the cluster k, M
{k}
d is the

sample d belonging to the cluster k and G{k} is defined as the dispersion of the barycentre
of each cluster, as explained before.

5.2.3.2 Classification

As explained in Sections 5.2.1 and 5.2.2, four different classifiers (FDT, FURIA, KNN
and SVM) based on three different kinds of algorithms (rule induction, instance-based
and kernel-based) have been tested to classify the RSS measures into zones at each level
and positions at the lowest level of the hierarchy.

Rule induction classifiers have been proved as a powerful tool to deal with noisy
data [Hühn and Hüllermeier, 2010]. The previously explained Fuzzy Decision Trees (FDT)
(Chapter 4, page 39) and Fuzzy Unordered Rule Induction Algorithm (FURIA) [Hühn
and Hüllermeier, 2009] have been selected among this kind of algorithms. FURIA is a
fuzzy modelling method which extends the well-known RIPPER algorithm [Cohen, 1995],
a state-of-the-art rule learner, while preserving its advantages, such as simple rule sets.
In addition, it includes some modifications and extensions. In particular, FURIA learns
fuzzy rules instead of conventional rules and unordered rule sets instead of rule lists.
Moreover, to deal with uncovered examples, it makes use of an efficient rule stretching
method.

Among all existent instance-based classifiers, K-Nearest Neighbour (KNN) [Kibler
and Aha, 1987] is usually used as baseline to compare with WiFi indoor localization
systems [Youssef and Agrawala, 2008,Wu et al., 2007]. It is a variation of the nearest
neighbour algorithm where the most popular class of the K nearest samples is used for
prediction. This prevents a single noisy sample from incorrectly classifying a new one.
As the system does not have this information a priori, a popular method is to train and
test the system using a variety of K values, and adopting the one that produces the best
result. For the following experimentation, the KNN classifier has been configured to use
the euclidean distance using one sample (K = 1) for the prediction.

Finally, the Support Vector Machine (SVM) [Cortes and Vapnik, 1995] algorithm has
been chosen as the most outstanding kernel-based classifier. SVM constructs a hyper-
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plane or set of hyperplanes in a high-dimensional space which separates input classes.
Intuitively, a good separation is achieved by the hyperplane that has the largest distance
to the nearest training data points of any class (so-called functional margin), since in
general the larger the margin the lower the generalization error of the classifier. For the
following experimentation, the SVM classifier has been configured to use a linear kernel.

5.3 Experimental analysis

This section describes the experiments carried out to validate the hierarchical approach.
In addition, a critical discussion of the obtained results is provided.

5.3.1 Experimental set-up

The hierarchical approach has been tested in a complex real-world environment. The
experiments have been performed on the West wing of the Polytechnic School at the
UAH (Figure 5.7). The environment has four floors with a surface of 3000m2 each. In
the experiments 216 APs have been detected. They were deployed over the environment
with the aim of providing Internet access to the students but disregarding localization
purposes. 133 significant topological positions, represented by circled numbers in Figure
5.7, have been considered (distributed over the four floors). In this building, mainly made
of concrete, the signal measurement is highly affected by the multipath effect.

With the aim of evaluating the scalability of the proposal two different scenarios
have been tested. In the simple scenario, only the third floor (Figure 5.7(a)) has been
considered. It represents a relatively small test-bed environment with 30 positions and
105 APs. In the complete scenario, all the floors have been considered. This can be
deemed as a large and complex test-bed environment with 133 positions and 216 APs.
The system performs the localization with no prior knowledge about the APs physical
locations.

The tests have been carried out with a laptop computer using its internal Wireless
device acquiring 1 sample per second. Two RSS raw datasets (train and test) have been
collected on different days, one week apart, under real conditions. Each raw dataset has
60 samples per position and per AP.

5.3.1.1 Simple scenario. Small test-bed environment

To illustrate the simple scenario division obtained by the proposed system, an environ-
ment division tree has been used (Figure 5.8). The horizontal dotted lines show the
division between the different levels, the squares represent the zone classifiers and the
circles denote the position classifiers, as explained in Section 5.2.1, Figure 5.6(b) (page
60). The number under each circle corresponds to the number of positions in the corre-
sponding zone. Finally, the lines joining the nodes represent the hierarchy between the
different zones, showing the number of subzones in which a zone is divided. As can be
seen, the scenario has been divided in 3 different levels, obtaining 5 final zones with 3 to
10 positions each.
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(a) Third Floor (30 Positions). (b) Second Floor (41 Positions).

(c) First Floor (31 Positions). (d) Ground Floor (31 Positions).

Figure 5.7: UAH test-bed environment.

After dividing the environment, the zone and position classifiers are trained for each
zone. Then, the test data is classified through the different levels until an inferred position
is obtained for each sample.

Table 5.1 summarizes the results achieved in the simple scenario when considering the
different algorithms. The results labelled as “Single Classifier” are the results in the case
of classifying all the positions without dividing the environment. The column entitled
as “Hierarchical Classification” shows the results achieved after applying the proposed
hierarchical approach (all the three levels). SCAL stands for “Same Classifier for All
Levels”and it reports the accuracy using the same classifier (FDT, FURIA, KNN or SVM)
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Figure 5.8: Simple scenario division (30 positions in the 3rd floor).

at every level. ZCKNN means “Zone Classifiers using KNN” and it reports the accuracy
using KNN in all the zone classifiers and FDT, FURIA, KNN or SVM (the one appearing
in the first column) in the position classifiers at the lowest level of the hierarchy. The last
column, “Improvement”, gives the difference between the two previous columns, which
is the increase in accuracy as result of applying the proposed hierarchical localization in
contrast to the non-hierarchical approach.

Table 5.1: Summary of results in the simple scenario (30 positions in the 3rd floor).

Single Classifier Hierarchical Classification Improvement

FDT RSS: 70.67%
SCAL: 79.78% 9.11%

ZCKNN: 80.67% 10%

FURIA RSS: 58.22%
SCAL: 59.78% 1.56%

ZCKNN: 64.00% 5.78%

K-NN RSS: 63.78%
SCAL: 76.00% 12.22%

ZCKNN: 76.00% 12.22%

SVM RSS: 65.33%
SCAL: 83.33% 18.00%

ZCKNN: 84.89% 19.56%

Figure 5.9 gives a more detailed view of the results achieved by the hierarchical system
at all the levels of the hierarchy. In the graphs on the left side of the figure, the vertical axis
represents the accuracy, while in the graphs on the right side it represents the mean error
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of the system computed as the mean distance between the estimated positions and the
real ones. The horizontal axis represents the number of levels in which the environment is
divided in all the graphs. “1 Level”means all the positions have been classified using only
one classifier, without dividing the environment, while the maximum number of levels
means that the whole hierarchical partition, shown in Figure 5.8, has been used for the
classification steps. The results corresponding to the intermediate number of levels are
shown just for comparison purposes and are obtained stopping the division process once
the corresponding level is reached.

