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Abstract

This work describes an Intelligent Transport System implemented on an autonomous vehicle in-
tended to perform global navigation missions in outdoor partially known environments, such as
industrial or residential areas. This constitutes a first step towards the complete implementation of
Intelligent Transport Systems in urban environments, which can be regarded as the long-term goal
of the work. This topic is sparsely documented in the technical literature, as long as the vast major-
ity of the already existing Intelligent Transport Systems are devoted to assisted driving of vehicles
on extra urban roads and highways. Global navigation is achieved by means of a global planner,
devised to compute the shortest path between the origin and some given destination, and a task
manager devoted to coordinate the execution of two vision-based perception tasks for road track-
ing of non-structured roads, and intersection navigation, respectively, basing on GPS information.
In addition, a vision-based vehicle detection task has been implemented so as to endow the global
navigation system with reactive capacity. The complete system was tested on the BABIECA pro-
totype vehicle, which was autonomously driven for hundred of kilometres accomplishing different
navigation missions on a private circuit that emulates an urban quarter, at speeds up to 50 km/h.
During the tests, the vehicle drove itself along crossroads and intersections performing appropri-
ate turning manoeuvres, and demonstrated its robustness with regard to shadows, road texture, and
weather and changing illumination conditions.
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Chapter 1

| ntroduction

The main issue addressed in this work deals with vision based and GPS aided Intelligent Transport
Systems (ITS) for autonomous global navigation in urban-like scenarios.

1.1 Motivation for Intelligent Transport Systems

The deployment of Intelligent Transport Systems in urban and extra-urban environments is a chal-
lenging topic that has focused the interest of research institutions all across the world since the
mid eighties. Apart from the obvious advantages related to safety increase, such as accident rate
reduction and human life savings, there are other benefits that could clearly derive from automatic
driving. Thus, on one hand, vehicles keeping a short but reliable safety distance by automatic
means allow to increase the capacity of roads and highways. This inexorably leads to an opti-
mal use of infrastructures. On the other hand, a remarkable saving in combustible costs can be
achieved by automatically controlling vehicles velocity so as to keep a soft acceleration profile.
Likewise, automatic cooperative driving of vehicle fleets involved in the transport of heavy loads
can lead to notable industrial cost reductions.

Although scenarios that allow for completely autonomous vehicles are not expected to come
for at least 20 years, much of the research carried out in this area has traditionally provided re-
markable procedures and techniques that find their field of application in the domain of vehicle
safety enhancement. Thus, during the last five years both passive and active safety systems have
received the attention of private companies in an attempt to integrate them in their commercial
models. In order to avoid liability claims in the event of collisions between cars equipped with in-
telligent systems, manufacturers of these systems and the car companies that use them are careful
to refer to them as driver aids. In this direction, adaptive cruise control (ACC) systems, which use
laser beams or radar to measure the distance from the vehicle they are in to the car ahead and its
speed relative to theirs, are expected to gain a global market of $2.4 billion a year by 2010 [23]. By
2006, collision avoidance will be in 17 percent of new cars in Europe, 14 percent in Asia-Pacific,
and 13 percent in North America, according to Morris Kindig, president of Tier One.
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1.2 1TSon highways and extraurban roads

Although the basic goal of this work is concerned with the development of an Autonomous Intel-
ligent Transport System for urban-like environments, the techniques deployed for road tracking in
this kind of scenarios are similar to those developed for road tracking in highways and structured
roads, as long as they face common problems.

Nonetheless, most of the research groups currently working on ITS focus their endeavours on
autonomously navigating vehicles on structured roads, i.e, marked roads. This allows to reduce
the navigation problem to the localization of lane markers painted on the road surface. That’s the
case of some well known and prestigious systems such as RALPH [32] (Rapid Adapting Lateral
Position Handler), developed on the Navlab vehicle at the Robotics Institute of the Canergie Mel-
lon University, the impressive unmanned vehicles developed during the last decade by the research
groups at the UBM [16] [27] and Daimler-Benz [18], or the GOLD system [3] [6] implemented on
the ARGO autonomous vehicle at the Universita di Parma. All these systems have widely proved
their validity on extensive tests carried out along thousand of kilometres of autonomous driving
on structured highways and extraurban roads. The effectivity of these results on structured roads
has led to the commercialization of some of these systems as driving aid products that provide
warning signals upon lane depart.

On the contrary, very few research groups have undertaken the problem of autonomous vision
based navigation on completely unstructured roads. Among them are the SCARF and UNSCARF
systems [45] designed to extract the road shape basing on the study of homogeneous regions from
acolour image. The ALVINN (Autonomous Land Vehicle In a Neural Net) [31] system is also able
to follow unmarked roads after a proper training phase on the particular roads where the vehicle
must navigate. Nevertheless, in spite of some promising results obtained in this field, vision based
road following on unmarked roads can still be regarded nowadays as an open problem.

1.3 [ITSon urban-like environments

A great interest has recently arised to design and develop Intelligent Systems for assisted driving
not only on highways but in urban environments. Thus, safety enhancement becomes a very at-
tractive point for both academic researchers and car manufacturers. According to this, the UTA
project (Urban Traffic Assistant) [18] developed by the Daimler-Benz group undertook the de-
sign of an intelligent stop and go for inner-city traffic usign stereo vision, and demonstrating to
recognise traffic signs, traffic lights, walking pedestrians, zebra crossings, and stop lines. Other
research groups focus on partial problems, such as vision based pedestrian detection [47] [8], or
intersection detection [25] [37] in order to issue warning signals to assist the human driver.

A more ambicious project was carried out at the Carnegie Mellon University aimed at recognis-
ing intersections and autonomously navigating a vehicle on them. The first objective was achieved
by means of a previously trained neural network, but autonomous navigation on intersections was
only solved to some extent, as the authors declare in [21]. On the other hand, another similar sys-
tem can be found in [28], where a real autonomous system for Intelligent Navigation in a network
of unmarked roads and intersections is designed and implemented. The vehicle is equipped with
a four cameras vision system, and can be considered as the first completely autonomous vehicle
capable to successfully perform some kind of global mission in an urban-like environment.

VIRTUOUS: Vlsion-based Road Transport system for Unmanned Operation on Urban Scenarios
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The work developed by the research group at the University of Alcala (UAH) in the field of
ITS started on 1994 with the design of a vision based algorithm for outdoor environments [36]
that was implemented on an industrial fork lift truck autonomously operated on the campus of
the UAH. Likewise, the research group of the Instituto de Automatica Industrial (IAl) del CSIC
has developed accurate GPS based navigation systems for autonomous guidance of commercial
vehicles in urban-like scenarios under the framework of the AUTOPIA Research Programme [34].
A close cooperation between both research groups since 1999 has finally led to the development of
a vision and DGPS based ITS [42] [13] for autonomous execution of global missions in a network
of unstructured roads and intersections, as will be described in this paper.

The complete navigation system was implemented on BABIECA, an electric Citroén Berlingo
commercial prototype as depicted in figure 1.1. The vehicle is equipped with a colour camera, a
DGPS receiver, two computers, and the necessary electronic stuff to allow for automatic actua-
tion on the steering wheel, brake and acceleration pedals. Thus, complete lateral and longitudinal
automatic actuation is issued during navigation. Real tests were carried out on a private circuit em-
ulating an urban quarter, composed of streets, intersections (crossroads), and roundabouts, located
at the 1AL

Figurel.1 BABIECA autonomous vehicle.

The work described in this paper is organised in the following sections : section Il presents
the complete Control Architecture for the global navigation system. In sections Il and IV the
vision based algorithms for lane tracking and intersection navigation are respectively described,
while section V provides the presentation of a vehicle detection system for safety enhancement
during navigation. In section VI the description of the lateral and longitudinal control systems
is presented. Section VII presents some global results, and finally, a discussion about the whole
work and concluding remarks, as well as the future work to be carried out is described in section
VIII.

Miguel Angel Sotelo Véazquez






Chapter 2

Control Architecture

An efficient control architecture is needed so as to properly manage the information provided by
the vehicle sensors (colour camera and DGPS receiver) as well as the data flow generated during
navigation. The design of the control architecture considers a global system for task execution
and monitoring in order to integrate the perception capabilities included in the vehicle. Likewise,
a global planner is also necessary to direct and focus the behaviours of the several perception
and actuation modules, basing on an a priori map of the circuit. A detailed description of these
components is given below.

2.1 Environment modd

A geometrical and topological description is provided to describe the real environment where the
vehicle operates. The development of such a model aims at facilitating path planning. As can be
derived from observation of figure 2.1, where a geometrical map of the test circuit is depicted,
the geometrical representation of the operating environment resembles an urban quarter, including
streets, intersections, roundabouts, and stop stations.

In the next step, the geometrical map is converted into a topological directed graph, where both
the intersections and stop stations are represented by nodes, while the arcs stand for the streets that
link them considering the exclusive direction of circulation. This kind of representation greatly
simplifies the path planning problem, leaving the complexity of local navigation to the perception
tasks. Thus, figure 2.2 shows the topological representation of the circuit map.

To give a simple example according to the map in figure 2.1, the shortest path from station
5 to station 1 implies navigating along lanes L8 and L5 until reaching intersection C2; at C2 the
vehicle should turn right onto L3, and navigate along L1 and L2 to reach the final destination.

2.2 Control Architecture description

The control architecture has been divided into several clasical layers aiming at planning and exe-
cuting the optimal path between the current location and the destination station as specified by the
user, basing on an a priori circuit map. Global navigation is achieved by properly concatenating
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Figure2.1 Geometrical representation of the circuit.

local perception tasks that solve vision-based navigation on streets and intersections, respectively.
The same idea was suggested and successfully deployed in [21] for crosscountry navigation. The
proposed architecture is depicted in figure 2.3. The basic description of the different layers in-
cluded in the control scheme is provided next:

Planning layer: the global planner included in this layer computes the shortest path between
the current location and the destination station, providing a recommended velocity profile for the
global mission depending on whether the vehicle must navigate on a street or on an intersection.
Coordination layer: the core of this layer is the task manager. It provides a link between planning
and execution, by endowing the system with the capabilities of task managing and path replanning
upon emergency situations or explicit user request. Navigation layer: all vision based tasks for
lane tracking, intersection navigation, and vehicle detection are included in this layer. Low level:
it is composed of the sensors aboard the vehicle (colour camera and DGPS receiver) together with
their respective synchronised software drivers, as well as the actuator modules for the steering
wheel and velocity pedals.

2.3 Global planner

According to the previously described topological model of the environment, the path planning
problem can be reduced to one of traversing a mathematical graph structure composed of arcs, or

VIRTUOUS: Vlsion-based Road Transport system for Unmanned Operation on Urban Scenarios
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N13

C Crossroads
S Station

Figure2.2 Topological representation of the circuit.

edges, and nodes, where the edges represent tracks (or streets) and the graph nodes represent the
joins between tracks. To find the shortest route in this graph the popular Dijkstra algorithm [8]
has been chosen. Local navigation on each section of the final route is associated to some of the
following specialised vision based tasks: lane tracking and intersection navigation. Thus, edges in
the graph structure are attached to the execution of lane tracking, while nodes are associated to the
execution of intersection navigation. The appearance of a global plan could be something like this:

Track the lane until you reach the next intersection.
Turn right at that intersection.

Track the lane until you reach the next intersection.
Go ahead at that intersection.

Track the lane until you reach the stop station.

Likewise, an appropriate velocity profile for the different sections of the route is provided by
the global planner accounting for the vehicle kinematic and dynamic constraints. Accordingly,
vehicle speed will be allowed to be moderately high during lane tracking, while it will be kept low
during a turn at an intersection. On the other hand, both an accelerating and a decelerating zone
are considered at each intersection to gradually increase or decrease the vehicle speed depending
on whether the it has completed a turn at that intersection or it is approching it, respectively. The
concept is graphically depicted in figure 2.4.

The global velocity profile is computed considering the existance of these accelerating and
breaking areas, yielding the typical example shown in figure 2.5. As can be observed, lane tracking
is planned to be carried out at 50 km/h, quite a usual velocity in urban environments, while turns at
intersections are accomplished at 5-10 km/h. On the other hand, the breaking distance d ; depends
on the vehicle speed and dynamic constraints and can range from 20m to 30m in practice.

Miguel Angel Sotelo Vazquez
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2.4 Task manager

Correct execution of a global plan involves the efficient concatenation of the local navigation tasks
associated to the different sections of the route, as previously described. It becomes apparent then
to design and deploy a task manager to carry out such a job. Only one task, called the active task,
is executed at each time. Once the active task meets its termination condition, the task manager
stops it and starts the next task according to the plan.

There are different types of termination conditions. In this work only cognitive and geometri-
cal termination conditions have been considered. Thus, the task manager relies on an a priori map
of the circuit so as to provide correct termination for lane tracking basing on the current vehicle
location (as it approaches an intersection) as measured by the DGPS receiver, while navigation
on intersections is terminated in a cognitive manner using the visual information contained in the
scene. In conclusion, the mission of the task manager can be briefly summarised in the following
points.

e Invoking the global planner at the beginning of each mission or in case of replanning upon
explicit user request or emergency situations.

e Translating the global plan into a series of interlinked vision based local navigation tasks
(lane tracking and intersection navigation).

e Switching between tasks after the termination conditon of the active task is met.

VIRTUOUS: Vlsion-based Road Transport system for Unmanned Operation on Urban Scenarios
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e Providing the vehicle with the capacity of safe emergency stop in case of failure or crash in
the local navigation tasks.
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Chapter 3

Lane Tracking

As described in the previous section, the main goal of this task is to correctly track the lane of
any kind of road (structured or not). This includes the tracking of non structured roads, i.e, roads
without lane markers painted on them.

