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Muad’Dib pod́ıa realmente ver el futuro,
pero hay que comprender que su poder era limitado. Pensad en la vista. Uno tiene los
ojos, pero no puede ver sin luz. Si uno está en el fondo de un valle, no puede ver más

allá de ese valle. Igualmente, Muad’Dib no pod́ıa mirar siempre en el misterioso terreno
del futuro. Nos dice que cualquier oscura decisión profética, tal vez la elección de una
palabra en vez de otra, puede cambiar totalmente el aspecto del futuro. Nos dice: “La
visión del tiempo se convierte en una puerta muy estrecha.” Y él siempre húıa de la
tentación de escoger un camino claro y seguro, advirtiendo: “Este sendero conduce

inevitablemente al estancamiento.” - De el despertar de Arrakis de la Princesa Irulán
(Frank Herbert, Dune)
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MalHector, Cuñao, AQP, y LSD. Sin ellos esto tampoco habŕıa sido posible, porque tan
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Resumen

La clasificación de la topoloǵıa de la carretera es un punto clave si queremos desarrollar
sistemas de conducción autónoma completos y seguros. Es lógico pensar que la compren-
sión de forma exhaustiva del entorno que rodea al vehiculo, tal como sucede cuando es
un ser humano el que toma las decisiones al volante, es una condición indispensable si se
quiere avanzar en la consecución de veh́ıculos autónomos de nivel 4 o 5. Si el conductor,
ya sea un sistema autónomo, como un ser humano, no tiene acceso a la información del
entorno la disminución de la seguridad es cŕıtica y el accidente es casi instantáneo i.e.,
cuando un conductor se duerme al volante.

A lo largo de esta tesis doctoral se presentan sendos sistemas basados en deep leaning
que ayudan al sistema de conducción autónoma a comprender el entorno en el que se
encuentra en ese instante. El primero de ellos 3D-Deep y su optimización 3D-Deepest,
es una nueva arquitectura de red para la segmentación semántica de carretera en el que
se integran fuentes de datos de diferente tipoloǵıa. La segmentación de carretera es clave
en un veh́ıculo autónomo, ya que es el medio por el que debeŕıa circular en el 99,9% de
los casos. El segundo es un sistema de clasificación de intersecciones urbanas mediante
diferentes enfoques comprendidos dentro del metric-learning, la integración temporal y la
generación de imágenes sintéticas. La seguridad es un punto clave en cualquier sistema
autónomo, y si es de conducción aún más. Las intersecciones son uno de los lugares dentro
de las ciudades donde la seguridad es cŕıtica. Los coches siguen trayectorias secantes y por
tanto pueden colisionar, la mayoŕıa de ellas son usadas por los peatones para atravesar
la v́ıa independientemente de si existen pasos de cebra o no, lo que incrementa de forma
alarmante los riesgos de atropello y colisión.

La implementación de la combinación de ambos sistemas mejora substancialmente la
comprensión del entorno, y puede considerarse que incrementa la seguridad, allanando el
camino en la investigación hacia un veh́ıculo completamente autónomo.

Palabras clave: Aprendizaje profundo, Redes Neuronales Artificiales, Conducción
Autónoma, Segmentación Semántica, Clasificación.





Abstract

Road topology classification is a crucial point if we want to develop complete and safe
autonomous driving systems. It is logical to think that a thorough understanding of
the environment surrounding the ego-vehicle, as it happens when a human being is a
decision-maker at the wheel, is an indispensable condition if we want to advance in the
achievement of level 4 or 5 autonomous vehicles. If the driver, either an autonomous
system or a human being, does not have access to the information of the environment,
the decrease in safety is critical, and the accident is almost instantaneous, i.e., when a
driver falls asleep at the wheel.

Throughout this doctoral thesis, we present two deep learning systems that will help
an autonomous driving system understand the environment in which it is at that instant.
The first one, 3D-Deep and its optimization 3D-Deepest, is a new network architecture
for semantic road segmentation in which data sources of different types are integrated.
Road segmentation is vital in an autonomous vehicle since it is the medium on which
it should drive in 99.9% of the cases. The second is an urban intersection classification
system using different approaches comprised of metric-learning, temporal integration, and
synthetic image generation. Safety is a crucial point in any autonomous system, and if it
is a driving system, even more so. Intersections are one of the places within cities where
safety is critical. Cars follow secant trajectories and therefore can collide; most of them
are used by pedestrians to cross the road regardless of whether there are crosswalks or
not, which alarmingly increases the risks of being hit and collision.

The implementation of the combination of both systems substantially improves the
understanding of the environment and can be considered to increase safety, paving the
way in the research towards a fully autonomous vehicle.

KeyWords: Deep Learning, Neural Networks.
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EDI Is an image in which a point cloud is projected and the intensity
value of each pixel that is different to 0 represents is elevation..