Two pair of graphs are plotted, each one focusing on the different configurations. On
the one hand, the two pictures on top (5.9(a) and 5.9(b)) depict the results using the same
classifier (FDT, FURIA, KNN or SVM) at every level of the classification hierarchy. On
the other hand, the two pictures at the bottom (5.9(c) and 5.9(d)) show the results using
KNN in all the zone classifiers and FDT, FURIA, KNN or SVM at the last classification
level (position classifiers).

As can be seen in the graphs on the left side of Figure 5.9, accuracy increases with the
number of levels. Accuracy remains almost the same with the first division of the envi-
ronment into two levels, but it significantly increases with the next hierarchical partition
(three levels) for the KNN and SVM classifiers. Just the opposite happens when using
the fuzzy classifiers FDT and FURIA, the accuracy significantly increases after the first
division, while it remains almost the same (it even decreases using the FURIA classifier)
with the next partition. No matter the selected classification technique, adopting the
hierarchical approach yields to an improvement of accuracy versus the “1 Level”. FDT,
KNN and especially SVM significantly increase accuracy thanks to the hierarchical ap-
proach and clearly overcome FURIA. Using the FDT classifier provides the highest initial
accuracy, but SVM overcomes its results when the classification is performed using the
hierarchical approach.

Looking at the graphs on the right side of Figure 5.9, it can be seen that the mean
error is reduced for all the configurations (between 33% and 62%) using the hierarchical
approach.

Using KNN in the zone classifiers (Figure 5.9(c) and 5.9(d)), slightly improves the
results for all the proposed classifiers (FDT, FURIA and SVM).

The following conclusions can be drawn after looking at Figure 5.9 and Table 5.1:

• The hierarchical classification approach clearly overcomes the single classifier ap-
proach. In all cases there is an improvement in the accuracy. Moreover, no matter
the selected classification algorithm (FDT, FURIA, KNN, or SVM) there is always
at least one configuration yielding a minimum improvement of 5.78% (Table 5.1).

• With respect to FDT, FURIA and SVM, the accuracy increases using KNN in all
zone classifiers and FDT, FURIA or SVM only at the lowest level of the hierarchy
(position classifiers) versus using FDT, FURIA or SVM in all the classifiers. Such
behaviour was expected since the environment was divided into zones using K-
Means, the “equivalent” clustering algorithm to KNN.

• The hierarchical approach reduces the mean error of the system at least a 33%,
even in the case when this improvement is not reflected in the accuracy. Using
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(a) Accuracy using the same classifier for all levels
(zone and position classifiers).
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(b) Mean error using the same classifier for all levels
(zone and position classifiers).
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(c) Accuracy using K-NN in the zone classifiers.
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(d) Mean error using K-NN in the zone classifiers.

Figure 5.9: Accuracy and mean error results in the simple scenario (30 positions in the
3rd floor).

FURIA at all the levels of the hierarchy gets an improvement of only 1.56%, but
the mean error is reduced from 4.33 to 2.88 metres. This means that thanks to the
hierarchical approach the number of classification errors is reduced, but also that
the misclassifications occur within closer positions.

• The lowest error (0.58 metres) and the highest accuracy (84.89%) and improvement
(19.56%) are obtained using KNN in all zone classifiers and SVM only at the lowest
level of the hierarchy (position classifiers).

To fully understand the obtained results, Figure 5.10 shows the Cumulative Distri-
bution Function (CDF) along with the confusion matrix for the configuration providing
the highest accuracy. The CDF (Figure 5.10(a)) shows an analysis of the distance to the
real positions in the different levels of the hierarchical system. As can be seen, the error
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decreases as the number of levels in the hierarchy increases, obtaining an error under 4
metres for the 95th percentile. The confusion matrix (Figure 5.10(b)) details the predicted
positions by the system related to the groundtruth (the positions where the device really
was). Looking at the figure, it can be seen that most of the classification errors occur
within the nearest positions. Notice that, since a topology-based indoor localization is
performed, the minimum error in distance depends on the minimum distance between
the topological positions (2.25 metres in this scenario).
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Figure 5.10: CDF and confusion matrix using ZCKNN with SVM. Simple scenario (30
positions in the 3rd floor).

The mean distance to the real positions is 3.90 metres for the misclassified samples
and 0.58 metres taking into account all samples (both correctly and incorrectly classified),
compared to 4.42 and 1.53 metres respectively obtained without applying the hierarchical
approach.

5.3.1.2 Complete scenario. Large test-bed environment

Figure 5.11 illustrates the environment division tree obtained by the proposed hierarchical
localization approach in the complete scenario (all the four floors depicted in Figure 5.7).
The horizontal dotted lines show the division between the different levels, the squares
represent the zone classifiers and the circles denote the position classifiers, as explained
in Section 5.2.1, Figure 5.6(b) (page 60). The numbers under the circles are the number
of positions in the corresponding zone. Finally, the lines joining the nodes represent the
hierarchy between the different zones, showing the number of subzones in which each zone
is divided. As can be seen, the scenario has been divided into 5 different levels, obtaining
24 position zones with 2 to 9 positions each.

After dividing the environment, all the zone and position classifiers are trained. Then,
the test data are classified through the different levels until an inferred position is obtained
for each sample.

Table 5.2 summarizes the accuracy results achieved in the complete scenario using the
different algorithms. The format of this table is the same than the one described for Table
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Figure 5.11: Complete scenario division (133 positions).

5.1 in the case of the simple scenario. The first column determines the base classification
algorithm to be considered (FDT, FURIA, KNN or SVM). The second column, “Single
Classifier”, shows the results when the environment is not divided. In the third column,
“Hierarchical Classification”, the results provided by the proposed hierarchical approach
are shown. SCAL reports the accuracy using the same classifier (FDT, FURIA, KNN
or SVM) at every classification level, while ZCKNN reports the accuracy using KNN
in all the zone classifiers and FDT, FURIA, KNN or SVM (the one appearing in the
first column) in the position classifiers at the lowest level of the hierarchy. The last
column, “Improvement”, gives the increase in accuracy as result of applying the proposed
hierarchical localization approach in contrast to the non-hierarchical one. It is computed
as the difference between the two previous columns.

Table 5.2: Summary of results in the complete scenario (133 positions).

Single Classifier Hierarchical Classification Improvement

FDT 67.02%
SCAL: 67.49% 0.47%

ZCKNN: 67.07% 0.05%

FURIA 46.22%
SCAL: 52.13% 5.91%

ZCKNN: 55.79% 9.57%

K-NN 50.48%
SCAL: 63.01% 12.53%

ZCKNN: 63.01% 12.53%

SVM 59.25%
SCAL: 69.62% 10.37%

ZCKNN: 70.98% 11.73%
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Figure 5.12 gives a more detailed view of the results. The format of this figure is the
same as the one described for the simple scenario. The horizontal axis represents the
number of levels in which the environment is divided (“1 Level” means the environment
has not been divided while “5 levels” means that the environment has been fully divided
following the proposed hierarchical approach). In the graphs on the left side of the figure,
the vertical axis represents the accuracy, while in the graphs on the right side it represents
the mean error of the localization system.