3.1 Road mode€

The use of a road model eases the reconstruction of the road geometry and permits to filter the
data computed during the features searching process. Among the different possibilities found
in the literature, models relaying on clothoids [16] and polynomial expressions have extensively
exhibited high performance in the field of road tracking. More concretely, the use of parabolic
functions to model the projection of the road edges onto the image plane has been proposed and
successfully tested in previous works [38]. Some of the advantages derived from the use of a
second order polynomial model are described below.

e Simplicity: a second order polynomial model has only three adjustable coefficients.

e Physical plausibility: in practice, any real stretch of road can be reasonably approximated
by a parabolic function in the image plane. Discontinuities in the road model are only
encountered in road intersections and, particularly, in crossroads.

According to this, we’ve adopted the use of second order polynomial functions for both the edges
and the centre of the road (the centre line will serve as a reference trajectory from which the
steering angle command will be obtained), as depicted in figure 3.1.

The adjustable parameters of the several parabolic functions are continuously updated at each
iteration of the algorithm using a well known least squares estimator, as will be described later.
Likewise, the road width is estimated basing on the estimated road model under the slowly varying
width and flat terrain assumptions. The joint use of a polynomial road model and the previously
mentioned constraints allows for simple mapping between the 2D image plane and the 3D real
scene using one single camera.
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Figure3.1 Road model.

3.2 ImagePreprocessing

The original 480x512 incoming image acquired by a colour camera is in real time re-scaled to
a low resolution 60x64 image, by making use of the system hardware capacities. This process
aims at decreasing the whole computing time, according to the real time constraints implicit in the
control of high speed vehicles for road tracking applications. It inevitably leads to a decrement
in pixel resolution that must necessarily be assessed. Some of the motivations supporting this
decision are cited next.

In previous works [31], it has been demonstrated that low resolution images (30x32) suffice
for road tracking. The use of low resolution images allows for real time performance, strongly
demanded in the road tracking problem. Likewise, the presence of other vehicles can be robustly
detected using one single camera within a 20m safety distance, in spite of the resolution decrement.
Nevertheless, the detection of more general obstacles, such as pedestrians, would surely require
higher precision and resolution. In addition, the re-scaling process is performed in real time during
image acquisition, and thus, no computing time is consumed.

3.3 Region of Interest

As discussed in [4] due to the existence of physical and continuity constraints derived from vehicle
motion and road design, the analysis of the whole image can be replaced by the analysis of a
specific portion of it, namely the region of interest. In this region, the probability of finding the
most relevant road features is assured to be high by making use of a priori knowledge on the road
shape, according to the parabolic road model proposed.

Thus, in most cases the region of interest is reduced to some portion of image surrounding
the road edges estimated in the previous iteration of the algorithm. This is a valid assumption for
road tracking applications heavily relying on the detection of lane markers that represent the road
edges. This is not the case of the work presented in this paper, as the main goal is to autonomously
navigate on completely unstructured roads (including rural paths, etc). As will be later described,
colour and shape features are the key characteristics used to distinguish the road from the rest of
elements in the image. This leads to a slightly different concept of region of interest where the
complete road must be entirely contained in the region under analysis. On the other hand, the use
of a narrow focus of attention surrounding the previous road model is strongly discarded due to the
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unstable behaviour exhibited by the segmentation process in practice (more detailed justification
will be given in the next sections). A rectangular region of interest covering the nearest 20m ahead
of the vehicle is proposed instead, as shown in figure 3.2. This restriction permits to remove non
relevant elements from the image such as the sky, trees, buildings, etc, as well as to insure proper
anticipation in vehicle detection, particularly in urban or industrial areas where the maximum
velocity is usually under 50km/h.

Figure3.2 Area of Interest.

3.4 Road features

The combined use of colour and shape restrictions provides the essential information required to
drive on non structured roads. Prior to the segmentation of the image, a proper selection of the
most suitable colour space becomes an outstanding part of the process. On one hand, the RGB
colour space has been extensively tested and used in previous road tracking applications on non
structured roads [45] [12] [36]. Nevertheless, the use of the RGB colour space has some well
known disadvantages, as mentioned next.

It is non intuitive and non uniform in colour separation. This means that two relatively close
colours can be very separated in the RGB colour space. RGB components are slightly correlated.
A colour can not be imagined from its RGB components. On the other hand, in some applications
the RGB colour information is transformed into a different colour space where the luminance
and crominance components of the colour are clearly separated from each other. This kind of
representation benefits from the fact that the colour description model is quite oriented to human
perception of colours. Additionally, in outdoor environments the change in luminance is very
large due to the unpredictable and uncontrollable weather conditions, while the change in colour
or crominance is not that relevant. This makes highly recommendable the use of a colour space
where a clear separation between the intensity (luminance) and colour (crominance) information
can be established.

The HSI (Hue, Saturation and Intensity) colour space constitutes a good example of this kind
of representation, as it permits to describe colours in terms that can be intuitively understood. A
human can easily recognize basic colour attributes: intensity (luminance or brightness), hue or
colour, and saturation [22]. Hue represents the impression related to the predominant wavelength
in the perceived colour stimulus. Saturation corresponds to the colour relative purity, and thus,
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non saturated colours are grey scale colours. Intensity is the amount of light in a colour. The
maximum intensity is perceived as pure white, while the minimum intensity is pure black. Some
of the most relevant advantages related to the use of the HSI colour space are discussed below.

It is closely related to human perception of colours. High power to discriminate colours,
specially the hue component. The difference between colours can be directly quantified by using
a distance measure.

Transformation from the RGB colour space to the HSI colour space can be made by means
of equations 3.1 and 3.2, where V1 and V2 are intermediate variables containing the chrominance
information of the colour.

Vil=|V% & ¥ G (3.1)
Vs % 7 0 B

Va
H = arctan A S =/VE+V} (3.2)

1

This transformation describes a geometrical approximation to map the RGB colour cube into
the HSI colour space, as depicted in figure 3.3. As can be clearly appreciated from observation of
figure 3.3, colours are distributed in a cylindrical manner in the HSI colour space.

White

Intensity

Saturation

Figure3.3 Mapping from the RGB cube to the HSI colour space.

Although the RGB colour space has been successfully used in previous works dealing with
road segmentation [45] [36], the HSI colour space has exhibited superior performance in image
segmentation problems as demonstrated in [10], where the concept of cromaticity saturation is the
key feature for road edge detection, and [22]. According to this, we propose the use of colour
features in the HSI colour space as the basis to perform the segmentation of non structured roads.
A more detailed discussion supporting the use of the HSI colour space for image segmentation in
outdoor applications is extensively reported in [42].
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3.5 Road Segmentation

Image segmentation must be carried out by exploiting the cylindrical distribution of colour features
in the HSI colour space, bearing in mind that the separation between road and no road colour
characteristics is non linear. To better understand the most appropriate distance measure that
should be used in the road segmentation problem consider again the decomposition of a colour
vector into its three components in the HSI colour space, as illustrated in figure 3.3. According to
the previous decomposition, the comparison between a pattern pixel denoted by P, and any given
pixel P; can be directly measured in terms of intensity and chrominance distance, as depicted in
figure 3.4.

4 A
intensity Y Ip

Chromatic
plane

chromatic

Figure3.4 Colour comparison in HSI space.

From the analytical point of view, the difference between two colour vectors in the HSI space
can be established by computing the distances both in the chromatic plane, dchromatic, and in the
luminance axis, dintensity, as described in equations 3.3 and 3.4.

dintensity = |Ip - Ii| (33)

dCh'r'omatic = \/(Sp)2 + (Si)2 — 251)51'6089 (3.4)

with
g = |HP_HZ| 7’f |HP_HZ| < 180° (3 5)
360° — |H, — H;| if |H,— H;| > 180° '

where H,, H;, Sp, S;, I,,, and I; represent the Hue, Saturation and Intensity of the pattern (p)
and given (i) pixels, respectively. As can be readily derived from the previous equations, d.nromatic
measures the distance between two 2D colour vectors in the chromatic plane while dintensity
provides the luminance difference between the pattern pixel and the pixel under consideration.

The cylindrical distribution of characteristics in the HSI colour space must be suitably ex-
ploited in order to provide an appropriate segmentation method. According to this, a cylindrical
surface of separation between the road and non-road classes is proposed in an attempt to decouple
chromatic changes from luminance changes, as the latter are much greater in outdoor environ-
ments despite intensity is not a determinant characteristic in the colour segmentation process. In
other words, any given pixel i will be classified as road if the chromatic distance (dcromatic) to
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the colour pattern is bellow some threshold T'cjor,, and the intensity distance (dintensity) 1S lower
than some T;,;. This constraints the road pixels features in a cylinder around the pattern colour
vector.

Despite hue is the most powerful colour attribute for segmentation purposes, this feature is
not significant when the intensity is extremely low or extremely high. On the other hand, hue
is unstable when saturation is very low, as demonstrated in [20]. According to this, pixels are
divided into chromatic and achromatic as proposed in [22]. Any given pixel is considered to be
achromatic if its intensity is below 10% or above 90% of the maximum normalised intensity, or if
its saturation is under 10% of the maximum normalised saturation, as expressed in equation 3.6.

achromatic pizels: I > 0.91,4, or I < 0.11,,4, or S < 0.18,4x (3.6)

where I, and S, represent the maximum normalised intensity and saturation values, respec-
tively. Achromatic pixels are segmented according to its intensity value alone. Obviously, non
achromatic pixels are automatically categorised as chromatic. The segmentation of chromatic pix-
els is accomplished by applying the previously proposed cylindrical separation in the HSI colour
space.

3.5.1 Adding spatial constraints

The quality of road segmentation can be strongly enhanced by adding spatial constraints accord-
ing to the parabolic model used to describe the road edges. Consider the polynomial curve yc
describing the trajectory of the central points of the road, projected on the image plane as depicted
in figure 3.5.

y =a x*+b x+c
(3 Cc c [+

Central trajectory
of the road

Figure3.5 Parabolic model of the central points of the road.

In an intuitive manner, the probability that a pixel is segmented as road is high if the pixel
is located close to the previous road model (as estimated in the last iteration of the algorithm),
described by y.(t — 1). This is particularly true for short computing time algorithms considering
that in practice, due to physical constraints both in roads curvature design and in vehicle dynamics,
either the road width or the temporal road model y.(¢) vary gradually between two consecutive
images. The last statement can be regarded as the slow varying road width assumption, widely
used in previous works on road tracking [24] [32].

Incorporating spatial constraints in the segmentation stage is not a trivial process that can be
accomplished in several ways. For each pixel in the image the dimension of the cylindrical surface
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used for segmentation is modified according to the distance from the pixel under consideration
to the previously estimated road model y.(t — 1), and thus, threshold values Tpyom and T
are modulated as a function of such distance. This turns the segmentation stage into a position
dependant process.

The distance d,; between any given pixel 7 with image coordinates (z;,y;) and the previous
road model y.(¢t — 1) is computed on the image plane as described by equation 3.7. Graphically,
the process is illustrated in figure 3.6.

dyi = |ys — [ac(t = 1) - a7 +be(t = 1) - 2+ celt — 1)) S

(X, 1

N
(s
Previous road
model

Figure3.6 Computation of distance between pixel ¢ and the previously estimated road model .

The real distance di between the point corresponding to the projection of pixel 5 on the 3D
scene, and the central trajectory of the road is computed using the camera calibration parameters
under the flat terrain assumption. Threshold values Tp.om and T3, are then modified for each
pixel according to the distance d; previously computed. The proposed modification is accom-
plished so as to provide low threshold values for pixels far away from the previous road model.
Thus, for pixels clearly located out of the road trajectory, the chromatic and luminance distances
to the road pattern colour features should be very small in order to effectively be segmented as part
of the road. On the contrary, for pixels near the central trajectory of the previous road model those
distances are admitted to be larger. Analytically, the proposal reflects an exponential variation of
the threshold values T¢.om and T;,; for each individual pixel 7 as a function of d, according to
the expression in equation 3.8.

—K-d

— W(t—1) . _
\ch(d) exXp "y Tc(t 1) (3.8)
U,(d) = expW -0 Ty(t — 1)

where WU, (d) and ¥ ;(d) represent the threshold values for the chromatic and luminance dis-
tances, respectively, for a pixel located at a distance d from the previous model, T'.(¢ — 1) and
Tr(t — 1) are the maximum threshold values estimated in the previous iteration, and K is an
empirically determined parameter devised to control the threshold value, particularly for pixels
located in the surroundings of the road edges. In practice, K is determined so that the threshold
value for pixels located at a distance from the model d,, = W (¢ — 1)/2 is 70% of the maximum
threshold, yielding the numerical value depicted in equation 3.9.
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K = —2-1n(70/100) (3.9)

A chromatic pixel 4 is classified as road if it simultaneously verifies that d pyom < ¥.(d) and
dint < ¥1(d), while an achromatic pixel is segmented as road if the single condition d;,,; < ¥;(d)
is satisfied. Obviously, the initial choice of T,(0) and 77(0) becomes a critical decision whose
justification is fully detailed in the next section.

On the other hand, the maximum threshold values 7. (t) and 77 (¢) must be dynamically up-
dated so as to adapt the segmentation process to changing colour and luminance conditions. To
carry out this, the root mean squared values of the chromatic and luminance distances to the road
pattern, dchrom,rms and dint,rms, are computed for each pixel classified as road. The maxi-
mum threshold values for the next iteration, T¢.(¢ + 1) and T7(¢ + 1), are calculated as described
in equation 3.10 depending on dcpnrom,rms(t), dint,rms(t), and an exponential factor essential to
guarantee the stability of the segmentation process. This leads to threshold values for the next
iteration, W (d);41 and ;(d)|¢41, exactly equal 10 denrom,rms(t) and dint,rms(t), respectively,
for pixels located on the road edges (d ;1 = W(t)/2).

T.(t+1) = dehromyrms(t) - ¢ (3.10)
T(t+1) = dint,rms (t)-e2

3.5.2 Initial Segmentation

An initial road pattern colour vector must be determined so as to provide correct features reference
for the first iteration of the classification process. As can be easily imagined, no universal road
features vector could be a priori considered regarding that the system should work in a long variety
of different and complex scenarios, ranging from urban roads to rural paths.