ELU Exponential Linear Unit.

FCNN Fully Convolutional Neural Network.
FL Focal Loss.
FMS Feature Map Shifting.
FP Feature Pyramid network.

GAN Generative Adversarial Network.
GRU Gated recurrent unit.

K-NN k-nearest neighbors.

LiDAR light detection and ranging.

XI



XII List of Acronyms

LM Landscape Metric.
LSTM Long Short-Term Memory.

MAP Mean Average Precision.
MAPR Mean Average Precision@R.
MBEV Model-Based Bird Eye View.
MLP Multilayer Perceptron.
MSE Mean Squared Error.

NHTSA National Highway Traffic Safety Administration.

PA1 Precision-at-1.

ReLU Rectified Linear Unit.
RGB-D Is an image in which the three first channels are the red green

and blue values and the fourth channel is the corresponding
disparity map..

RGB-E Is an image in which the three first channels are the red green
and blue values and the fourth channel is the corresponding
EDI image..

RNN Recurrent Neural Network.
RP R-Precision.

SAE Society of Automotive Engineers.
SVM Support Vector Machine.

T-SNE T-Distributed Stochastic Neighbor Embedding.

VRU Vulnerable Road Users.

WARPING Warping with Homography.



Chapter 1

Introduction

Artificial Intelligence (AI) has been one of the significant technology disruptions of the
twentieth century, and it is still a revolution of the twenty-first century. This researcher
believes the multiple uses given to it have always been looking for the benefit or the
greater comfort of the human being. Its applicability is practically infinite, and only the
future will tell us how far humanity will be able to go thanks to all the theoretical and
practical research carried out with increasing assiduity.

Somehow, we all have all imagined AI as Ava in Ex-Machina or Roy Batty (Figure
1.1) in Blade Runner. However, far from science fiction, AI appears in many fields that
ordinary people are unaware of. The more its use spreads, the less conscious our minds
are of it, ceasing to consider some AI methodologies as such.

Figure 1.1: Roy Batty, a replicant in the film
Blade Runner. [Bernard Goldbach, 2008]

If someone asks laypeople about
Google’s online translator, it is sure that
most of them would not consider it AI.
Nevertheless, natural language processing
is one of the most contemporary research
topics studied. It has reached outstand-
ing achievements, such as Google’s assis-
tant Duplex presented in 2018 with the
famous and controversial two automatic
phone calls [Leviathan and Matias, 2018].

If we look to something closer to us,
every citizen in developed and develop-
ing countries has access to smartphones.
These devices are capable of performing
tasks that only personal computers were
once competent in, and because of that advancement, AI has also been used to improve
them. Nowadays, most of them come with facial or fingerprint recognition devices that
allow secure access or storing protected content. Countless also comes with built-in as-
sistance into their photographic software/hardware, as Huawei first announced in its P20
model. This assistance uses AI-based methodologies to, for example, obtain better photos
in low light conditions or with an unsteady hand.
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2 Introduction

Along with smartphones, facial recognition software is also used in many other cases,
such as for real-time population recognition (Figure 1.2). Countries such as China or
the United Kingdom are already applying this methodology to detect suspects, although
it is a much more controversial use of facial recognition due to the well-known trade-off
between security and privacy.

Figure 1.2: Face recognition in live CCTV.1

In conjunction with personal comput-
ers, smartphones are also responsible for
generating large amounts of data to be
analyzed, the so-called Big Data. This
amount of data is usually processed by AI
techniques with the intention of obtain-
ing helpful information for companies and
people. The irruption of artificial intelli-
gence and big data in marketing is perhaps
one of the most distinctive approaches that
may be taken by the private sector [Forbes,
2019]. An example that the reader has
probably experienced is personalized ad-
vertisements on the Internet. These ads

try to anticipate the user’s tastes more or less successfully by studying their digital foot-
print by distilling data into useful information using the process mentioned above.

Industrial production is also one of the fields in which AI has developed most. In
China, for example, there is a company that produces a traditional medicine remedy by
breeding cockroaches that are subsequently processed. The production facilities have an
AI system that, through the reading of the configured variables, searches for the optimal
environment to maximize the reproduction of the insects, thus maximizing the possible
benefits. [Chong, 2018]. Another example of its use can be in chain manufacturing, such
as using automated systems to validate product specifications and discarding those that
do not meet the minimum quality requirements. This automated system usually allows
a higher production level than by-hand review due to the increased efficiency. This
method is also commonly used in parcel delivery companies or logistics warehouses, such
as Amazon. In some of the corporation warehouses, computer vision software monitors
product movement within the storage during order generation. The company also uses
computer vision in its Go stores, where the software monitors all purchases made by a
user by recognizing the products and assigning and charging them directly to the user’s
account [Bond, 2019].