Two pair of graphs are plotted, each one focusing on the different configurations.
On the one hand, the two pictures on top (5.12(a) and 5.12(b)) depict the results using
the same classifier (FDT, FURIA, KNN or SVM) at every level of the classification
hierarchy. On the other hand, the two pictures at the bottom (5.12(c) and 5.12(d)) show
the results using KNN in all the zone classifiers and FDT, FURIA, KNN or SVM at the
last classification level (position classifiers).
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(b) Mean error using the same classifier for all levels
(zone and position classifiers).

1 Level 2 Levels 3 Levels 4 Levels 5 Levels

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

 

 
KNN+FDT
KNN+SVM
KNN+KNN
KNN+FURIA   

(c) Accuracy using K-NN in the zone classifiers.
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(d) Mean error using K-NN in the zone classifiers.

Figure 5.12: Accuracy and mean error results in the complete scenario (133 positions).
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The following conclusions can be drawn after analysing the results in Table 5.2 and
Figure 5.12:

• The hierarchical approach always overcomes the non-hierarchical one. Even though
using the FDT classifier there is almost no improvement in terms of accuracy, the
mean error is reduced from 3.89 to 2.42 metres using FDT in all levels of the
hierarchy, and from 3.89 to 2.21 metres using KNN in the zone classifiers and FDT
only at the lowest level of the hierarchy.

• Results are slightly better when using KNN in all zone classifiers and FURIA or
SVM only at the lowest level of the hierarchy versus using FURIA or SVM in all
the classifiers, and slightly worse when using KNN in all zone classifiers and FDT
only at the lowest level of the hierarchy versus using FDT in all the classifiers.

• The lowest mean error (1.86 metres) and the highest accuracy (70.98%) and im-
provement (11.73%) are obtained by using KNN in all zone classifiers and SVM
only at the lowest level of the hierarchy (position classifiers).

Figure 5.13 shows the CDF along with the confusion matrix for the configuration
providing the highest accuracy. As can be seen looking at the CDF (Figure 5.13(a)), the
distance to the real position decreases as the number of levels in the hierarchy increases,
obtaining an error under 9 metres for the 95th percentile. On the other hand, the confusion
matrix (Figure 5.13(b)) shows that, although the distance error seems to be high, most
of the classification errors occur within the nearest positions. It is important to highlight
that, since a topology-based indoor localization is performed, the distance error depends
on the minimum distance between the topological positions (2.25 metres in this scenario).
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Figure 5.13: CDF and confusion matrix using ZCKNN with SVM. Complete scenario
(133 positions).

The mean distance to the real position is 5.89 metres for the misclassified samples
and 1.86 metres taking into account all (both correctly and incorrectly classified) samples,
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compared to 6.41 and 2.40 metres respectively obtained without applying the hierarchical
approach.

It is important to remark that this scenario is larger than the previous one. In the
simple scenario there are only 30 positions placed in the same floor while in the complete
scenario there are 133 positions distributed over four different floors. However, even
though the complexity of the problem has been increased (the number of positions is
more than four times bigger), the hierarchical approach is still able to yield good results,
achieving an accuracy close to 70%. This fact proves that the proposed hierarchical
WiFi-based localization system works properly in large environments.

Figure 5.14 shows a comparison of the accuracy and mean error variation with the
number of positions using the hierarchical approach versus using a single classifier (no
environment division).

5.4 Conclusions

In this chapter, the effect of applying a WiFi localization system in a large environment
crowded with APs has been analysed. A hierarchical division of the environment has
been proposed to tackle this problem. The following conclusions can be drawn:

• The hierarchical approach simplifies the classification task, reducing the number of
outputs in the first level and the number of inputs and outputs in the following
ones. With this approach the loss of accuracy when the number of positions in the
environment increases is reduced. As a result, the mean error of the system is also
reduced.

• The proposal was tested in a real large environment considering two different sce-
narios. The first one was a relatively small sized but highly illustrative scenario,
while the complete scenario was a much larger environment. The aim of using two
different scenarios was to show how thanks to the proposed hierarchical approach
the localization system was able to improve the results no matter the size of the
test-bed environment under consideration.

• The best results are achieved using the KNN algorithm in the zone classifiers. This
behaviour is expected since the environment was divided into zones using K-Means,
the “equivalent” clustering algorithm to KNN. The highest accuracy and lowest
mean error is achieved using the SVM algorithm in the position classifiers (70.98%,
1.86 metres). FDT (67.07%, 2.01 metres) and KNN (63.01%, 2.42 metres) algo-
rithms also provide high accuracy and low error, clearly overcoming the FURIA
classifier results (55.79%, 3.66 metres).

• These results were obtained at static positions of the environment. Further con-
clusions can be extracted by using the localization system during an online stage
when the device’s position is obtained while it is in motion. The final system will
have to estimate the position of the device for samples measured during motion, at
positions that might be different from the ones on the training set.
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(a) FDT: Accuracy variation.
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(b) FDT: Mean error variation.
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(c) KNN: Accuracy variation.
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(d) KNN: Mean error variation.
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(e) FURIA: Accuracy variation.

20 40 60 80 100 120
0

1

2

3

4

5

6

Number of Positions

E
rr

or
 (

m
et

re
s)

 

 

Single clasiffier
Hierarchical clasification approach

(f) FURIA: Mean error variation.
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(g) SVM: Accuracy variation.
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(h) SVM: Mean error variation.

Figure 5.14: Accuracy and mean error variation with the number of positions. Single
classifier vs. hierarchical approach.





Chapter 6

Recursive Bayesian Estimation of

a Moving Device Position

While some indoor LBSs, such as medical equipment location in hospitals or people loca-
tion in museums, do not need to estimate the device’s trajectory at short time intervals,
some others, such as people guidance, require an accurate and frequent estimation of the
device’s position. When providing an LBS for the latter, new challenges arise. Firstly,
the maximum acquisition frequency of a WiFi device varies from 0.25 to 4 Hz, being 1 Hz
the most frequent frequency in today’s devices. This means that if 3 samples are used to
estimate a position, a new position will be get every 3 seconds. Moreover, if the device
is moving at 1 m/s the first and last samples could be as far as 3 meters apart. Using
a topological approach this could mean that the first and last samples are taken at two
different positions.

In Chapter 4, an FDT algorithm was proposed to deal with the small scale variations
on static positions of an small environment non crowded with APs. Then, in Chapter
5 a hierarchical division of the environment was proposed to tackle with the associated
problems of applying WiFi localization systems to large environments, with their APs
not deployed for localization purposes. This proposal could be directly applied to LBSs
where the localization is performed on static positions of the environment.