An initial road pattern colour vector is computed from the information contained in the first
image in a non supervised manner, assuming that the road is well within the field of view (at least
one edge of the road should be visible). The colour features of pixels near the central trajectory of
the initial road model are averaged to obtain the road pattern, as the probability that those pixels
belong to the road is quite high. This leads to the need for determining the initial equation of the
central trajectory of the road y.(0) = a.(0) - 22 + b.(0) -  + c.(0).

An iterative procedure is then started aiming at finding the initial road model. This model is
intended to serve as the initial reference around which a set of pixels is selected to compute a
candidate road pattern colour vector. Seven a priori road models are utilised for this purpose, as
depicted in figure 3.7. The choice of these models has been made according to the position of the
camera and its calibration parameters.

For each model, a set of M pixels is randomly selected in a surrounding of 1m around the
central trajectory of the model. The HSI colour features of the M selected pixels are averaged
to yield a candidate road pattern colour vector for road model i (I,;, Hpi, Spi), as indicated in
equation 3.11, where a set of M = 10 pixels has experimentally proved sufficient to yield a
representative road pattern colour vector.
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Figure3.7 A priori road models used to determine the initial road pattern.

Ci = LkL1 Ski - cos(Hyi)
Si = kL Ski - sin(Hy;)
Hp; = arctan(S;/C;) (3.11)
Spi = \/Cf + SZZ
Ipi = 37 S0 I
The maximum threshold values 7,.(0) and T7(0) are determined according to the quadratic

distances dehrom,rms—pi aNd dintrms—pi Detween the M selected pixels and the candidate road
pattern vector for model i (H;, Spi, Ip;), Obtained as described in equations 3.12 and 3.13.

_ 1 <~M p
dChTom,TTTLS*pZ = \/H Ej:l djchram—p’i

(3.12)
dint,rms—pi = \/% Z]Ni1 d‘?int—pi
K
Tc(o) = dchrom,rmsfpi c€2 (313)

K
TI(O) = dint,rmsfpi -ez2

where djchrom—pi and djin:—p; represent respectively the chromatic and intensity distances be-
tween pixel 7 and the candidate road pattern vector given by model i. The segmentation of the
image is then carried out as described in the previous sections, using the candidate road pattern
vector and an initial road width W (0) = 6m (which is the standard width for a two lanes ur-
ban road). The quality of the resulting segmentation is evaluated by means of Sy;. Index Sy; is
intended to validate the resulting segmentation by measuring the correlation between the initial
road model i and the road segmentation obtained using the candidate road pattern colour vector
computed from road model 7. The process is graphically illustrated in figure 3.8.

Analytically, Sy, is defined as the number of road pixels in road model : matching the road
pixels in the initial segmented image using such model. The final value is normalised by the total
number of pixels in the image (P), as equation 3.14 shows.

1 P

Soi = = Y11 — dir (Ve Vioi)] (3.14)
Lt
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Initial
segmentation

Road Pattern i

Figure 3.8 Comparison between road model i and the initial road segmentation obtained using such
model.

where V; represents the binary value of segmented pixel & (0 stands for road and 1 for no road),
Vioi is the binary value of pixel & in the initial segmentation using road model 4, and d g is the
Hamming distance. Thus, a value of Sg; close to unity represents a high correlation between the
segmentation and model 7, doubtless indicating that model i is fit to represent the real shape of the
road in the image plane.

A minimum value So; min = 0.7 is empirically established in order to validate the resulting
segmentation. The validation process is recursively iterated until one of the NV a priori road models
yields a proper segmentation. If no a priori model succeeds in doing so, the width for all road
models is modified in an amount of +5% the nominal width. If the model road width reaches
a modification of +20% the nominal width without producing a valid segmentation, the iterative
process is restarted from the standard value W = 6m. The complete algorithm to perform the
initial segmentation is depicted in figure 3.9.

Experimental results have successfully proved the ability of the proposed strategy to carry
out the initial segmentation, yielding reasonably neat binary images for arbitrary initial vehicle
orientations, while keeping the processing time under 1ms for most of the experiments conducted
on a real scenario, as depicted in figure 3.10.

To enhance the quality of the segmentation process the resulting binary image is reinforced by
a morphological opening operation followed by the removal of small white blobs corresponding
to segmentation noise. The benefits derived from these operations can be graphically appreciated
in figure 3.11.

3.6 Handling shadows and brightness

Shadows and brightness on the road are admittedly the greatest difficulty in vision based systems
operating in outdoor environments [3]. The problem affects the detection of both lane markings
and road edges in general, becoming specially dangerous at some particular hours of the day when
the sun directly shines onto the image plane, deriving in situations where loss of tracking occurs.

In order to deal with this problem, some authors propose to improve the dynamic range of
visual cameras [4] so as to tackle strong luminance changes, when entering or exiting tunnels for
instance, or to enhance the sensitiveness of cameras to the blue component of colours. A different
approach undertakes alone the problem of shadows by attenuating their effects using an appropri-
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Figure3.9 Algorithm for initial segmentation.

ate software pre-processing technique, relaying on physical properties of shaded road pixels. On
one hand, shaded road pixels exhibit lower intensity values than their neighbours corresponding
to non-shaded road pixels. On the other hand, the normalised blue component is generally pre-
dominant over the normalised red and green components, as discussed in [31]. According to this,
the addition of both the blue and the normalised blue components is then exploited to attenuate
the effect of shadows, to some extent. This approach is intended to yield a low resolution grey
scale image that serves as input for a neural network that directly obtains the vehicle turning angle,
assuming that no colour information is used thereinafter.

In the current work, a slightly different strategy is formulated so as to enhance the resulting
segmentation against the effects of both shadows and brightness. This is realised by accounting
for colour properties of pixels located within the road edges, as estimated in the previous iteration
of the algorithm, in an attempt to incorporate spatial constraints in the shadows and brightness
attenuation process. Thus, colour features of pixels located within the limits of the road, but
classified as non-road after the segmentation process, are considered for brightness and shadows
attenuation.
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5 i
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Figure3.10 Examples of initial segmentations.

c)

a) b)

Figure3.11 Segmentation results after morphological post-processing.

In a first step, shaded pixels should simultaneously exhibit an intensity value lower than the av-
erage intensity of road pixels, while presenting a predominant normalised blue component. Those
pixels complying with the conditions previously described, and analytically expressed in equation
3.15, are assumed to belong to a shadow on the pavement and will be consequently reclassified as
road pixels.

b> 3

1< Iroad,avg — 2 0road (315)
where b stands for the normalised blue component; I,.,44.q04 represents the average intensity value
of all road pixels, and o4 is the standard deviation of the intensity distribution of road pixels.
This technique permits to enhance the road segmentation in presence of shadows, and remarkably
contributes to improve the robustness of the colour adaptation process, particularly in stretches of
road largely covered by shadows. To graphically illustrate the benefits derived from this operation,
figure 3.12 shows an example of road segmentation in presence of strong shadows. As can be
appreciated, the road edges are neatly distinguished after the attenuation of shadows.
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Figure3.12 Attenuation of shadows. a) Original shaded images. b) Segmentation without attenuation of
shadows. ¢) Segmentation after attenuation of shadows.

Analogously, a brightness attenuation technique has been devised. In this case, pixels initially
classified as non-road but located within the road edges and exhibiting higher intensity values than
the average road pixels, are assumed to correspond to brightness on the pavement caused by the
sun, and consequently will be re-classified as road-pixels. Analytically the condition is formulated
in equation 3.16.

I> Iroad,a'ug + 2 Oroad (3.16)

where Irpqd,a0g aNd 0,044 are the same variables considered in equation 3.15. After applying
the condition established by equation 3.16, white blobs due to brightness are removed from the
segmentation as depicted in figure 3.13. The improvement achieved by attenuating both brightness
and shadows as described permits to handle real images in real and complex situations with an
extraordinary high performance, becoming an outstanding point of this work.

a) b) c)

Figure3.13 Brightness attenuation. a) Original image with brightness on the pavement. b) Segmentation
without brightness attenuation. ¢) Segmentation after brightness attenuation.
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3.7 Estimation of road edges and width

The estimation of the central trajectory of the road and its edges is carried out basing on parabolic
functions, as described in section 3.1. These polynomial functions are the basis to obtain the lateral
and orientation error of the vehicle with respect to the centre of the lane.

3.7.1 Initial conditions

As previously mentioned, the initial segmentation was derived basing on basic pattern ¢, whose
width and edges are regarded as the initial values for the estimation process, i.e, W (t = 0) = W;
91(0) = yii, 9(0) = yei, and §,(0) = yr4, Where W(t = 0) represents the initial estimation of
road width, and Wi is the width of basic pattern 7. On the other hand, 4,;(0), 9.(0), g, (0) are the
initial estimation for the left edge, right edge, and central trajectory of the road, respectively, while
Yii» Yei,Yri Stand for the left edge, right edge, and central trajectory of basic pattern s.

3.7.2 Estimation of the central trajectory of the road

The central trajectory of the road at current time instant, §.(¢), is estimated basing on the seg-
mented low resolution image and the previously estimated road trajectory, g.(¢t — 1). Temporal
correlation among measures obtained at different instants of time is considered, as well as the
number of data used to carry out the estimation, so as to enhance the road estimation process.
Accordingly, a weighted-recursive least squares estimator with exponential decay is utilised for
this purpose as initially proposed in [38]. The analytical formulation of this filtering technique is
quite similar to that of Kalman filter.

Data measurement

The objective of this first stage is to extract a number of candidate points associated to the
central trajectory of the road at time instant ¢. For each line k in the region of interest the maximum
road width is determined basing on the segmented image, as depicted in figure 3.14. The middle
point of each maximal road width line £ is considered as candidate, and its coordinates (y; x, z+ x)
are validated if the road width of line k is greater than some threshold. This intends to account for
noise rejection.

Lines of maximum road width

Figure3.14 Maximum road width for each line in the region of interest.
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Data association and validation

In order to provide the algorithm with noise rejection capacity, only candidate pixels whose
distance to the previous estimation g.(¢t—1) is under some threshold V" are validated and associated
to the current measure of the central trajectory of the road. This permits to establish a validation
area around the previous road model as depicted in figure 3.15. All measures residing out of the
validation area are discarded and regarded as invalid measures.

Validation area

Figure3.15 Validation area for measures associated to the central trajectory of the road.

Figure 3.16 depicts the points measured for a sequence of four images in a real scenario, using
the proposed validation area. Obviously, measures corresponding to lines where the maximum
road width coincides with the image width (i.e, lines where only road pixels are perceived), are
also disregarded as valid measures as long as those lines don’t provide any information about the
road edges. The effect of these false measures can be graphically appreciated as straight segments
in the bottom-middle part of the example images illustrated in figure 3.16.

Figure3.16 Data associated to the central trajectory of the road in a sequence of images.

Road model update

Measures validated in the last stage constitute the starting point for updating the parabolic road
model. As previously mentioned, a weighted-recursive least squares estimator with exponential
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decay is proposed to perform the estimation of the central trajectory of the road. In spite of
being a well-known and well-documented theory, we repeat the basic equations in this paper for
completeness reasons. Thus, the estimation is realised in three steps as described below.

a)Update prediction.

2(t) = ¢ (t) - 0(t — 1) (3.17)

b)Update state covariance estimate.

P(t) = %[P(t = 1) = [P(t=1)¢(t) - (AL +¢" ()P(t — 1)g(2)) ™" - ¢" ()P" (¢ — 1)] (3.18)
c)Update state estimate.

0(t) =0(t — 1)+ G(t) - [2(t) — 2(¢)] (3.19)
where

G(t) = P(t = 1)p(t) - (A + T (t) P(t — 1)p(t))

Yi1 1 @y oz c
1 2
Z(t) — Yt,2 ¢T(t) — T2 "I"t,Q O(t _ 1) — b
ytaNt 1 '/L‘taNt x?,Nt

where 6(¢ — 1) represents the state estimation at the previous iteration of the algorithm, i.e. at
time instant t — AT, (AT, is the sampling period of the road tracking algorithm), A is a scalar
value that can vary in the range 0 < A < 1, and P(¢ — 1) stands for its covariance. To achieve a
proper trade-off between robustness and transient response, A has been experimentally set to 0.7,
exhibiting an adequate performance in real tests. To illustrate the estimation process, figure 3.17
shows the results achieved upon a sequence of real images, using the proposed formulation.

3.7.3 Road edges estimation

The estimation of road edges is realised using the same filtering technique described in the pre-
vious section. Measures for the left and right road edges are validated and enhanced basing on
three fundamental points: the estimation of the central trajectory of the road at current time ¢, the
estimation of road width at time ¢ — 1, and the slowly varying road width assumption. Thus, a
validation area is also established for the left and right measures, as depicted in figure 3.18. The
locations of the left and right validation areas are based on the central trajectory of the road esti-
mated at time ¢, and the estimated width at time ¢ — 1. The left edge validation area is placed on
the left, W(t — 1) /2 meters away from the central trajectory of the road g.(¢), while the right edge
validation area is obviously located to the right, at W (¢ — 1)/2 meters from ().

Consequently, for each line in the area of interest, the closest measures to the middle of the left

A

edge validation area, defined by 7.(t) — W (¢ — 1)/2, and right edge validation area, defined by

VIRTUOUS: Vlsion-based Road Transport system for Unmanned Operation on Urban Scenarios



3.7. ESTIMATION OF ROAD EDGESAND WIDTH 27

Figure3.17 Estimation of the central trajectory of the road in a sequence of real images.

Validation area Validation area
for left edge for right edge

Figure3.18 Validation areas for edge measures.