Moving to a more idle field such as video games, AI also has its place. Gamers are
increasingly looking for a more immersive and realistic gaming experience, which AI is
trying to achieve. For example, DeepMind, an AI that plays Starcraft II, has reached the
rank of Grand Master, the grade where the best players in the world compete against
each other [Kelion, 2019]. Playing against it is currently just as challenging as playing
against any of the best players in the world. This type of AI development is not limited
to real-time strategy games. For example, Electronic Arts have tried to train an agent to

1Image obtained in www.biometricupdate.com
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play Battlefield I, a first-person shooter game, who can ”impersonate” a real player in a
real game without being noticed by the rest of the players [Nordin, 2018].

AI plays a crucial role in autonomous driving, a field closer to this thesis’s scope.
Also, one of the areas is currently gaining the most notoriety both inside and outside AI
research circles. This research domain seeks to develop a self-driving car that might be
defined as a ground vehicle capable of sensing its environment and moving safely with
little or no human intervention. The ultimate goal of the research is to achieve an Society
of Automotive Engineers (SAE) level 5 or fully autonomous driving vehicle [International,
2014]. This automation level would make it possible to somehow convert vehicles into
passenger transport capsules in which total responsibility for driving lies in the car, with
the multiple benefits that this would bring. Increased transport efficiency and vehicle
safety are two excellent examples of these benefits. However, to reach this level 5 of
automation, there is still much research to be done.

1.1 Motivation

As mentioned before, despite being one of the hottest branches of artificial intelligence,
autonomous driving still requires a great deal of research, and part of it is what we are
trying to develop in this doctoral thesis. Among the multiple approaches that can be taken
in autonomous vehicles, in this case, research will focus on safety and its implementation
through scene understanding in urban environments. Even though the performance and
availability of scene understanding systems increased over the past years, technology
seems to be far from the SAE full automation level requirements. This statement is
particularly true regarding urban areas and contexts without a strict Manhattan-style city
plan, i.e., oversize building blocks surrounded by simple straight avenues. The transition
towards full automation requires reliability under all circumstances, including ordinary
middle and small cities where narrow and strangled roads are the most common.

During the year 2019, an estimation of 22.700 people died throughout Europe due
to traffic accidents, according to the European Commission’s latest report [Commision,
2020]. Furthermore, according to the last Annual Accident Report of 2018 [Commis-
sion, 2018], 19.4% of EU road fatalities come from at-grade intersection areas. Similar
results emerge from the reports of the United States National Highway Traffic Safety
Administration (NHTSA), which show us that in the 2015-2019 period, at-grade inter-
sections areas concentrate more than 40% of motor vehicle accidents and 25% of fatal
crashes [Administration, 2019].

If the European data are broken down, as shown in Figure 1.3a, it can be seen that
38% of the deaths occurred in urban areas. Most of them were pedestrians within these
fatalities, accounting for 38% of the total (Figure 1.3b).

Going towards a more local level, such as Spain, the number of deaths in 2019, the
last published official report on its website, is 1755 [DGT, 2019]. As in the European
statistics, these can be broken down according to where the accident occurred, as shown
in Table 1.1. If we compare both statistics, it can be seen that the percentages are pretty
similar: 30% urban environment, 51% rural environment, and 19% on highways.

If we want to break down more precisely the urban figures in Spain, the September
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Urban: 38%

Highways: 9%

Rural: 53%

(a) Percentage of road fatalities by road
network.

Car: 25%

Motorbike: 18%

Bike: 13%

Pedestrian: 38%

Others: 6%

(b) Percentage of road fatalities by means of
transport.

Figure 1.3: Percentages about road fatalities in urban roads [Commision, 2020].

Localization Number Percentaje

Interurban 1236 70%

Highway 91 5%
Motorway 249 14%
Rural road 896 51%

Urban 519 30%

Crossing 43 2%
Street 473 27%

Urban highway 3 0%

Table 1.1: Number and percentage of road fatalities in Spain.

2018 Direción General de Tráfico (DGT) report on the figures in 2017 [DGT, 2017] should
be referred to. If the report is analyzed, as shown in Figure 1.4, 96% of the accidents and
90% of the fatalities took place on urban streets. These extremely high percentages put
the spotlight on urban lanes as the place where safety must be improved. In Figure 1.4,
we can learn a little more about the casuistry of accidents. In it, we can see that 20% of
the accidents are pedestrian run overs, another 20% are rear-ended or multiple collisions
and 35% are lateral or frontal-lateral collisions. However, there is a striking change in the
data percentages within the fatality graph. 47% of the fatalities are due to pedestrian
run overs, 16% to lateral or frontal-lateral collisions, and another 16% to run-off-the-road
collisions, which surprisingly only account for 4% of the total number of accidents. Some
quick deductions can be made after the detailed analysis conducted in the figures.

• The vast majority of accidents and fatalities in urban environments occur on streets,
and they are pedestrian collisions and lateral or front-lateral collisions.