In this chapter, a new approach to track the position of a device in motion using a
topological radio-map is proposed. This approach uses a Bayes filter that will continuously
estimate the most likely position of the device. This filter will have to deal with the low
working frequency of the device and the uncertainty of the observation to provide an
accurate and fast estimation.

The remaining of the chapter is organised as follows: First, the proposal to track and
filter the device’s position will be explained in Section 6.1. Then, Section 6.2 will describe
the experimental results. Section 6.3 will show a comparison of the performance of the
proposed system with a commercial one. Finally, in Section 6.4 a critical discussion about
the results will be provided.

75
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6.1 Filtering and tracking the device’s position

Recursive Bayesian estimation, also known as Bayes filters, is a general probabilistic
approach for estimating an unknown probability density function recursively over time
using incoming measurements and a mathematical process model. Essentially, Bayes
filters allow to continuously update the most likely position of a device based on the most
recently acquired data.

The selection of one of the existent Bayes filters depends on the characteristics and
restrictions of the designed localization system [Thrun et al., 2005]. Kalman Filters
(KFs) implement belief computation for continuous states and they are not applicable to
discrete spaces. Particle Filters (PFs) and Grid Localization require the motion model
of the device which is not available in the designed WiFi localization system. Finally,
Markov localization is the straight forward application of Bayes filters and provides four
main models depending of the characteristics of the system. On the one hand, Markov
chains and Markov Decision Processes (MDPs) are designed for systems were the states
are fully observable. On the other hand, Partially Observable Markov Decision Processes
(POMDPs) and Hidden Markov Models (HMMs) are designed for systems were the states
are partially observable. In the designed WiFi localization system, the states (positions)
are partially observable since they are estimated by the hierarchical localization system.
Thus, POMDPs or HMMs should be used to perform the filtering and tracking tasks.
POMDPs are used in robotics when a motion model is available and therefore, different
known actions can be chosen by the system. HMMs are used when there are no actions,
which means that the transitions between positions are triggered when new information
is acquired from the available sensors.

Taking into account the previously described characteristics of the filters, an HMM
will be used to keep a probability distribution over the positions. The main objective is to
filter unlikely transitions between positions when locating a device in motion. To do so,
the hierarchical localization approach described in the previous chapter will be used to
infer the device’s position. A single-sample approximation will be applied due to the low
working frequency of WiFi devices. This way, the device’s position in the environment
will be estimated as the most likely position filtering punctual missclassifications of the
hierarchical localization system.

6.1.1 Hidden Markov Models

An HMM [Baum and Petrie, 1966] is a statistical Markov model in which the system
being modelled is assumed to be a Markov process with non-observable (hidden) states.

In simpler Markov models (such as Markov chains), the state is directly visible and
therefore the probabilities of transitions between the states are the only needed param-
eters. In an HMM, the states are not directly visible, instead each state produces an
output observation with a certain probability. Thus, a probability distribution of the
observations over the possible states is needed in order to infer the sequence of states
using the known sequence of observations.

The formal definition of an HMM is as follows:

Let S = S, S, . . . , S|S| be the state space and O = O, O, . . . , O|O| the observation
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space of the system. The sequence of states is defined as s = s1, . . . , sT with st ∈ S and
the corresponding observations as o = o1, . . . , oT with ot ∈ O during a time sequence
t = 1, . . . , T .

The model is characterized by the complete set of parameters: Λ = {A,B, π}.
A is the transition matrix, storing the probability of being at state Sj ∈ S after being

at state Si ∈ S. The state transition probabilities are independent of time:

A = [aij ] , aij = P (st = Sj | st−1 = Si)

B is the observation vector, storing the probability of observation Ok ∈ O being
produced from the state Sj ∈ S:

B = [bj(Ok)] , bj(Ok) = P (ot = Ok | st = Sj)

π is the initial probability array:

π = [πi] , πi = P (s1 = Si)

Two assumptions are made in HMMs. First, the Markov assumption that states that
the probability distribution of future states of the process depends only upon the present
state, not on the sequence of events that preceded it (the probability of being in a state
at time t depends only on the state at time t− 1).

P (zt | s1 . . . st−1) = P (st | st−1)

Second, the independence assumption states that the output observation at a time t is
dependent only on the current state, so independent of previous observations and states:

P (ot | s1 . . . st, o1 . . . ot−1) = P (ot | st)
The filtering task using HMMs can be handled using the Viterbi algorithm [Viterbi,

1967]. The Viterbi algorithm is used to calculate a belief of being at each state at a
certain time given the history of observations. The Viterbi algorithm is as follows:

The belief for every state Sj in t = 1 is initialised as:

Belj(1) = πj · bj(o1)
Then, the belief for every state Sj is updated as:

Belj(t) = Beli(t− 1) · aij · bj(ot)
The state sT is estimated as the MAXsj∈S(Bel(T )).

6.1.2 Applying HMMs to WiFi localization

In order to apply an HMM during the localization stage, the parameters that characterise
the model have to be calculated. In the WiFi localization problem the states S are the
defined topological positions in the environment and the observations O are the RSSs
from the APs.
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The transition matrix A can be approximated by assuming a person can not move
from one position to another without go trough the positions in between. This way,
the probabilities of transit from one position to the neighbour ones or stay in place are
uniformly distributed and the rest of transitions are assumed to be 0.

The observation vector B will be obtained from the results provided by the classifiers.
Three different algorithms have been tested: The FDT algorithm proposed in Chapter
4 to avoid small scale variations, the SVM classifier which has been proved as the most
reliable classifier when localizing at static positions of the environment and the well-
known KNN which is still one of the most common classifiers to perform WiFi indoor
localization. The three classifiers have been tested as position classifiers in combination
with KNN as zone classifier, following the hierarchical approach explained in Chapter 5.

Since the localization is performed using the previously described hierarchical ap-
proach, the probability of being at a certain position, needed to build the observation
vector B, is calculated by propagating the probability through the hierarchical tree (Fig-
ure 6.1).

Figure 6.1: Example of the observation vector calculation using the hierarchical approach.

Different classifiers provide different information about the belief of being at a certain
position: the FDT algorithm provides an activation degree, the SVM classifier provides
a probability, while the KNN algorithm provides a distance. This information has been
approximated to probabilities as follows:

• FDT: The activation degree of each class is taken as the probability of belonging
to that class.

• SVM: SVM directly provides probability estimations. To obtain this probability
values, the SVM algorithm uses Hastie and Tibshirani’s pairwise coupling method
[Hastie and Tibshirani, 1998].

• KNN: Using the distances from the sample to the radio-map data, the probability
of the sample belonging to each class can be calculated as the normalized inverse
of the distance.
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The initial probability vector π is assumed uniformly distributed since the initial
position is unknown. To prevent the filter from getting trapped at low probabilities
areas, a restarting mechanism was introduced. Due to the low working frequency of the
device, if the classifier delivers a few wrong estimations, the actual device position can
be further apart from the filter prediction. Even if the classifier starts to deliver correct
estimations again, the transition probabilities to the real positions are so low that the filter
gets trapped in a low probabilities area. To prevent these situations, if the probability of
being at the predicted area remains low for 8 consecutive samples, the filter is restarted to
its initial state. Eight samples (equivalent to eight seconds at 1 Hz) were chosen because
it is the time required to advance the 2 or 3 positions necessary for the user to move to
non-reachable positions.