Ge(t) + W (t — 1)/2, are considered and validated if the distance to the respective edge reference
is below V' = 1m. The estimations of the left and right edges are independently carried out basing
on the validated measures for each edge (IV;; points for the left edge and N, for the right edge),
while having different covariance matrices (P;(t) for the left edge, P, (¢) for the right edge). Upon
the conclusion of the estimation process, vector 8;(t) = (ay, by, ;)T determines the coefficients
of the parabolic polynomial that approximates the left road edge, while 8,(t) = (ar,by,c,)”
determines the coefficients for the right edge. A complete example of image segmentation, edge
points extraction, and road edges estimation is depicted in figure 3.19.

3.7.4 Road width estimation

The road width is an essential parameter in the complete road tracking scheme. Its estimation is
realised on the basis of the previously mentioned slowly varying road width assumption. An indi-
vidual road width measure w; is obtained for each line in the region of interest, by computing the
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Figure3.19 A complete example. a) Real image. b) Segmentation of the region of interest. ¢) Validated
edge points. d) Road edges estimation.

difference between the left and right edges (9;(t)|z—z; and 9r(t)|z=z;), respectively) as expressed
in equation 3.20.

w; = Yr (t)|w=wi — Ui (t)|w:zi (3.20)

Measures w; obtained in the image plane are properly corrected, using the calibration param-
eters, to yield real measures in the 3D scene. The average road width measure at time ¢, W (t), is
computed using the individual measures for each line, normalised by the number of valid measures
in the region of interest NV,.4;, as in equation 3,21.

1 Nrdz
W(t) = > wes (3.21)
rdi i=1

The slowly varying road width assumption is incorporated using a recursive least squares
based estimator, similar to those employed for the estimation of road edges. This permits to issue
a smooth estimation of the road width. Its analytical formulation is presented below.

A

m(t) = W(t — 1) (3.22)
Py(t) = i(Pw(t C1) = Ky (0Pt — 1)) (3.23)
W(t) = W(t—1) 4+ Ky, (t) (W (t) — m(t)) (3.24)
with
Koy(t) = Py(t = 1)/ (A + Pu(t — 1)) (3.25)
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where 7i(t) represents the prediction of the current state, and P, (¢) stands for covariance of the
estimated width. In practice, proper results have been achieved using A,, = 0.8. To graphically
illustrate the whole process, figure 3.20 depicts a sequence of road images showing the estimation
of the central trajectory and edges of the road, as well as the estimated road width.

Figure3.20 Estimation of road edges and width in a sequence of images.

3.8 Road colour features update

After completing the road edges and width estimation process, the HSI colour features of the road
pattern are consequently updated so as to account for changes in road appearance and illumination.
Intuitively, pixels close to the central trajectory of the road present colour features that highly
represent the road colour pattern in general. Accordingly, a set of N, = 8 pixels in a region of
1m surrounding the central estimation of the road, g.(¢), is randomly chosen as depicted in figure
3.21. Obviously, the selected pixels are only validated if they have been segmented as road pixels
at the current iteration.

The HSI colour features of the road pattern are properly averaged basing on the individual HSI
characteristics of the selected pixels, as shown in equations 3.26 and 3.27.

Ot = Ty Si - cos(Hy)
Sm =221 Sk - sen(Hy)
H,, = arctan(Sy/Chr)

Sp=1/Car+ 5%

(3.26)

L=+ Ik (3.27)

The adaptation process described in this section proves to be crucial in practice to keep the seg-
mentation algorithm under stable performance upon illumination changing conditions and colour
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==
Taking road samples (Np=8)
around previous model

Figure3.21 Random pixel selection for HSI road pattern update.

varying asphalt. The complete road tracking scheme is graphically summarised in the flow dia-
gram depicted in figure 3.22.

3.9 Discussion

The global objective of this section is to put the road tracking algorithm under test in complex and
varied real circumstances. Thus, we propose to analyse the system performance on different non
structured roads in strongly changing weather and illumination conditions as described below.

3.9.1 Non structured roads

In a first set of trials, the road tracking algorithm is evaluated on a private circuit whose structure
resembles the typical layout of an industrial area. Figure 3.23 depicts an example of road segmen-
tation obtained on this scenario. As appreciated from observation of figure 3.23, the road edges
can be neatly distinguished in the segmented image, allowing a clear and robust estimation in real
experiments.

In a second trial, similar experiments were conducted on rural roads. As observed in figure
3.24, a central lane marker is clearly painted on the asphalt, while no lane markers are present at
all near the road edges. In spite of these structural conditions, the segmentations depicted in figure
3.24 strongly support the ability of the road tracking algorithm to successfully perform in this kind
of scenario.

The system has also been evaluated on a University Campus, under typical urban conditions
such as zebra crossings, parked vehicles, etc, using a set of recorded images. Thus, figure 3.25 de-
picts two different and representative situations on urban driving. On one hand, figure 3.25a shows
the segmentation and road edges estimation in presence of a zebra crossing. As can be observed,
the segmentation algorithm provides an efficient filtering for this kind of perturbation, while a ro-
bust estimation of the road edges is preserved. On the other hand, the results obtained in presence
of other vehicles are illustrated in figure 3.25b. Correct segmentation and edges estimation are

VIRTUOUS: Vlsion-based Road Transport system for Unmanned Operation on Urban Scenarios



3.9. DISCUSSION 31

Image
Adquisition
Hardware
scaling

ROI segmentation
using HSI colour properties
and spatial constraints

)

Morphological processing:
opening

l

Small objects
removal

l

Shade and brightness
processing

l

Estimation of width, edges
and center of the road

)

HSI features
updating

Figure3.22 Road tracking flow diagram.

also achieved in this case.

In a final trial, the road tracking scheme is put under evaluation on roads without asphalt. Ac-
cordingly, the edges of a narrow rural path are correctly estimated basing on the road segmentation,
as depicted in figure 3.26.

3.9.2 Robustness against environmental and weather conditions

In this section, the performance of the road tracking algorithm is evaluated under different envi-
ronmental and weather conditions, so as to verify the validity and generality of the segmentation
and updating scheme. All tests were conducted on a private circuit, previously mentioned in the
last section.

Sunny conditions

The excessive amount of luminance becomes a major problem when dealing with road images
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Figure3.23 Road segmentation obtained on a private circuit.

Figure3.24 Segmentations obtained on rural roads.

in a sunny day. All pixels in the image tend to have similar intensity values, and thus, colour
differences in the HSI chromatic plane become crucial for segmentation purposes. In spite of
having achieved correct performance in real experiments under sunny conditions in general terms,
a few remarks must be pointed out.

There exist limitations in the schedule of applicability due to direct incidence of sunrays onto
the camera lens, just after sunrise and before sunset in strongly sunny days. Accordingly, au-
tonomous navigation becomes dangerous and non-advisable under these conditions that obviously
depend on the latitude and the season of the year.

The presence of strong and large shadows on the road especially after sunrise may complicate
the segmentation process to the extent of making recommendable to decrease vehicle velocity, in
order to avoid driving oscillations. Nevertheless, transitions from shaded to sunny areas as well as
navigation on completely shaded zones are adequately managed by the segmentation and updating
algorithm out of the critical hours before mentioned.

Cloudy and rainy conditions
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Figure3.25 Segmentation and road edges estimation on urban areas in presence of a) a zebra crossing, b)
other vehicles.

Figure3.26 Segmentation and road edges estimation on a rural path without asphalt.

The amount of intensity in the image strongly decreases on cloudy and rainy days. Paradox-
ically, this circumstance eases the discrimination process between road and non-road pixels, as
colour differences become larger. Figure 3.27 depicts a typical example of image segmentation
and road edges estimation on cloudy conditions. As can be observed, the high quality of the road
segmentation shown in figure 3.27 doubtless support the previous discussion.

Figure3.27 Segmentation and edges estimation on cloudy conditions.

Likewise, the road takes quite a characteristic colour on rainy days because of the water on
it. This also contributes to a better and easier separation between road and non-road pixels. Even
puddles on the road are correctly segmented, as graphically demonstrated in figure 3.28, where
both the image segmentation and road edges estimation are illustrated for a typical rainy scene.

However, the most dangerous situation takes place after the rain stops, as the asphalt gets dry
in a non-homogeneous manner. This situation yields to the appearance of dark spots on the road
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= 1

Figure3.28 Segmentation and edges estimation on rainy conditions.

due to wet areas, as depicted in figure 3.29. Fortunately, the segmentation process (including the
small blobs removal stage) properly manages these circumstances allowing to obtain high quality
segmentations, as shown in figure 3.29.

| &

Figure3.29 Segmentation and road edges estimation on post-rainy conditions.

Foggy days

In general, autonomous navigation is not advisable on foggy days, even for humans. In spite
of this, incredibly proper segmentations can be obtained under non-heavy foggy conditions, as
depicted in figure 3.30.

Figure3.30 Road segmentation on non-heavy foggy conditions.

3.10 Conclusions

The previous discussion lets us state that the road segmentation algorithm based on the HSI colour
space and 2D-spatial constraints proves successfully to provide an accurate and robust estimation
for the edges and width of non-structured roads, i.e., roads without lane markers. The practical
results discussed above also support the validity of the method for different environmental and
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weather conditions, as demonstrated. On the contrary, there exist some limitations in the use of
the road tracking algorithm just after sunrise and before sunset in very sunny days, primarily due
to direct incidence of sunrays onto the camera plane.

The most remarkable feature of the road tracking scheme described in this work is its ability
to correctly deal with non-structured roads, as this kind of scenario hasn’t received much attention
from the international scientific community during the last years. This stems from the fact that
many of the greatest automotive companies across the globe are currently focusing their finan-
cial resources on developing vision based commercial products for assisted driving on structured
roads. That’s the case of lane depart warning systems, prediction of curvature radius, night vi-
sion enhancement systems, traffic signal detection and recognition, etc. Such a huge economical
support made research groups shift from non-structured roads (difficult to deal with and with no
commercial applicability in the short and mid terms) to structured roads (such as highways, offer-
ing an enormous market for industrial companies) where the lanes are clearly determined by white
or yellow lane markers (and thus, allowing simpler and faster algorithms to be deployed).

In order to establish a comparative discussion, two previous research works are remarkably
over the rest in the domain of vision based autonomous navigation on non-structured roads.

On one hand, the SCARF-UNSCARF system [45] provided one of the first road tracking algo-
rithms for autonomous driving on non-structured roads, physically tested and demonstrated on a
real vehicle. The SCARF system realised a supervised classification, using colour pre-computing,
obviously failing upon strongly varying lighting conditions. UNSCARF solved these problems by
applying an unsupervised iterative clustering technique based on statistical models for the road and
non-road classes. RGB colour features of individual pixels, as well as their row and column po-
sitions are used for this purpose, yielding a five components classifier. Two major drawbacks can
be pointed out under this approach: poor precision is achieved in determining the road edges, and
highly powerful machines are necessary to run the complete classification and grouping scheme
in real time. Comparatively speaking, these two features have been efficiently implemented in the
work described in this paper, by using a second order polynomial model for the road edges recur-
sively updated under the least squares approach, and plausibly demonstrated running on a simple
PC Pentium 120MHz in real time.

On the other hand, a neurally inspired approach was developed in the ALVINN system [31],
providing the steering angle of the vehicle directly from the visual analysis of the incoming image
processed by a neural network. A proper training phase was needed prior to achieving correct
on-line performance in similar scenarios. Thus, during the training period the neural network su-
pervisedly learns the knowledge from a set of images corresponding to some stretch of road. After
the training algorithm converges, the neural system autonomously drives the vehicle in roads simi-
lar to those used in the training stage. ALVINN was successfully demonstrated on the streets of the
Carnegie Mellon University Campus at moderate speeds. However, it suffers from the dependency
problem of the taught training patterns, which is inherent to the neural network approach. Another
problem is that ALVINN does not provide the lateral position of the vehicle within the lane, but
instead, the steering angle is directly issued from the visual image. Both problems are properly
treated in VIRTUOUS by following the paradigm of avoiding implicit learning, and so, removing
the need for supervised learning, as well as by precisely calculating the lateral and orientation
errors of the vehicle, as will be described later.

This leads us to conclude that VIRTUOUS is nowadays one of the most robust and accurate
vision-based systems for autonomous navigation on unstructured roads. The validity and gener-
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ality of VIRTUQUS is plausibly supported by real experiments in real conditions. In fact, au-
tonomous navigation on a private circuit along hundreds of kilometres has been carried out during
the last year using this paradigm, proving its robustness and appropriateness for this task.
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Navigation on | nter sections

A complete navigation mission in a complex road network can be accomplished by properly arbi-
trating the execution of VIRTUOUS, for non-structured road tracking, and an efficient algorithm
that correctly drives the vehicle along intersections and crossroads. This situation demands the
design and implementation of an explicit vision-based procedure for intersection navigation, as
the behaviour required for this task is largely different from that required for road tracking.

The problem of vision-based intersection recognition and navigation has been scarcely treated
in the technical literature. Thus, in some cases the visual detection of intersections is simply aimed
at providing the driver with audible signals for warning purposes [37]. The first system capable of
navigating on intersections with limited success was developed at the Carnegie Mellon University
under the Navlab project. The problem of recognition was restricted to Y-shaped intersections
with a maximum angle of 50 degrees between their branches. As the authors recognise in their
last publication [21], on one hand there is much work left to be done to robustly detect all roads
and intersections, and on the other hand, the weak link of the system is its inability to navigate
road junctions once they are found.

A more recent approach carried out at the Universitat der Bundeswehr Minchen (UBM) un-
dertakes the challenge of intersection recognition and navigation on a network of unstructured
roads [28]. By exploiting images from two monochrome cameras, intersections were detected
and tracked utilising an active pan-tilt head (TACC) to direct the focus of attention. Building
on these results, vision based intersection navigation has been integrated in an Expectation-based
Multi-focal Saccadic Vision system (EMS-Vision), using a whole arrangement of four cameras.
The EMS-Vision system has proved to some extent its ability to navigate on a non-complex net-
work of unstructured roads. As part of their future work the authors of the EMS-Vision system
are currently focusing on navigation on unpaved road networks with intersections with multiple
branches.