6.2 Experimental analysis

This section describes the experimental results obtained using the HMM filter. In addi-
tion, a critical discussion of the obtained results is provided.

6.2.1 Experimental set-up

The experiments have been performed on the UAH environment described in Section
5.3.1. To allow transitions between different floors new measurements were collected at
the stairs areas. Moreover, the physically connected positions are linked to indicate the
allowed transitions (Figure 6.2). These connections are used to create the HMM transition
matrix.

(a) Second Floor (53 Positions). (b) Third Floor (36 Positions).

Figure 6.2: UAH test-bed environment: Allowed transitions between positions.

The tests have been carried out with a laptop computer using its internal Wireless
device acquiring at its maximum allowed rate (1 sample per second). The RSSs have
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been collected while a person holding the laptop was following different trajectories over
the environment.

Assuming that a person walks at a constant speed of 1 m/s, each trajectory will be
composed of samples measured 1 metre apart from each other. This means that most
of the samples are measured in positions not covered in the radio-map. It also means
that if the positions are 3 metres apart, the filter will have 3 samples to decide. The
groundtruth for the trajectories has been manually tagged: when the person steps over
an existing position on the radio-map it is marked with the corresponding number of
position. Then, the first half of untagged samples between tagged positions are labelled
as the previous tagged position, while the second half is labelled as the next one (Figure
6.3). The resulting groundtruth indicates the closest position to the place where the
sample is collected.
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Figure 6.3: Groundtruth generation.

This groundtruth is used to calculate the mean distance error during the trajectories.
The distance error is computed as the distance between the estimated position and the
target position in the groundtruth. Using this estimation of the distance error, there will
be samples between positions with an imprecise estimated distance error. For instance, if
a sample was collected between positions 2 and 3 but closer to 3, the estimated error will
be 0 metres if the localization system locate the device in position 3 and it will be the
distance between positions if the system locates the device in position 2, while the real
error should be a fraction of the distance between them. Nevertheless, these variations
in the estimated error should be cancelled out during a long trajectory.
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6.2.2 Experimental results

This section describes the results of different experiments locating a WiFi device in mo-
tion. Two kind of trajectories have been considered: Trajectories in the same floor
(one-floor trajectories) and trajectories covering two floors (multi-floor trajectories).

6.2.2.1 One-floor trajectories

The results shown in this section were obtained in the third floor of the UAH environment.
Two different illustrative trajectories have been collected covering all the positions in the
third floor to test the behaviour of the system using the hierarchical localization approach
in combination with the HMM.

On the first trajectory, a user was walking along the main, second and fourth corridors
in a path of approximately 120 m at a mean speed of 0.73 m/s. Figure 6.4 shows the
trajectory followed during the first experiment. This trajectory starts in the position
marked with a blue circle, and continues along the green and yellow dots path to the final
position marked with a red circle. Green circles indicate the groundtruth positions, while
the yellow dots are places were there are available measurements not corresponding to
a position in the radio-map. Finally, the semi-transparent blue circle over the starting
position represents the mean distance error of the best classifier for the trajectory.

Figure 6.4: One-floor trajectory 1.

Table 6.1 summarizes the results obtained with the different classifiers for the first
trajectory with and without using the HMM filter. As can be seen, the mean distance
error decreases using the HMM for all the classifiers.
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The following conclusions can be drawn from the information in Table 6.1:

• The best results are obtained using the FDT classifier. Using this classifier the
mean error is reduced more than a 50%.

• HMM does not significantly improve results using SVM.

Table 6.1: Summary of results during the one-floor trajectory 1.

Mean distance error
Error reduction

No filter HMM filter

FDT 4.11 m 1.91 m 53.53%

SVM 2.72 m 2.62 m 3.68%

KNN 4.35 m 2.30 m 47.13%

On the second trajectory, the user was walking along the main, first and third corridors
in a path of approximately 100 m at a mean speed of 0.73 m/s. This trajectory followed
the opposite direction to the previous one along the main corridor. Figure 6.5 shows the
second trajectory with the same format as in Figure 6.5.

Figure 6.5: One-floor trajectory 2.
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Table 6.2 summarizes the results obtained with the different classifiers during the
second trajectory. As can be seen, results are slightly worse than the ones obtained for the
first trajectory. This could be related to the fact that most of the measurements to build
the radio-map were collected while standing on the opposite direction to this trajectory.
In this way, the FDT classifier seems to adapt better to differences in orientation between
the trajectory collected samples and the radio-map than KNN or SVM.

The following conclusions can be drawn from the information in Table 6.1:

• Again, the best results are obtained using the FDT classifier. Using this classifier
the mean error is reduced about 40%.

• Using the KNN algorithm the mean error is slightly worse, especially since the
results without using the filter are much worse than the ones provided by FDT.

• Again, HMM does not significantly improve results using SVM.

Table 6.2: Summary of results during the one-floor trajectory 2.

Mean distance error
Error reduction

No filter HMM filter

FDT 3.85 m 2.38 m 38.18%

SVM 3.83 m 3.77 m 1.57%

KNN 5.91 m 3.04 m 48.56%

6.2.2.2 Multi-floor trajectories

The results shown in this section were obtained in the second and third floors of the
UAH environment. Two different illustrative trajectories including floor transitions have
been collected to test the performance of the system. The mean error in the position
estimation is expected to be higher in the second floor because the topological positions
are further apart than in the third floor. In addition, the central hall of the second
floor is a wide open space in which missclassifications between neighbouring positions are
more likely to happen. The transitions between floors are also challenging because the
vertically aligned positions at the beginning and end of the stairs have very similar RSSs.
Despite of all these challenges, the system is still able to correctly follow the trajectories
and differentiate between floors.

The first experiment shows the localization during a multi-floor trajectory starting in
the third floor. In this experiment the user walked for approximately 90 m with a floor
change. The average speed during this trajectory was 0.83 m/s. Figure 6.6 shows the
multi-floor trajectory with the third floor on the left and the second floor on the right.
The positions that connect the second and the third floors are indicated with magenta
circles.
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(a) Third Floor.

 

 

Groundtruth

Groundtruth between positions

Conection between floors

Final position

(b) Second Floor.

Figure 6.6: Multi-floor trajectory 1.

Table 6.3 summarizes the results obtained with the different classifiers during the
first multi-floor trajectory. As can be seen, the filter is able to reduce the mean error for
the FDT classifier, while it remains almost the same with SVM and it is even increased
using the KNN. In this experiment, the filter was not able to improve the KNN algorithm
results because during a few consecutive samples the classifier estimated non-reachable
positions and the filter got lost. Then, it took a few samples for the filter to recover.

Table 6.3: Summary of results during the multi-floor trajectory 1.

Mean distance error
Error reduction

No filter HMM filter

FDT 4.06 m 2.52 m 37.93%

SVM 5.49 m 4.80 m 12.57%

KNN 4.47 m 5.57 m -24.61%

On the second experiment, the localization was also performed for a multi-floor trajec-
tory starting in the third floor. In this trajectory the user walked along an approximately
220 m path with one floor change. The average speed during this trajectory was 0.83
m/s. Figure 6.7 shows the second multi-floor trajectory with the same format as in the
previous figures.

Table 6.4 summarizes the results obtained with the different classifiers during the



6.2. Experimental analysis 85

(a) Third Floor.

 

 

Groundtruth

Groundtruth between positions

Conection between floors

Final position

(b) Second Floor.

Figure 6.7: Multi-floor trajectory 2.

multi-floor trajectory using the HMM versus the hierarchical approach without using the
filter. In this experiment, the best results are achieved by the KNN algorithm but results
obtained by FDT and SVM are just slightly worse. Even though in this experiment the
lower mean error is achieved by using the KNN algorithm, in general the FDT hierarchical
system seems to be the most reliable classifier. Again, the mean distance error is reduced
using the HMM filter no matter the selected classifier.

Table 6.4: Summary of results during the multi-floor trajectory 2.

Mean distance error
Error reduction

No filter HMM filter

FDT 5.64 m 3.82 m 32.27%

SVM 3.89 m 3.83 m 1.54%

KNN 3.94 m 3.38 m 14.21%

During both multi-floor trajectories no between-floor missclassifications were pro-
duced outside the stairs areas. Finally, as in the one-floor trajectories, SVM algorithm
mean error is slightly improved using the HMM, while the largest improvements are
always provided by FDT.
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6.3 Comparative with a commercial system

The performance of the proposed system has been compared with indoor Google Maps
localization application. Indoor Google Maps localization has been used to locate the de-
vice during the multi-floor trajectory 1. Indoor Google Maps [Indoor Google Maps, 2014]
performs localization using GPS, WiFi and GSM information collected inside buildings,
but the highest accuracy is obtained when the localization is performed using only WiFi
and GSM information. Indoor Google Maps localization is available in more than 10000
buildings around the world, being the Polytechnic School of the UAH one of them. There
is no available information about how Google performs the localization, but they have a
public application to upload new maps and information collected while site-surveying the
environment following their instructions.

To compare the performance of both systems the multi-floor trajectory 1 described in
the previous section was followed. Figure 6.8 shows some screenshots of the indoor Google
Maps localization application showing the predicted position with a blue circle (using only
the WiFi and GSM information). The sequence starts in the top left image and continues
row by row from left to right ending in the bottom right image. Figure 6.9 shows the
screenshots of the WiFi indoor localization system proposed in this thesis obtained at the
same time as the previous ones. The images of this sequence also include the groundtruth
position at each time. In this sequence, the predicted position is represented with a red
circle and the groundtruth position is represented with a green circle. The images where
there is only a green circle represent an estimated position equal to the groundtruth.

As can be seen, the biggest problem using indoor Google Maps localization is the
differentiation between floors. The estimated floor is represented by a blue circle under
the number of the floor while the groundtruth floor is the one with the grey background.
It can be seen that most of the times the floor is wrongly predicted. Forgetting about the
floor prediction, and considering it is always correctly predicted, the groundtruth position
would always be inside the uncertainty area represented by the transparent blue circle.
However, even in this situation, the mean error distance is higher than the obtained with
the system proposed in this thesis. Both systems seems to perform better in the corridors
while the error increases in the big open area corresponding to the central hall of the
second floor. This experiment was repeated using the indoor Google Maps localization
including the GPS information along with the WiFi and GSM information previously
used. In this case the predicted position tends to be in places outside the building
worsening the localization accuracy.

6.4 Conclusions

In this chapter, an HMM algorithm which performs robust global localization using the
hierarchical localization system proposed in Chapter 5 was presented. Three different
algorithms have been tested as classifiers for the hierarchical localization: The FDT
algorithm proposed in Chapter 4 to avoid small scale variations, the well-known KNN
which is still one of the most common classifiers to perform WiFi indoor localization, and
the SVM classifier which has been proved as the most reliable classifier when localizing
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at static positions of the environment. The main conclusions that can be drawn from this
chapter are as follows:

• As expected, the FDT algorithm is the best adapting to the conditions of a device
in motion, dealing with the associated noise and with measurements collected in
positions not covered in the radio-map. In consequence, the FDT algorithm im-
proved by the HMM filter provides the best and more reliable localization getting
mean errors from 1.91 to 3.82 metres.

• The HMM filtering reduces the mean error in most of the experiments. However,
due to the low measurement frequency (1 sample/second) when the localization
system wrongly estimates a position during a few consecutive samples, the filter is
not able to maintain the position over the trajectory and it gets lost. Moreover,
also caused by the low measurement frequency, the device only remains at the same
position for 2-4 samples providing the filter with a very low number of samples to
correct the position.

• The mean error is higher in open areas (such as the central hall on the second floor)
because the localization system is less accurate in these areas, and because the
topological positions are further apart increasing the minimum error in missclassi-
fications. Moreover, in these open areas there are usually more allowed transitions
than in narrow areas, making the estimation more complex. Nevertheless, the sys-
tem is able to estimate the position of the device with enough precision to locate
and guide a person moving around the environment.

• The system is able to correctly perform floor transitions using the stairs, being the
multi-floor localization one of the most challenging problems to deal in WiFi indoor
localization.

• The obtained results are encouraging. Although there is not enough information
about Google localization system to carry out a proper comparison, the proposed
localization system outperforms the commercial localization system provided by
Google.
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Figure 6.8: Indoor Google Maps localization sequence during the multi-floor trajectory 1.
The sequence starts on the top left image and continues from left to right.
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Figure 6.9: Proposed hierarchical WiFi indoor localization sequence during the multi-
floor trajectory 1. The sequence starts on the top left image and continues from left to
right.





Chapter 7

Conclusions and Future Work

The goal of this thesis was the localization of mobile devices in indoor environments
using only the RSS from the already existing APs in the environment. Since WiFi is
pre-installed in most buildings, there is no need to either modify the environment or add
new devices to it. The final research objective was to develop a robust WiFi real-time
localization for mobile devices, available to be deployed in any environment and to be
used by any device equipped with a WiFi interface.

A method for performing WiFi indoor localization has been presented. To do so,
different techniques have been applied:

1. An FRBC was designed using an FDT algorithm to reduce the uncertainty gen-
erated by the small scale variations on static positions of the environment. Using
this proposal the accuracy was improved around a 7% in comparison with the well-
known Nearest Neighbour algorithm. The mean error was reduced a 42% (from
1.49 to 0.85 metres).