In the present work intersection recognition is strictly carried out basing on geometric infor-
mation provided by a DGPS receiver. A priori data is then necessary for this purpose, and thus
a previous global map containing the X-Y coordinates of all intersections in the environment has
been off-line constructed. On the other hand, intersection navigation is completely vision based,
and accounts for any angular value between the intersection branches. A simple monocular colour
vision system is proposed to realise intersection navigation (indeed the same system utilised for
road tracking). This fact becomes a major issue, as cheap prototype navigation systems will be
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possible.

Two basic manoeuvres can be executed at an intersection: on one hand the vehicle can change
its moving direction by turning left or right; on the other hand the vehicle can go ahead and
cross the intersection by keeping its current direction. The problem of crossing an intersection
is basically the same of tracking the lane, and thus the same algorithmic solution is provided for
this kind of manoeuvre. On the contrary, turning right or left at an intersection is quite a different
problem that needs to be addressed on a detailed chapter.

4.1 Turning manoeuvres at inter sections

The navigation strategy proposed for turning manoeuvres at intersections resembles the human
way of driving. Considering the limitation in the camera’s field of view, the vehicle should start
the turning manoeuvre (left or right, according to the plan) at low speed, until enough perspective
of the new road is gained. From that point onwards lane tracking will resume control of the vehicle
and its velocity will gradually increase. To gain better understanding of the complexity implicit
in this kind of manoeuvres, consider the sequence of images depicted in figure 4.1, where the
perspective of the road gradually improves as the vehicle turns to the left.

Figure4.1 Sequence of images during a left turn.

Thus, perception efforts must be focused on the direction where the road is expected to appear
upon turning completion. In other words, the right part of the image will be the focus of attention
when the vehicle is performing a right turn at an intersection, for instance.

A remarkable circumstance to account for is the fact that road edges can no longer be modelled
as parabolic polynomials during the turning manoeuvre, due to the limited perspective of the road
particularly at the beginning of the turn. In this situation, there is no correspondence between
the real road edges and a second order function, in particular in cases when even the edges are
not visible within the camera’s field of view. On the other hand, there exists a clear necessity to
provide continuity in the road edges estimation, bearing in mind that the vehicle turning angle is
issued from the estimation of the central trajectory of the road as will be described later, and so,
there should be no abrupt discontinuity in the model estimation when traversing an intersection.
This means that an estimation of the road edges is needed anyway.
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To solve this contradictory and compromising situation (the estimation of road edges is needed
but it can not rely on parabolic polynomials) we propose to de-couple the segmentation process
from the road edges estimation. This leads to the use of a fixed road model that shall not be updated
according to the image segmentation results during the vehicle turn. That invariable model will be
the valid reference so as to obtain the vehicle turning angle, until enough perspective of the road is
gained and road tracking can be resumed. Thus, segmentation and road edges estimation are made
independent from each other during the turn at an intersection.

The fixed road model will be geometrically located in the image plane in the direction of the
intended turn to perform at the intersection, according to the global plan. For instance, figure
4.2 shows the fixed models for left (a) and right (b) turns at an intersection. Reminding that the
vehicle turning angle is obtained from the central trajectory of the road, models depicted in figure
4.2 will cause the vehicle to turn left or right, respectively. Besides, these models are located in the
region of the image where the road is expected to appear upon turning completion, and thus, no
discontinuity in the vehicle turning angle will occur. On the other hand, the road width estimation
is also kept constant during the whole turn, assuming the last estimated value before starting the
turn W (o).

Figure4.2 Fixed road models for left (a) and right (b) turns at intersections.

Continuity in the road edges and width estimation is preserved due to the least squares based
estimator that brings the road model from its initial position, at the beginning of the turning ma-
noeuvre (at ¢ = tg), to the corresponding fixed model in a soft and gradual manner.

As previously mentioned, the end of the turning manoeuvre is determined basing on visual
information. For this purpose, the image segmentation is compared (or correlated) to several a
priori road models, as will be described in detail later. The vehicle is supposed to appropriately
perceive the new road when the previous correlation is high enough, i.e., when the new road
resembles some of the a priori road models utilised in the comparison. From that point onwards,
lane tracking resumes control of navigation. The process is coarsely described in the flow diagram
depicted in figure 4.3.

4.1.1 Image processing at inter sections

Basically, image processing at intersections is similar to image processing for road tracking, except
for those processes concerning features adaptation as a function of the road model. Indeed, the
road model can not be used for HSI updating during a turning manoeuvre at an intersection, as it
remains fixed and thus provides no relevant information. Accordingly, segmentation is exclusively
performed on the basis of HSI colour characteristics, and no threshold modification is carried
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Figure4.3 Basic algorithm for turning manoeuvres at intersections.

out basing on the distance between the pixel under consideration and the estimated road model.
The rest of the image segmentation process is maintained invariable, yielding the sequence of
segmented images depicted in figure 4.4 for a typical left turn.

Likewise, figure 4.5 illustrates the road edge estimation process in a sequence of images during
a left turn at an intersection. As can be appreciated from observation of figure 4.5, the road model
gradually shifts from quite a centred position (first image), through the fixed road model for left
turns (images from 2 to 7), until road tracking is resumed when enough perspective of the new
road is gained (image 8).

Finally, the HSI road colour pattern is updated basing on all pixels segmented as road at the
current iteration (avoiding thus to rely on the road model, as it provides no reliable information
during the turn). Experience demonstrates that the image segmentation and adaptation method
presented in this section remains stable during intersection navigation, as far as enough road is
perceived in the camera’s field of view.

4.2 Determining the end of the turning manoeuvre

As previously described, the end of the turning manoeuvre is determined basing on visual in-
formation. In particular, the turning manoeuvre finishes when the new road is perceived with a
sufficiently reliable perspective. This permits to navigate on any kind of intersection and to execute
any possible turning angle.
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Figure4.4 Segmented images during a left turn at an intersection.

Figure4.5 Road edge estimation during a left turn at an intersection.

On the other hand, the exclusive use of visual information leads to dangerous situations, as the
visible portion of the road does not fit a second order polynomial (yielding quite noisy segmen-
tations) due to the limited perspective of the road during turning manoeuvres. In a first intuitive
approach, the end of the turning manoeuvre could be determined by computing the correlation
between the incoming segmentation and some a priori road models. This model based template
matching requires the definition of a priori road models, as depicted in figure 4.6 for the case of
left turns.

Unfortunately, experience demonstrates that the use of this simple correlation measure does
not suffice for reliable determination of the end of the turn. On one hand, segmentations similar
to the a priori road model templates can occur even at the beginning of the turn, and thus a false
detection should happen. On the other hand, segmentation noise drastically increases during the
turn due to the absence of a parabolic model that contributes to enhancement purposes using spatial
constraints. Relying on these facts, we propose to reinforce the vehicle localisation during the turn
using Markov stochastic processes, in what will be referred to as Markov Localisation Process
hereinafter. The basic idea is to enhance the vehicle localisation robustness while keeping on
using visual information at the same time. The angular trajectory described by the vehicle during
the turn is modelled by a random variable denoted by &, as depicted in figure 4.7.
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Figure4.6 A priori road model templates for left turns.
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Figure4.7 Modelling of the vehicle turning angle £ at intersections.

A probability density function is calculated for all possible positions along the localisation
space. Such a function is updated at each iteration time under the typical Markov assumptions,
and in doing so it becomes a Markov stochastic process. The abcise &,,q, Where the density
function reaches its maximum indicates the most reliable vehicle angular position during the turn.

Let Bel (& = &) denote the vehicle’s belief of being at location £ at time ¢, where £ is a location
in the localisation space. The possible values of £ range from O degrees at the beginning of the
turn, to 90 degrees or higher at the end of the turning manoeuvre. Bel (&) reflects the initial state
of knowledge. If the vehicle position is accurately known, Bel(&;) is centred on such location.
If not so, Bel (&) is uniformly distributed to reflect the global uncertainty in vehicle location. In
this work, Bel(&) is initially set to O degrees, as depicted in figure 4.8, taking advantage of the
fact that the vehicle is starting the turn. The distribution Bel(£) is updated whenever the vehicle
moves or acquires a new image.

421 Bel(¢) updating upon vehicle movement

Vehicle motion is modelled by the conditional probability pa(g/g’). pa(g/g’) denotes the proba-
bility that motion action a, when executed at ¢’, carries the vehicle to position &. p,(£/€') is then
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Figure4.8 Initial belief distribution Bel(&p).

used to update the belief upon vehicle motion, where E\el(ft = &) denotes the resulting belief at
time ¢, as indicated in equation 4.1.

Bel(& =€) =Y pal€/€) - Bel(&-1 =€) (4.1)
é.I

Computation of pa(g/g’) is carried out accounting for the vehicle kinematic and dynamic
constraints. This implies the use of the vehicle kinematic model (approximated by the popular
Ackermann model), and proprioceptive knowledge about vehicle current velocity v and steering
angle ¢. Let R denote the radius of curvature of the trajectory described by the vehicle during the
turn, as depicted in figure 4.9. Basing on that figure, the differential angular arc A¢ described by
the vehicle between two consecutive iterations, can straightforward be obtained considered that
the vehicle linear velocity v is kept constant, according to equation 4.2.

Curvature
center

Figure4.9 Vehicle radius of curvature.

_H_’U-At

A
g R R

4.2)
where At represents the time between two consecutive algorithm iterations, and v stands for the
vehicle linear velocity. On the other hand, the radius of curvature R can be calculated using the
vehicle kinematic model, yielding the expression in equation 4.3.
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(4.3)

where L denotes the wheelbase, and ¢ stands for the vehicle steering angle. Thus, A¢ can be
explicitly written as a function of measurable magnitudes, as in equation 4.4.

_v-At-tan¢

A¢ I

(4.4)

Although A¢ can not be regarded as an exact value, due to sliding, backlash, and measure
noise not explicitly considered in the model, equation 4.4 is helpful in modelling pa(g/f'). The
probability that the vehicle reaches position ¢ at the current state, from £’ at the previous one, can
be understood as the probability that the vehicle covers an angular trajectory ¢ = £ — ¢’ ina time
interval At. Basing on the previously described model, A¢ is the most likely value forpa(g/g’).
Likewise, the probability will gradually diminish as the difference between & and £’ increases. On
the other hand, the vehicle is physically constrained to move forward, and thus, the probability
that its angular position decreases with time is null.

Pa(€/€) =0 VE<E (4.5)

According to the previous reasoning, we propose to model p, (& /5') by means of an auxiliary
random variable denoted by I". Probability pa(§/§') can be substituted by probability p, (T = %),
so that p,(T" < 0) = 0, while a gaussian function is considered for positive values of T', yielding a
maximum at ' = A¢. Graphically, the model for p,(£/¢') is depicted in figure 4.10.

p,(&/€)=p,(I)

r=£-¢

»

w2

Figure4.10 Model of p,(£/¢).

The standard deviation of the gaussian model for p, (¢/¢') has been empirically setto o = A,
and so, the probability is almost zero for angular values near ' = 0. Nevertheless, due to the fact
that p,(n = &) is zero for negative values of T", the proposed model is not exactly a gaussian
function. This effect is corrected by using a normalising factor p(s) as described in the next
section.
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422 Bel(&) updating upon image acquisition and processing

Bel(¢) distribution must be validated according to the visual information contained in the scene
acquired by the vehicle vision system. Let s denote the vision system measure, representing
the degree of similarity or correlation between the current image and some a priori road model
expected to be perceived upon intersection completion. On the other hand, p(s/&) stands for the
probability of obtaining measure s at position £. The belief distribution Bel(¢) is updated upon
image acquisition and processing according to equation 4.6.

_ p(s/€) - Bel(& =€) (4.6)

Bel(g = ¢) 0

where p(s) represents a normalising factor to ensure that Bel(¢) is truly a real probability density
function (p.d.f). Visual measure s is obtained by computing the correlation between the incoming
segmentation and several a priori road models, on a pixel by pixel basis. In particular, we’ve
devised three a priori road models located on the area of the image where the road is most likely
to appear after completing the turn at an intersection. Additionally, the width of the a priori road
models is randomly chosen in a given interval around the road width ¥ (¢,) estimated just before
starting the intersection manoeuvring. This endows the system with the capacity to recognise and
track roads with different widths. Figure 4.11 shows the shape of the a priori road models for left
(a) and right (b) turns.

a) b)

Figure4.11 A priori road models for left (a) and right (b) turns at intersections.

For each a priori road model coefficients r; and 7; are computed. Coefficient r; measures the
similarity between the road area in the segmented image and the road area in a priori model 3.
Likewise, 7; measures the correlation between the non road area in the segmented image and the
non road area in a priori model 7. These coefficients are calculated as shown in equation 4.7.

P Ni—road
T — T
i—road
T = Ni—noroad (4'7)
? Ti—noroad

where T;_,,.q Stands for the total number of road pixels in a priori model 7, and T;_,,0r0ad T€P-
resents the total number of non road pixels in such model. On the other hand, N; ,,.q iS the
number of road pixels in the segmented image that match the road pixels in a priori model ¢, while
N;_noroad 18 the number of non road pixels in the segmented image matching the non road pixels
in model <. Correlation index s is computed basing on the maximum value of r; and 7;, evaluated
over the three a priori road models as shown in equation 4.8.
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T + 75
2

s = maz; (4.8)
where s is in the range 0 < s < 1. The modelling of conditional probability p,(s/¢) is accom-
plished accounting for dynamic constraints in the vehicle steering system, and thus, the recovery
turning manoeuvre should start a little before completely finishing the turn in order to anticipate the
trajectory and avoid overshoot and oscillations. Accordingly, an experimental value £ = 70° de-
grees is established to indicate that the probability of starting the recovery turn manoeuvre greatly
increases upon completing an angular trajectory &7 > 70°, whenever the correlation measure s
validates the estimation.