2. A hierarchical approach to simplify the localization task was proposed. This method
performs an automatic environment division into hierarchical zones with the aim
of improving the accuracy of topology-based WiFi localization systems in large
environments. This proposal was tested in a multi-floor real environment in two
scenarios of growing complexity. On the light of the results it can be concluded that
this proposal emerges as a powerful tool. The highest accuracy was close to 85%
in the simple scenario and it was slightly reduced in the complete scenario where
it was close to 71%. In both cases, the best results were reported when using the
SVM as position classifier at the lowest classification level of the hierarchy. The
accuracy improvement due to the hierarchical approach was close to 12% and the
mean error was reduced from 2.20 to 1.97 metres in the complete scenario. The
results obtained using the FDT classifier were very close to the ones achieved by
the SVM algorithm. The accuracy was close 67% and the error was reduced to 2.01
metres in the complete scenario.

3. An approach to track the position of a device in motion using a topological radio-
map was proposed. This approach uses a Bayes filter that continuously estimates
the most likely position of the device. The filter was able to deal with the low
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working frequency of the device and the uncertainty of the observations providing
an accurate and fast estimation. The best results were obtained when combining
the hierarchical FDT algorithm with the HMM achieving a mean error under 3
metres.

It is important to highlight that it is not necessary to know where the APs are lo-
cated to deploy the localization system. This aspect is especially interesting regarding its
deployment in new unknown environments. Moreover, since the localization is performed
directly on the device, the system can be safely used without dealing with privacy issues.

The remaining of the chapter presents the main contributions introduced and devel-
oped along this thesis. Finally, the future lines of research left open by this thesis will be
drawn.

7.1 Main Contributions

From the results obtained in the previous chapters, the main contributions of this thesis
are as follows:

1. WiFi signal analysis. The influence of different effects on the WiFi RSS have
been analysed, identifying the small scale variations as the main source of local-
ization error. Some other effects, such as the temporal variations or co-channel
interferences, were also identified and analysed. With the study of all these effects
and sources of error some important decisions on the WiFi localization design were
made. First, the use of a propagation model was discarded since all the effects that
affect the RSS indoors make very difficult to adjust a model for an environment, and
unlikely that the designed model fits well to different environments. Second, that
it was necessary to use some techniques to cope with the small scale variations to
be able to implement a realistic WiFi localization system. Finally, that some other
error sources, such as the orientation of the device, are masked by more critical
error sources like the small scale variations.

2. WiFi topological datasets. RSS from all the visible APs were recorded in two
different real environments: ECSC and UAH. The database for each environment
contains two datasets (train and test datasets) composed of the measurements at
each topological position. Moreover, for the UAH environment, different trajecto-
ries to test the performance of the localization systems while locating a device in
motion are included. All the trajectories include the topological groundtruth for
each sample. The databases contain data collected under real conditions, including
most sources of noise such as people wandering around. The databases are to be
made available to the research community.

3. WiFi indoor localization system. Three approaches, that complements each
other, were proposed to solve the problem of locating a device in a real large indoor
environment. First, a fuzzy-based algorithm was proposed to reduce the effect of
the small scale variations. Then, a hierarchical division of the environment was
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designed to avoid the reduction of accuracy of WiFi localization systems when
working in large environments crowded with APs. Finally, a Bayes filter to smooth
the estimated trajectory followed by a device while moving over the environment
was developed. The designed system complies with the pre-imposed restrictions
of real-time execution, robustness to signal interferences and proper functioning
using different devices. The system was tested in a challenging real multi-floor
environment, proving that the proposed method is capable of tracking the global
position of a WiFi device.

4. Final application. A desktop application (Appendix A) that allows to perform
user-friendlyWiFi indoor localization using the designed system was developed. Us-
ing this tool, the tedious task of site-survey new environments is simplified. Once
an environment is built and the localization system is trained it can be used to per-
form real-time localization. Moreover, the classifiers to perform localization in an
environment are built thinking of being exportable to the Android application de-
veloped as part of the ABSYNTHE project. This way, the WiFi indoor localization
system object of this thesis will be available for every Android device.

7.2 Future work

From the results and conclusions of the present work, several research lines can be faced:

1. Use the information provided by additional sensors. The system perfor-
mance can be highly improved by using the information provided by the compass
and the accelerometers of a mobile phone or tablet. By knowing the direction of
movement or even if the device is moving or standing at a position, the number of
allowed transitions between positions would be reduced and the filtering task would
be simplified.

2. Classifiers aggregation. The overall accuracy of the system can be improved by
using an aggregation of the different classifiers results. The results of the developed
approaches have shown that the different classifiers perform better under different
circumstances. For instance, the SVM algorithm is the best when locating a device
standing at a fixed position, while the FDT algorithm is the best locating a device
in motion. Knowing the current state of the device using the information provided
by the accelerometers, the system could give priority to the SVM predictions when
the device is at a fixed position, and to the FDT predictions when it is in movement.

3. Testing other classification techniques. More advanced classification tech-
niques could be explored. For example, the multiclassifier previously designed
in [Trawinski et al., 2013] in combination with the designed hierarchical approach
could be tested.

4. Testing other techniques to divide the environment. Alternative and more
advanced methods for finding out an optimal partition of the environment will
be further analysed. For instance, the so-called Wifigrams previously described
in [Alonso et al., 2013] could be used.
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5. Access points selection. A procedure for selecting some of the APs will be tested.
This AP selection may be made according to the visibility criteria introduced in this
thesis.

6. Test the system in the 5 GHz band. With the appearance of the 5 GHz WiFi
APs, which work in a less noisy band, some of the main problems related to the
use of this technology could be reduced. So, some experimentation could be done
to test the performance of the designed system using the 5 GHz frequency band.

7. Automatic radio-map generation process. One of the main problems of the
fingerprint-based methods is the radio-map generation. So, an interesting research
area could be focused on designing an automated radio-map generation process.
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Appendix A

A New Software for WiFi Indoor

Localization

This appendix presents the software developed for topology-based localization that imple-
ments the work described in this thesis. Two different applications have been designed:

• A desktop software for research purposes which allows to create new environments
and to train and test different localization algorithms. Thanks to the software mod-
ularity, different localization algorithms can be evaluated on the same environments
and compared to each other. The research software allows to choose the best per-
forming localization algorithm that will be available to be loaded into the Android
application.

• An open-access Android application that allows users with a smartphone or a tablet
obtain their position inside the environment and be guided to any place.

A.1 Desktop software

This application was developed using C++ under Qt. Qt is a cross-platform application
framework that is widely used for developing application software with a graphical user
interface.

In this application, an environment is a map, or a group of maps, with user defined
topological positions. The environments have to be created before the training stage,
in order for the software to have all the necessary information to be able to train the
localization system. The localization system must be trained for each environment to
allow localization of the user in it. All these 3 steps, creation of the environment, training
of the system for the environment and localization in the environment are performed into
the desktop software. The training and localization stages allow the selection of different
algorithms that can be executed for comparative purposes.