An exact environment map should be used to precisely model p,(s/€). In some previous
research concerning mobile robot localisation in indoor environments [46] probability p,(s/l) is
precomputed (where [ stands for the robot location), basing on a global map and a sensor model,
and stored on a look-up table. The use of such look-up table permits online computation of p,(s/{)
in a simple and fast process. This kind of technique is deployed for radar or laser based systems
in reduced environments. Considering that none of the previous conditions are given in a vision-
based system in large outdoor scenarios, the use of precomputation becomes quite a complex an
inefficient task.

Instead, we propose a simple and intuitive modelling, successfully proved in practice, by which
the probability of measuring a high value of s will be very low at the beginning of the turn, but
increasingly higher as the angular trajectory of the vehicle gradually approaches £7. Figure 4.12
depicts the exact model for p,(s/€).

o PLSEE)

v

0 0.7 1.0 s

10t ‘

05{

\4

n

Figure4.12 Modelling of p,(s/£).

Modelling of probability p,(s/&) has been split in two intervals. Thus, for any value smaller
than & the probability of measuring a high correlation s is low, while the probability of obtaining
a low correlation is gradually higher. On the contrary, for angles greater than £ the vehicle is close
to complete the turn and, accordingly, the probability of measuring a high correlation s increases,
keeping a low value otherwise. Although p,(s/¢) is not a real p.d.f (the integral of p,(s/&) along
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its definition domain does not sum 1.0) Bel (&) distribution can indeed be assured to be a real p.d.f
due to the normalising factor p(s) in equation 4.6.

Considering that vehicle movement and image acquisition are simultaneous and continuously
being carried out, Bel(&) distribution will be updated at each iteration of the algorithm by con-
secutively applying equations 4.1 and 4.6. From the practical point of view, the definition domain
of variable & must necessarily be discretised so as to make the problem computationally treatable.
An angular resolution of 0.5° has been set for this purpose, providing a more than sufficient pre-
cision for approximate localisation. This implies that for a typical angular range in a turn of about
90°, the number of probabilities to compute amounts up to 180 x 180. However, most of the time
probabilities different from zero are focused on a narrow interval. This observation permits to
accomplish a Selective Computation that increases the algorithm execution speed, by only consid-
ering those angular values of chi for which probability Bel(T = &) is above some given threshold
(1% of the maximum probability in this case).

The Markov localisation method described in this section provides a belief distribution Bel(¢)
that tends to get a Gaussian shape. The average of such approximately Gaussian Bel (&) represents
the most likely vehicle location. In order to get a reliability measure of the estimated vehicle
location, the belief distribution Bel(¢) is compared to a Gaussian function N (&2, AE) (Where
&mag 15 the average of the gaussian function that best fits Bel(¢)). The comparison is performed
in the least squares sense as in equation 4.9.

—(é—émax)?

E=—Y (Bel(¢) exp zae )2 (4.9)

1
 V2rA¢

where E represents the mean square error between distribution Bel(¢) and the gaussian function
N (&maz, AE), and N is the number of points of the discrete definition domain of variable £. The
comparison is graphically depicted in figure 4.13.

Bel(€)
A
10 f-------= ‘
lF= > NGE,,,08)
! g
e[|l ‘ —>
0 Emax_AE Emax Emax+AE Tli2

Figure4.13 Comparison between distribution Bel (&) and a gaussian function N (&4, A).

The vehicle should finish the turning manoeuvre and resume lane tracking when simultane-
ously the estimated angular position &, is above &7 (i.e. close to the end of the turn), and
= is below some given threshold (experimentally set to 2.5) indicating a high confidence in the
estimated vehicle location. To sum up, the Markov localisation method permits to statistically
enhance visual measures, exhibiting an appropriate behaviour for vehicle localisation due to its
ability to manage uncertainty and degrees of reliability.
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4.3 Intersection navigation results

To illustrate the behaviour of the navigation system described in this section, figure 4.14 depicts
a sequence of 4 real images during a left turn manoeuvre at an intersection. In that figure, we
represent for each image the estimated road model overprinting the original incoming scene, the
segmented image, and the values of s, &4, and E.

0.51 0.62 0.69 0.85

S
§..(°) 2 37 49 68
= 2.47 2.39 233 2.28

Figure4.14 Estimated road model and segmentation for a sequence of images in a left turn intersection.

As derived from observation of figure 4.14, the reliability about vehicle location remains high
(i.e., a low value of =) throughout the whole turning manoeuvre. Likewise, we can appreciate
how the road model starts at the last location estimated during lane tracking before commencing
the turn (first image of the sequence in figure 4.14), and gradually updates until reaching the fixed
a priori road model devised for left turns (third image of the sequence in figure 4.14). When
conditions for completing the turn are met (£, > & and = < 2.5) lane tracking is resumed
allowing to adapt the road model to the new road, as shown in the last image of the sequence in
figure 4.14. To gain a better understanding of the global process, figure 4.15 depicts a complete
example in which the vehicle is tracking a lane until it reaches an intersection. In that point, the
vehicle performs a right turn manoeuvre and, finally, lane tracking is resumed. The estimated road
model is shown overprinting the original picture for every image of the sequence in figure 4.15.

Figure 4.15 Estimated road model for a complete concatenation of actions: lane tracking-intersection
navigation-lane tracking.
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To sum up, the following concluding remarks must be pointed out. The navigation module
proposed in this section provides continuity in the road model estimation, and ensures proper ma-
noeuvring on intersections of arbitrary angular shape using one single colour camera. The locali-
sation method accounts for the possibility of detecting roads with different width, after completing
the turn at an intersection. As a major drawback, due to the limited perspective of the scene during
turning manoeuvres at intersections, obstacle detection is not accurate enough making advisable
the use of complementary sensors (radar or laser) to accomplish this task. Finally, navigation on
typical urban roundabouts is considered as a future line of action.
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Chapter 5

Vehicle detection

Obstacle detection is a basic safety skill every autonomous vehicle must be endowed with in order
to achieve reliable navigation. Accurate road estimation as described in previous sections becomes
an essential point in the obstacle detection process as it can help reduce the searching area to the
limits of the estimated road. To gain some insight into the complexity of this vision based task just
consider some real situations in an urban-like scenario such as absence of lane markers, parked cars
on both sides of the street, zebra crossings, or other vehicles moving around. All these situations
make it hard to reliably detect possible vehicles implying a danger for the ego-vehicle in the real
world. According to the monocular colour vision system deployed in this work, we propose a
specific vehicle detection module, leaving the development of a more general obstacle detection
procedure for future work.

5.1 Searching Area

The execution time is reduced by limiting the vehicle detection area to the limits of the estimated
road. This choice is strongly supported by the fact that vehicles out of the limits of the road
don’t make a real danger during navigation, and hence, the algorithm robustness is preserved.
Nevertheless, the vehicle detection process relies considerably on the estimated road edges. This
makes the algorithm not applicable in road sections where the estimation is not accurate enough
(as in certain crossroads) but fully operative otherwise.

In order to robustly detect and track vehicles along the road, two consecutive processing stages
are necessary, as depicted in figure 5.1. In the first step vehicles are localised basing on differential
and symmetry properties, while in the second one the already detected vehicles are tracked using
a real time estimator. A detailed description of both processes is given below.

5.2 Vehicle detection

Basically, the identification of other vehicles is performed according to vertical edge and symmetry
characteristics, under the assumption that vehicles generally have artificial rectangular and sym-
metrical shapes that make their vertical edges easily recognisable from the rest of the environment.
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Figure5.1 Algorithm for vehicle detection and tracking.

This is quite a realistic situation that can be reasonably assumed in practice.

5.2.1 Vertical edge and symmetry discriminating

A basic colour based vertical edge discriminating analysis is carried out on the area of interest. It
permits to obtain candidate vertical edges representing the limits of the vehicles currently circu-
lating on the road. Vertical edges are then considered in pairs so as to account only for couples
that represent possible vehicle contours, disregarding those combinations that lead to unrealistic
vehicle shapes.

In a second step, the discriminating process is refined according to symmetry constraints.
Accordingly, regions located between two vertical edge pairs are studied in order to compute a
vertical symmetry index. Only those regions complying with some given symmetry condition
will be validated as candidate vehicles. To illustrate the process, figure 5.2 depicts an example of
candidate vehicle detection based on vertical edge and symmetry features, as previously described.

5.2.2 Temporal coherence

Using spatial features as the only criterion for detecting vehicles yields to sporadic incorrect ve-
hicle detection in real situations, due to environmental noise. Hence, a temporal validation filter
becomes necessary to remove non-coherent objects from the scene. This means that an object val-
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@ (b) ©

Figure 5.2 Examples of vehicle detection based on vertical edge and symmetry analysis. a) Original
images. b) Vertical edges. ¢) Vertical edges candidates after symmetry analysis.

idated under the spatial features criterion must appear several consecutive iterations in the image
in order to be considered as a real vehicle. Otherwise it is discarded and removed. A value has
been used in practice to ensure that a vehicle appears in the image in a coherent time sequence.

During the time-spatial validation stage a major problem is to identify the appearance of the
same vehicle in two consecutive frames. Vehicle identification is then carried out by making use
of its position in correlative frames. In other words, the position differences permit to describe the
evolution of the object in the image plane. At time instant the position of each validated object
under the spatial criterion is annotated in a dynamic list and a time count is started in order to
keep track of temporal coherence of all candidate vehicles. At time the process is repeated using
the same spatial validation criterion. The time count is increased only for those objects whose
distance to some of the previous candidate vehicles is less than . Otherwise the time count is
reset. A candidate object is validated as a real vehicle when its time count reaches 5 consecutive
iterations. Considering that the complete execution time of the vision algorithm is 100 ms, and the
fact that the vehicle is operating in an urban scenario at velocities under 50 km/h, this empirical
value has proven successfully to effectively detect real vehicles in the scene.

5.3 Vehicle Tracking

For each detected vehicle in the previous stage (over a maximum of two, one for each lane) an
estimation process is started in order to keep track of the vehicle position. In a first step the new
position of the vehicle is measured and validated according to geometric criteria. In the second
step the position is filtered using a least squares estimator as described below.

5.3.1 Position validation

Vertical edge and symmetry features are calculated for every object in the incoming image, us-
ing the same validation criterion previously described. After that, data association for position
validation is carried out using the (z,y) location of the validated objects. Basically it must be
determined whether some of the objects in the current frame corresponds to some of the vehicles
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under tracking. Thus, the closest validated object to each vehicle must be found. For this pur-
pose, the minimum distance to the objects is calculated around the estimated vehicle trajectory.
This permits to account for the vehicle’s movement direction, and hence, the searching process is
enhanced by rejecting associations between objects and vehicles located in different lanes.

After having associated one candidate object to each detected vehicle a minimum distance
criterion is used to validate the association. Thus, the Euclidean distance between the vehicle de-
tected in the previous iteration and its current associated object must be under (the same validation
distance used in the temporal coherence analysis) so as to improve noise rejection. In practice,
there are many real situations like sudden brightness or shadows on the pavement, cluttered back-
ground noise, ... etc, that can derive in sporadic vertical edges yielding wrong candidate vehicles.
Under these circumstances we could find that none of the candidate vehicles passes the position
validation process. In such a case, the previous estimated position is kept for each vehicle under
tracking. After (5 iterations) without obtaining any validated position we consider that the vehicle
has disappeared from the scene (we’ve lost track of it). If this happens, vehicle tracking is stopped
and the vehicle detection stage is started again.

5.3.2 Position estimation

A recursive least squares estimator with exponential decay is the key element to filter vehicle
position measures after the association and validation processes. This filtering technique permits
to keep an estimate of the vehicle position in iterations where no valid measure has been obtained.
Obviously, tracking of each vehicle is performed using independent estimators.

Let be the estimated vehicle position in the previous iteration, where x and y represent the
vertical and horizontal vehicle coordinates in the image plane, respectively. Likewise, let be the
vehicle coordinates measured in the current iteration after validation. The current estimated ve-
hicle position, given by state vector x(t), is calculated in three consecutive steps as indicated in
equations 5.1 t0 5.4.

a)Update prediction.

2t)=x(t-1) (5.1)
b)Update state covariance estimate.
P(t) = % (P(t—1) = K(t)- PT(¢ — 1)] (52)
c)Update state estimate.
z(t) =z(t — 1) + K(t) - [2(t) — 2(1)] (5.3)
being
Kt)=P@t-1)-NI+Pt—-1)]! (5.4)
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where P(t) represents an estimate of the state covariance and )\’ is a scalar parameter (ranging
from 0 to 1) that allows to keep a trade off between estimation robustness and dynamic response.
X' has been empirically set to 0.75. The real vehicle coordinates in the 3D space are calculated
from the estimated position in the image plane basing on the flat terrain assumption, as described
in [9].

To illustrate the vehicle detection algorithm, figure 5.3 shows a real situation in which a vehicle
is detected along the opposite lane in a sequence of several images. Likewise, figure 5.4 depicts
another example, where a vehicle is detected along the same lane. The position of the detected
vehicle is indicated by a black squared box in both examples.

Figure5.3 Vehicle detection along the opposite lane.

AR
AAAA

Figure5.4 Vehicle detection along the same lane.

5.4 Adaptive Navigation

After detecting the presence of a vehicle, we proceed to determine the lane where it is located.
Accordingly, proper actions must be taken in order to ensure safe navigation. Thus, if the detected
vehicle is located along the opposite lane, the ego-vehicle should basically keep on driving along
its own lane and so, no basic modification of the velocity or steering direction must be carried
out. On the other hand, if a vehicle is detected along the same lane the ego-vehicle velocity is
modified in an adaptive cruise control manner to keep some safety distance (in this work, we have
established a safety distance D = 10m).