Figure A.1 shows a flow diagram of the software. This will be thoroughly explained
in the next sections where the process for new environments creation and both training
and localization stages will described.
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Figure A.1: Flow diagram of the software.

A.1.1 Environment handling

This tool allows for the creation of new environments. An environment stores all the
necessary information to build the localization system. An environment can be composed
of several maps (i.e. the maps of the different floors of a building) and the transitions
between maps (i.e. stairs). The maps are composed of topological positions and the
connections between them. New positions can be added to the different maps. When a
new position is added, the user is asked to go to it, then the system measures the WiFi
RSS from all the visible APs and stores it as the fingerprint data for the current position.
A unique identifier is given to each position, but the user can also give a name to them
facilitating their identification. This way, the user can ask for guidance to the “Entrance
of Laboratory 1” instead of guidance to “Position 1”, for instance. Finally, the positions
can be linked to each other to allow or forbid transitions between them. This connections
can be also defined between maps.

The environment creation is only available in the desktop software (Figure A.2). All
the data collected during the environment creation is stored to be used by the training
and localization modules. Once the environment has been created and stored, it can be
opened for modifications, adding or removing maps, positions and connections between
them.

The environment creation process can be summarized in the following steps:

• Create or open an environment: New environments can be created using the “New”
button. Already created environments can be opened to be modified or used for
training using the “Open” button.
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• Add maps to an environment: New maps can be added to an environment using
the “Add Map” button.

• Add positions to a map: New locations can be added to the selected map using the
“Add Position” button. The user will be asked to move to the position to start the
RSS measurements. While the system measures the WiFi signal, the user will be
asked to click on the location of the position on the map, and to give, if desired, a
name to it.

• Add connections (paths) between positions: The positions that are physically con-
nected can be linked to indicate to the system the feasible transitions to improve the
localization. Connections between positions from different maps are also allowed to
permit movements between different maps.

• Save the environment: All the information collected in the previous steps are stored
for future uses by pressing the “Update and train environment” button.

Figure A.2: Screenshot of the training stage in the desktop software.

A.1.2 Training stage

This is an offline stage and it is only available in the desktop software (Figure A.2).
Its goal is to train the localization system using all the information collected during the
creation of the environment.

The localization system for the environment is trained by clicking the “Update and
train environment”button. The training module is called and the system is trained using
all the available algorithms, creating all the models that can be selected in the localization
stage to obtain the device position.



100 A New Software for WiFi Indoor Localization

Thanks to the modularity of the software new localization algorithms can be easily
added. The system will be trained using the new algorithms for the selected environment
and a new model will be created.

A.1.3 Localization stage

In this stage, the WiFi device will obtain its current position using the RSS from all
visible APs on an online process. The set of classifiers trained in the previous stage can
be now used to locate the device. This stage is available in both the desktop (Figure A.3)
and Android (Figure A.6) applications.

Figure A.3: Screenshot of the localization stage in the desktop software.

The localization stage comprises three steps as showed in Figure A.1:

• Measurement: The device measures the RSS from every AP and a sample in the
necessary format is created to be used by the localization system.

• Localization: The previously created sample is classified using the selected localiza-
tion method (Figure A.4) and the estimated position is provided.

Currently, three different algorithms are available:

– Hierarchical FDT: As the one explained in Chapters 4 and 5.

– Hierarchical KNN: As the one explained in Chapter 5.

– Hierarchical SVM: As the one explained in Chapter 5.

• Position correction: The position provided by the localization module can be cor-
rected by ticking the “Continuous localization” check box, if it is an unreachable
position from the previous one, using the information about the connections be-
tween the positions as explained in Chapter 6.
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Figure A.4: Localization configuration in the desktop software.

A.2 Open-access Android application

The open-access localization application [ABSYNTHE Application, 2013] [Humanes
et al., 2013] allows to locate an Android device using the system trained by the desktop
software following the same structure as the one described in Section A.1.3.

The position of the device can also be obtained by scanning a QR code as shown in
the flow diagram in Figure A.5. These QR codes are distributed over the environment
and contain the information related to the position where they are located.

Figure A.5: Flow diagram of the localization stage using QR codes.
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Once the device location is obtained, using one of the methods previously described,
the application provides guidance to a selected destination (Figure A.6) using the Dijkstra
algorithm [Dijkstra, 1959]. The application also allows the users to ask for a robot to
guide them in certain environments. Currently, the localization and guidance application
(using only the QR localization module) is available for the Polytechnic School of the UAH
and at the ECSC, and can be downloaded using the QR codes located at the entrances
of the buildings.

Figure A.6: Screenshot of the open-access localization app.



Appendix B

Publications Derived from this

PhD Dissertation

B.1 Journal Publications

2014 Hierarchical Approach to Enhancing Topology-based WiFi Indoor Lo-

calization in Large Environments, N. Hernández, J.M. Alonso, M. Ocaña,
Multiple Valued Logic and Soft Computing (Under second round review - Minor
revision).

2013 A multiclassifier approach for topology-based WiFi indoor localization,
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V. Callaghan and J. A. Bot́ıa, “A fuzzy logic-based system for indoor localization
using WiFi in ambient intelligent environments”. IEEE Transactions on Fuzzy Sys-
tems, volume 21(4), pages 702–718 (2013).

[Google Glass, 2014] Google Glass (2014), accessed on June 2014.
http://www.google.com/glass/start/

[Guo et al., 2012] B. Guo, R. Fujimura, D. Zhang and M. Imai, “Design-in-play: Improv-
ing the variability of indoor pervasive games”. Multimedia Tools and Applications,
volume 59(1), pages 259–277 (2012).

http://www.google.com/glass/start/


BIBLIOGRAPHY 109

[Haeberlen et al., 2004] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach
and L. E. Kavraki, “Practical robust localization over large-scale 802.11 wireless
networks”. In Proceedings of the Annual International Conference on Mobile Com-
puting and Networking, pages 70–84 (2004).

[Hammadi et al., 2012] O. A. Hammadi, A. A. Hebsi, M. J. Zemerly and J. W. P. Ng, “In-
door localization and guidance using portable smartphones”. In Proceedings of the
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, volume 3, pages 337–341 (2012).

[Hassan-Ali and Pahlavan, 1998] M. Hassan-Ali and K. Pahlavan,“Site-specific wideband
and narrowband modeling of indoor radio channel using ray-tracing”. In Proceed-
ings of the IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, volume 1, pages 65–68 (1998).

[Hastie and Tibshirani, 1998] T. Hastie and R. Tibshirani, “Classification by pairwise
coupling”. The Annals of Statistics, volume 26(2), pages 451–471 (1998).

[Hellendoorn and Driankov, 1997] H. Hellendoorn and D. Driankov, Fuzzy model identi-
fication: Selected Approaches. Springer, 1st edition (1997).

[Herranz, 2013] F. Herranz, Simultaneous Localization and Mapping using Range Only
Sensors. Ph.D. thesis, University of Alcalá (2013).
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