Let v1 be the ego-vehicle velocity at the current iteration (measured from a tachometer system)
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and vy the estimated velocity of the detected vehicle. Velocity vy is estimated assuming, for
simplicity, that it is kept constant during the time interval At between two consecutive iterations
of the algorithm. Let d; and dy be the distances measured to the preceding vehicle in the previous
and current iterations of the algorithm, respectively. An estimation of v is carried out as indicated
in equation 5.5.

di — dy
At

Vg = V1 — (5.5)
To keep a safety distance , the reference velocity must be updated as described in equation 5.6.

Dy —d,
At

'Ul = ’[)2 — (56)

Further navigation actions are undertaken, involving steering commands, if the preceding ve-
hicle’s velocity decreases to a low value (under 20 km/h) or in case it stops. Under these circum-
stances a change lane manoeuvring is started whenever enough space to pass is detected from the
visual analysis of the scene.
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Chapter 6

Vehicle Control

Vehicle control has required the efforts and attention of many research groups around the world.
Most of them explicitly focus on automatic steering control [7] leaving aside longitudinal control
issues, as the latter is indeed quite a more simple problem. Nonetheless, both velocity (longi-
tudinal) and steering (lateral) control have been implemented in this work in order to provide
completely autonomous operation.

6.1 Longitudinal Control

The longitudinal control module enables the vehicle to keep the reference velocity established in
the global velocity profile, as computed by the global planner at the beginning of the autonomous
mission. That reference speed will be kept unless the previously mentioned safety distance is
violated due to the presence of other vehicles in the same lane.

Figure 6.1 shows the complete velocity control scheme, where a simple but robust fuzzy con-
troller [?] has been designed for this purpose, providing excellent dynamic response upon step
changes in the reference velocity. In fact, figure 6.2 depicts the vehicle response after applying
increasing and decreasing reference steps in the velocity profile.

Acceleration

l

Longitudinal Vehicle
controller

<

v

Estimator Tachometer

Figure6.1 Velocity control scheme.

As observed in figure 6.2, the longitudinal controller successfully demonstrates to suffice for
reliable velocity control in real circumstances.
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Figure6.2 Velocity response upon step changes in the reference profile.

The main goal of the lateral control module is to ensure proper tracking of the road by correctly
keeping the vehicle in the centre of the lane with the appropriate orientation (parallel to the road
trajectory). This constraint can be translated into the minimisation of the lateral and orientation

errors ((de) (6¢)) as illustrated in figure 6.3.

o Control

-~ point

Reference
trajectory

Figure6.3 Lateral and orientation errors with respect to a reference trajectory.

To solve this controllability problem and design a stable lateral controller, a model describing

the dynamic behaviour of d. and 6. is needed, as well as an adequate error measure system.

6.2.1 Kinematic mode

The kinematic model of the vehicle is the starting point to model the dynamics of the lateral
and orientation errors. The vehicle model is approximated by the popular Ackerman (or bicycle)
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model [8] as depicted in figure 6.4, assuming that the two front wheels turn slightly differentially
and thus, the instantaneous rotation centre can be purely computed by kinematic means.

Ackerman
steering | AN\ -z -

Figure6.4 Approximate kinematic model of the vehicle (Ackerman steering).

Let x(t) denote the instantaneous curvature of the trajectory described by the vehicle.

1 tang(t) do(t)
D=Re~ "L =~ ds

(6.1)

where R is the radius of curvature, L is the wheelbase, ¢ is the steering angle, and @ stands for
the vehicle orientation in a global frame of coordinates. The dynamics of theta is computed in
equation 6.2 as a function of vehicle velocity v.

o do d n
Ao = P g

(6.2)

Let ¢ and v be the variables of the vehicle actuation space. On the other hand, the vehicle
configuration space is composed of the global position and orientation variables, described by (z,
y, #), under the flat terrain assumption. Mapping from the actuation space to the configuration
space can be solved by using the popular Fresnel equations, which are also the so-called dead
reckoning equations typically used in inertial navigation. Equation 6.3 shows the dynamics of (z,

Y, 0).

z =2 = ou(t) cos O(t)
y = g = v(t)sind(t) (6.3)
0 — (Cig — v(t)tang(t)

where v(t) represents the velocity of the midpoint of the vehicle rear axle, denoted as control
point. Nonetheless, global information about the position and orientation of the vehicle (z, y, 6)
is of little use for a vision based system that can only compute local information in the incoming
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scene. Thus, the development of a dynamic model for the lateral and orientation errors becomes
necessary.

As observed in figure 6.3, the lateral error d. is defined as the distance between the vehicle
control point and the closest point along the vehicle desired trajectory, described by coordinates
(x4, yaq). Thisimplies that d. is perpendicular to the tangent to the reference trajectory at (z 4, yq)-
The scope of the tangent at (x4, y4) is denoted by 6,4, and represents the desired orientation at that
point. Basing on this, d. and 6. are proved to suffice to precisely characterise the location error
between the vehicle and some given reference trajectory, as described in equations 6.4 and 6.5.

de = —(x —xq) - sinfy + (y — yq) - cos by (6.4)

0. =0 — 0, (6.5)

Computing the derivative of d. with respect to time yields to equation 6.6, while the time
derivative of @, is shown in equation 6.7. Thus, the complete non-linear dynamic model for d. and
0. is formulated in equation 6.8.

d, = —isinfy + 1 cos 0y = —V cosOsinby + V sinf cos 0 = Vsin(f — 6,) = Vsiné, (6.6)

ée:T:é—éd:é (67)
de. = Vsin6,
0. = ¥ tan ¢ (6.8)

6.2.2 Non-linear control law

The control objective is to ensure that the vehicle will correctly track the road that visually per-
ceives. For this purpose, both the lateral error d. and the orientation error 8, must be minimised.
On the other hand, vehicle velocity v will be assumed to be constant according to the global ve-
locity profile, for simplicity.

The design of the control law is based on general results in the so-called chained systems
theory. An excellent example on this topic can be found in [11]. Nevertheless, these results are
extraordinarily extended and generalised in this paper so as to provide a stable non-linear control
law for visual road tracking.

From the control point of view, the use of the popular tangent linearisation approach is avoided
as it is only valid locally around the configuration chosen to perform the linearisation, and thus, the
initial conditions may be far away from the reference trajectory. On the contrary, some state and
control variables changes are posed in order to convert the non linear system described in equation
6.8 into a linear one, without any approximation (exact linearisation approach). Nevertheless,
due to the impossibility of exactly linearising systems describing mobile robots dynamics, we can

VIRTUOUS: Vlsion-based Road Transport system for Unmanned Operation on Urban Scenarios



6.2. LATERAL CONTROL 61

convert these non linear systems in almost linear ones, termed as chained form. The use of the
chained form permits to design a control law using to a high extent linear systems theory.

In particular, the non-linear dynamic model for d,, and 6, (equation 6.8) can be transformed
into chained form using the state diffeomorphism and change of control variables, as in equation
6.9.

v=|Y|zox)=]| % ]
Yo tan 6,
v cos 0 (69)
w
W= ,wl = T(U) = Utange ‘|
2 L cos? 0,

These transformations are invertible whenever the vehicle speed v is different from zero. From
equation 6.9 the vehicle dynamic model can be rewritten as in equation 6.10, considering y; and
12 as the new state variables.

Y1 = de = vsinf, = wiyo
__ d(tan6e) 1 0 _ wvtang __
e

= ~ Lcos?28. — w3

. (6.10)
Y2 = dt — cos20.

In order to get a velocity independent control law, the time derivative is replaced by a derivation
with respect to ¢, the abscissa along the tangent to the reference trajectory as graphically depicted
in figure 6.5.

Control
point

Reference
trajectory

Figure 6.5 Graphical description of .

Analytically, ¢ is computed as the integral of velocity v., measured along axis <.

d
gz/vgdt:/vcosﬁedt = é:d—izvcosﬁe:wl (6.11)

The time derivative of the state variables y; and y» is expressed as a function of ¢ in equation
6.12.

oo dyi _dn  de _ ) -

V=3 = ds dat —Y1°§ (612)
oy = B2 _ dya  de _ 7 ¢ '
Y2 =gt = dc “at — Y2
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where y'1 and y'2 stand for the derivative of y; and y, with respect to ¢, respectively. Solving for
y, and y, yields to equation 6.13.

y’l — yg_1 _ vsinfe __ tanOe = yo

v cos 8,
' _ gy _ __wtang  _ _tand _ wy _ (6.13)
Yg = "¢ = = = 22 — 3
2 ¢ L cos? v cos fe L cos3 6, w1

As observed in the previous equation, the transformed system is linear and thus, state variables
y1 and yo can be regulated to zero (so as to yield de = de ey = 0 and 6, = 6, .y = 0) by using
the control low proposed in equation 6.14.

wy = —Kaqyo — Kpyn (K, Kp) € RT2 (6.14)

Using equations 6.13 and 6.14 and solving for variable y; yields to equation 6.15, where the
dynamic behaviour of y; with respect to ¢ is demonstrated to be linear.

Yy + Kqyy + Kpy1 =0 (6.15)

This implies that variables y; = d. and yo = tan 6, tend to zero as variable ¢ grows. The
previous statement is analytically expressed in equation 6.16.

CILI& de = g]ir{)lo 0.=0 (6.16)

Accordingly, variable ¢ must always grow so as to ensure that both d. and 6. tend to zero.
This condition is met whenever v > 0 and —n/2 < 6, < /2. In other words, the vehicle must
continuously move forward and the absolute value of its orientation error should be below 7 /2 in
order to guarantee proper trajectory tracking. Thus, the non-linear control law is finally derived
from equation 6.13 and 6.14.

¢ = arctan[—L cos® 6, - (K4 tan 0, + K,d,)] (6.17)

The control law is then modified by a sigmoidal function as shown in equation 6.18, to account
for physical limitations in the vehicle wheels turning angle and prevent from actuator saturation.
On the other hand, the use of sigmoidal functions preserves the system stability as demonstrated
in[?].

_ eXp—K(Kd tan 03+Kpde)

1
¢ = arctan | —K Lcos® 0, - . (6.18)

+ expr(Kd tan 03+Kpde)

The control law is saturated t0 ¢4, Dy properly tuning parameter K. Thus, the maximum
value of equation 6.18 iS ¢y = + arctan(—K L). Therefore, K is chosen to ensure that ¢,z =
+%rad (physical limitation of the vehicle), given the wheelbase L = 2.69m, yielding a practical

value K = (0.2146.

t s
K= % (6.19)
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From observation of equation 6.15, the dynamic response of variable y; can be considered
to be a second order linear one. In practice, it is not indeed linear due to the sigmoidal function
used to saturate the control law, although it can be reasonably approximated as such. Thus, an
analogy between constants K4 , K, and the parameters of a second order linear system £ (damping
coefficient) and w,, (natural frequency) can be established, yielding equation 6.20.

wn = /K
S (6.20)
T 2K,

Likewise, system overshoot M, and settling distance d, (given that the system dynamics is
described as a function of space variable ¢, not time) can be obtained from equation 6.21.

i
M, = expV1-¢

(6.21)
dsj2% = g%

n

The design of constants K4 and K, is undertaken considering that the system overshoot must
not exceed 10% of the step input, and that the settling distance should be below some given
threshold. Thus, for a typical settling time ¢, = 20s, and given the vehicle velocity v, the proper
settling distance can be computed as in equation 6.22.

ds =ts-v =200 (6.22)

The value of K is derived from equations 6.20 and 6.21 yielding the velocity dependant
expression in equation 6.23.

Kj=—=—"— (6.23)
v

Likewise, dumping coefficient ¢ is derived from equations 6.20 and 6.21, as shown in equation
6.24.

1 Ky 4
E= = = (6.24)
=17 +1 2VEK,  di /K,
Finally, K, is deduced from the previous equation, yielding equation 6.25.
2 2
K, - [6.766] _ [0.3383] (6.25)
ds v

The dependence of K, and Ky on vehicle velocity v permits to ensure proper dynamic re-
sponse. In particular, vehicle turning angle will be soft at high speeds, therefore avoiding possible
oscillations due to physical constraints in the steering dynamics.

Miguel Angel Sotelo Véazquez



64 CHAPTER 6. VEHICLE CONTROL

6.2.3 Extension of the control law for high speeds

The non-linear control law designed in the previous section provides stable trajectory tracking at
moderate speed (up to 10-20 km/h) in urban environments. However, experience demonstrates
that tracking errors and vehicle oscillation increase as velocity rises. It becomes necessary then
to develop an extension of the non-linear control law for high speeds. On the other hand, a stable
controller at high speed will permit not only to drive the vehicle at typical velocities in urban
environments (up to 50 km/h) but also to deploy the control system in automated highway vehicles.

The first step is to modify the vehicle control point as depicted in figure 6.6, in order to antic-
ipate the road curvature at a given distance L;, denoted by Look-ahead distance. The new lateral
and orientation errors are then computed as illustrated in the same figure 6.6, yielding the results
in equation 6.26.

Control
point

Reference
trajectory

Figure6.6 Lateral and orientation errors at the Look-ahead distance.

de = —(x + Lpcos — x4)sinfy + (y + Ly sinfy — y4) cos Oy

0 s (6.26)

The choice of Ly, is carried out basing on the current vehicle velocity v, as described in [6],
yielding the parameters shown in equation 6.27.

Lipin lf V < Umin
Lh(v) = vt1 if Vmin <V < Umag (6.27)
y 'Lf V > Umaz

where ¢, = 1.5s is the look-ahead time, vy,in = 25km/h, Vmax = 75km/h, Ly, = 10.41m,
and L., = 31.25m. Considering the same scheme followed in the previous section, the new
non-linear dynamic model for d, and 6. is shown in equation 6.28.

d, = vsinf, + %hcosHetaruﬁ

06 _ v tan

(6.28)

“L

This model can be transformed into chained form using the state diffeomorphism and change
of control variables, as in equation 6.29.
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1 de
Y:lZQ]:G)(X):ltaHHe]

th cos? fe tan
W= wy | _ TWU) = v c0os O, + 4ﬁLsin0:
wo v tan ¢

L cos? 0.

] (6.29)

These transformations are invertible whenever the vehicle speed v is different from zero. From
equation 6.28 the vehicle dynamic model can be rewritten as in equation 6.30, considering y; and
12 as the new state variables.

1 = de = vsinf, + %ﬁ cos B, tan ¢ = wiyo
_ d(tanfe) _ 1 ) _ vtang __
Y2 = dt ~ cos?2 6 08 ~ Lcos?28. — w3

(6.30)

In order to get a velocity independent control law, the time derivative is replaced by a derivation
with respect to ¢, a variable related to the abscissa along the tangent to the reference trajectory.
Analytically, ¢ is computed according to the following expression.

vLyp, cos? O, tan ¢
Lsinf,

¢ = /(v cos 6, + (6.31)
The time derivative of the state variables y; and y- is expressed as a function of ¢ in equation
6.32.

"‘{lzdd_t:'?'ﬁzy}:z (6.32)

where v} and v/, stand for the derivative of y; and yo with respect to ¢, respectively. Solving for
v} and y4 yields to equation 6.33.

!
Yy = tan 06 =12 (6 33)
: tan ¢ |
= — w
27 Lo Qe+ Ly, 052 Oe tang 3

sin fe

As in the previous section, the transformed system is linear and thus, state variables y; and y-
can be regulated to zero (so as to yield d, = dg .y = 0 and 6, = 0.,y = 0) by using the new
control low proposed in equation 6.34.

wy = —Kayo — Kpy1 (K4, Kp) € RT? (6.34)

Using equations 6.33 and 6.34 and solving for variable y; yields to equation 6.35, where the
dynamic behaviour of y; with respect to ¢ is demonstrated to be linear.

Yy + Kayy + Kpy1 =0 (6.35)

Once again, this implies that variables y, (= d.) and y2(= tan.) tend to zero as variable <
grows. The previous statement is analytically expressed in equation 6.36.
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cli%lo de = g]LIgo 0.=0 (6.36)

Accordingly, variable ¢ must always grow so as to ensure that both d. and 6. tend to zero.
This condition is met whenever v > 0 and —7/2 < 6, < 7/2. In other words, the vehicle must
continuously move forward and the absolute value of its orientation error should be below 7 /2 in
order to guarantee proper trajectory tracking. Basically, stability conditions remain the same as in
the previous section. Thus, the new non-linear control law for high speeds is finally derived from
equations 6.33 and 6.34.

—Lsinf, cos? 0, (K4 tan 6, + K,d,)

6.37
sinf, + Ly, cos* 0. (Kqtan 0, + Kpd,) (637)

¢ = arctan

The control law is then modified by a sigmoidal function to account for physical limitations in
the vehicle wheels turning angle and prevent from actuator saturation. From this point onwards,
tuning of K, Ky, and K, follows the same scheme derived in equations 6.19, 6.23, and 6.25,
respectively.

6.2.4 Lateral and orientation error measure

Lateral and orientation errors must be measured from the visual information contained in the 2D
scene. For this purpose, the central trajectory of the road is assumed to be the vehicle reference
trajectory for road tracking, and so, its 3D geometry is reconstructed under the flat terrain assump-
tion.

We take a total of N, = 5 measures belonging to the central trajectory of the road in the 2D
image plane, and compute their corresponding coordinates in the 3D world (considering Z = 0,
under the previously mentioned flat terrain assumption) using the popular pinhole camera model
and the calibration parameters. Basing on the previous measures, a second order polynomial is
then calculated to describe the central trajectory of the road in the 3D scene under the least squares
approach, yielding equation 6.38.

X =AY? 4+ BY +C (6.38)

where the origin of the reference frame for axes X, Y, and Z is located at the midpoint of the
vehicle rear axle, as depicted in figure 6.7.

For simplicity, the lateral error d. is approximated as the difference between the reference
trajectory and the Y-axis at the look-ahead distance, as in equation 6.39.

de = X(Y)jy-r, = ALy + BL,+ C (6.39)

Similarly, orientation error 6. is measured as the relative difference between the orientation
@ of the longitudinal vehicle axle and the orientation 6, of the tangent to the reference trajectory,
measured at the look-ahead distance L. Considering that the reference frame is fixed with regard
to the vehicle rear axle, vehicle orientation 6 is assumed to be zero, yielding the approximate
orientation error shown in equation 6.40.
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Figure6.7 Reference frame for lateral and orientation error measure.

d
0, =0—0; = —arctan — = —arctan(2a1 Ly, + a2) (6.40)

6.2.5 Results

The complete close-loop scheme for lateral control is depicted in figure 6.8. As can be observed,
the control objective is to achieve the reference error vector d .y = 0, 0, .y = 0. This objective
implies proper tracking of the road curvature perceived by the vision system.

Velocity
{demzo} ﬁ Tachometer ——
ee,refzo [
e
— | Lateral Vehicle >
+ controller
|:de:|
5, Vision

f

Road

Figure6.8 Close-loop lateral control scheme.

Various practical trials were conducted so as to test the validity of the control law for different
initial conditions in real circumstances. During the tests, the reference vehicle velocity is assumed
to keep constant by the velocity controller. Constants K4 and K, were calculated as a function of
v using equations 6.23 and 6.25.

Figures 6.9, 6.10, and 6.11 show the transient response of the vehicle lateral and orientation
error for reference velocities of 10 km/h, 20 km/h, and 50 km/h respectively. In all cases, the
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vehicle starts the run at an initial lateral error of about 1m, and an initial orientation error in the
range £5°. As can be clearly appreciated, the steady state response of the system is satisfactory
for the three experiments. Thus, the lateral error is bound to £5c¢m at low speeds and +25cm at
v=50 km/h, while the absolute orientation error in steady state remains below 1° in all cases.

Lateral error (m)
o
=
Orientation error (o)
i

0 ;
0 5 1 1 20 25 30 3 40 8& 5 10 15 20 25 30 3 40

time(s) v=10 km/h time(s)

Figure6.9 Transient response of the lateral and orientation error for v=10 km/h.
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Figure6.10 Transient response of the lateral and orientation error for v=20 km/h.

In a final test, the results achieved in the second test for v=20 km/h are compared to human
driving at the same speed along the same trajectory. For this purpose a human driver steered the
vehicle, leaving the control of the accelerator to the velocity controller in order to keep a reference
speed of 20 km/h. The comparison is graphically depicted in figure 6.12.

On one hand, one can observe how the human driver takes less time than the automatic con-
troller to achieve lateral and orientation errors close to zero. On the other hand, the steady state
errors are similar in both cases. Surprisingly, human driving results in sporadic separations from
the reference trajectory up to 40-50 cm, without incurring in dangerous behaviour, while the auto-
matic controller keeps the vehicle under lower lateral error values once stabilised. Far from being
an isolated fact, this circumstance was repeatedly observed in several practical experiments. As
conclusion, the lateral control law developed in this work can reasonably be considered to be valid
to drive a vehicle as precisely as a human can.
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Figure6.11 Transient response of the lateral and orientation error for v=50 km/h.
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Figure6.12 Comparison between automatic guidance and human driving at v=20 km/h.
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Chapter 7

| mplementation and Results

The complete navigation system described in the previous sections has been implemented on the
so-called Babieca® prototype vehicle , an electric commercial Citroén Berlingo as depicted in fig-
ure 7.1, that has been modified to allow for automatic velocity and steering control at a maximum
speed of 90 km/h.

Figure7.1 Babieca prototype vehicle.

Babieca is equipped with a colour camera, a DGPS receiver, a Pentium PC, and a set of elec-
tronic devices to provide actuation over the accelerator and steering wheel, as well as to encode
the vehicle velocity and steering angle. The colour camera provides standard PAL video signal at
25 Hz that is processed by a Meteor frame grabber installed on a 120 MHz Pentium running the
Real Time Linux operating system. On the other hand, the DGPS receiver is a Z-12 Real Time
model by Ashtech that implements the RTCM SC 104 V2.2 standard at 5 Hz. After implementing
the complete navigation system under Real Time Linux using a pre-emptive scheduler [2], the lane
tracking vision based task gets executed at 10 frames/s, while intersection navigation can be run
at 4-5 frames/s.

Practical experiments were conducted on a private circuit located at the Instituto de Automatica
Industrial in Arganda del Rey (Madrid). The circuit is composed of several stop stations, streets,
intersections, and roundabout points, trying to emulate an urban quarter. Although the graphical
description of the circuit was provided in section 2 we depict it again in figure 7.2 for completeness
reasons, indicating the real length of each street.

!Babieca was the horse of El Cid, amythical Spanish hero that fought against the Arabs in the Middle Ages. Inthe
battle of Valencia, Babiecaon its own led the dead body of El Cid against the enemies contributing to a decisive victory



72 CHAPTER 7. IMPLEMENTATION AND RESULTS

L1=  5Im
L1 L2=  106m
L3=  104m
L4=  45m
L5=  5Im
L6=  7im
Lo L3 L7=  75m
L8=  78m
L9= 45m
L10=  38m
-4 —|=1  L11= 74m
|
|
[

c1 c2 L5

L6 L7

) sl

L Lane
C Crossroads
S Station
R1 R Roundabout

Figure7.2 Test circuit map.

During the last year, Babieca ran over hundreds of kilometres in dozens of successful au-
tonomous missions carried out along the test circuit. To illustrate the global behaviour of the
complete navigation system implemented on Babieca some general results are shown next. Thus,
in a first test the vehicle was told to autonomously navigate from station 1 to station 2. Figure 7.3
shows the 2D real trajectory followed by Babieca using UTM coordinates. Likewise, the vehicle
real velocity and steering angle during the mission are depicted in figure 7.4, clearly showing the
strong turns performed at intersections.

Similarly, figures 7.5 and 7.6 show the global trajectory accomplished by the vehicle to go
from station 5 to station 1, and from station 4 to station 3, respectively.

All previous tests were conducted in the absence of other vehicles in the circuit. To put the
vehicle detection system under test we introduce a second vehicle, driven by a human in this case,
circulating at a lower speed along the same circuit in such a manner that it purposely interferes the
pre-programmed vehicle path during an autonomous mission from station 1 to station 2. Figure
7.7 shows the new global trajectory followed by the autonomous vehicle during the mission, while
figure 7.8 depicts the real velocity and steering angle during the mission in presence of an obstacle
as described.

As can be observed from figure 7.7, the presence of a second vehicle ahead of the automatic
vehicle does not affect the execution of the global trajectory according to the general plan. In fact,
2D trajectories shown in figures 7.3 (mission from station 1 to station 2 without obstacles) and 7.7
(mission from station 1 to station 2 in presence of an obstacle) are almost identical. On the other
hand, vehicle velocity decreases suddenly with respect to the velocity profile during the first stretch
of the mission, as depicted in figure 7.8a, due to the presence of a second vehicle circulating at
low speed (15 km/h) along the autonomous vehicle path. Once the second vehicle pulls aside, the
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Figure7.3 Real trajectory followed by the vehicle in an autonomous mission between stations 1 and 2.
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Figure7.4 Autonomous mission from station 1 to station 2. a) Vehicle velocity. b) Vehicle steering angle.

autonomous vehicle increases its speed to reach again the velocity profile calculated by the global
planner at the beginning of the mission, and normal operation is resumed. A complete set of video
files demonstrating the operational performance of the system in real tests can be retrieved from
ftp://www.depeca.uah.es/pub/vision.
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Figure7.5 Real trajectory followed by the vehicle in an autonomous mission between stations 5 and 1.

coordinate Y (m)

44625- /s
— e 0
44625 —

45891 45892 45893 45894 45895 45896
-
x 10

coordinate X (m)

Figure7.6 Real trajectory followed by the vehicle in an autonomous mission between stations 4 and 3.
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Figure7.8 Autonomous mission from station 1 to station 2 in presence of an obstacle. a) Vehicle velocity.

b) Vehicle steering angle.
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Chapter 8

Conclusions and futurework

To conclude, the next key points should be remarked. First of all, the vision and DGPS based
global navigation system described in this work is currently implemented on a real commercial
vehicle slightly modified so as to allow for autonomous operation. The complete system has been
successfully tested on a private circuit, as a first step towards its long-term deployment on urban
scenarios.

According to mission specifications and the a priori map, the global navigation system im-
plements two complementary vision based behaviours for road tracking and navigation on inter-
sections, respectively, in a coordinated manner. Thus, a task manager properly synchronises the
execution of the adequate vision based task depending on whether the vehicle is running on a
road, or it is traversing an intersection, making use of the DGPS for this purpose. The fact that no
extremely high precision is needed in the DGPS signal, together with the use of a single colour
camera results in a low cost final system, suitable for midterm commercial development.

On the other hand, proper tracking of non-structured roads is a major contribution of this work,
as it is robust, not requiring previous learning, and allows for real time operation. Likewise, vision
based intersection navigation is also a remarkable point due to its complexity and necessity to
achieve continuity in navigating on a network of roads. This kind of manoeuvre is sparsely treated
in the technical literature.

To our knowledge, the global navigation scheme implemented in this work is one of the first
vision based systems in the world capable of performing autonomous missions in a network of
non-structured roads, together with the work developed in [28].

Nonetheless, a lot of work still remains to be done until a completely robust and reliable
autonomous system can be fully deployed in real conditions, as can obviously be thought. Thus,
in the next step the vehicle detection module will be improved by combining information provided
by other sensors, laser or radar based. Another key point is to remove the DGPS dependence by
implementing a vision based task for intersection detection, permitting to use a conventional GPS
receiver. Finally, another vision based specialised task will be developed in the future, intended to
navigate not only in intersections, but in roundabouts, as the presence of these elements is wide
spread in urban environments.
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