• Run-off-the-road accidents, even though being one of the least frequent, have a high
fatality rate.
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These particular circumstances highlight the lines on which a scene recognition and
safety system for autonomous vehicles should focus for the time being. Therefore, this
thesis will address the objectives stated in the following point to contribute to improving
the performance of the existing systems under the above assumptions.

Figure 1.4: Comparison of accidents and fatalities by type of road and type of accident.

1.2 Scope of this thesis

After analyzing the causes and particularities of accidents and fatalities in the urban
environment, the next step is to establish the objectives. This thesis aims to implement,
employing deep learning, optimization, and data pre-processing techniques, surrounding
identification systems that allow an autonomous car to navigate in an urban environment
safely.

One of the most striking figures presented in point 1.1 is the fatality rate of runoff-
the-road accidents. The number of fatalities during 2017 due to this case study is 80,
practically the same as in lateral and frontal-lateral collisions, being the latter practically
ten times more frequent.

Therefore, we can deduce that it is vital for an autonomous vehicle to recognize
the road on which it must and can circulate with total accuracy. This problem can
be addressed through a deep learning technique called semantic segmentation or scene
interpretation (Figure 1.5). Semantic segmentation is a supervised learning technique
that classifies each of the pixels of an input image according to the required information,
so it can be used to recognize each road’s pixels, thus obtaining the road surface.

On the other hand, the other two types of accidents with the highest fatalities are
pedestrian run overs and lateral and front-lateral collisions. That brings us to another
of the troublesome points within the cities, the intersections. It seems clear that most
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Figure 1.5: Computer vision tasks.

lateral and front-lateral collisions might occur at intersections between two roads, where
the vehicle’s paths will cross at some point. It is also at intersections where crosswalks
are most often encountered and where it is, therefore, more likely that a vehicle could
accidentally collide with a pedestrian. For example, a pedestrian on the sidewalk must
cross the street in two of the three possible paths at a cross intersection (Figure 1.6).

Figure 1.6: Possible trajectories within an
intersection.2

Consequently, within the navigation of
an autonomous vehicle, it can be consid-
ered very important to have a system that
recognizes the scene and identifies the type
of intersection. If the vehicle recognizes
the upcoming intersection, it will deduce
helpful information. An example of this
valuable information could be the number
of entrances to the intersection, thus know-
ing the topology of the intersection. Con-
sequently, it will know from which trajec-
tories another vehicle or pedestrian on a
collision course with the ego-vehicle may
come from and imply higher risk. In ad-
dition, and outside the field of safety, by
knowing the type of junction where the ve-

hicle is located, it will be able to perform navigation maneuvers without the need for a
complete and detailed map of the area, as a human being would do when asking for
directions in an unfamiliar city.

Deep learning methodologies can also solve this casuistry, but in this case, with a set
of different types of techniques. In this thesis, we propose that the classification task
(Figure 1.5) is necessary to solve the problem adequately. This technique tries to obtain
as relevant features as possible from the input data to return the input data category
within the ones we are interested in.

Figure 1.7 shows the workflow of this thesis. It can be seen how these problems
have common points that can be integrated into a single system whose usefulness would
undoubtedly allow it to be integrated into even more complete future developments.

2Image obtained in freepik.com
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1.3 Document structure

After the introduction in Chapter 1, Chapter 2 contains a brief review of the most sig-
nificant research on this work’s three main points:

1. Review work on semantic segmentation and road segmentation will be conducted.

2. Classification and intersection classification researching will be reviewed.

3. A discussion on papers on the optimization of deep learning architectures will be
developed.

Chapter 3 will discuss the different methodologies that have been used for road seg-
mentation during the research process of this doctoral thesis:

1. Starting with basic implementations in CAFFE and add complexity until the data
integration led to the new 3D-Deep architecture.

2. Addressing 3D-Deep architecture’s optimization to single-task targeting led to the
update of the same in 3D-Deepest.

In Chapter 4 we will discuss the different training strategies implemented to solve the
intersection classification.

1. A teacher/Student approach with single-frame data will be addressed.

2. Switch the previous approach to a metric learning approach with triplet loss.

3. Finally, the input information is extended by temporal integration of the data.

Chapter 5 contains the conclusions and main contributions in road segmentation in-
tersection classification, network optimization, and future research lines.

Finally, Appendix A describes all the other things vaguely related to THE TOPIC, and
Appendix B summarizes the leading publications derived from this Ph.D. dissertation.



Chapter 2

State of the Art

As seen in the previous chapter, the way to face and solve the problems proposed in
this doctoral thesis will be through semantic segmentation and classification techniques.
These procedures are usually based on Deep Convolutional Neural Networks (CNNs), one
of the most common methodologies within deep learning and computer vision.

This chapter will conduct an exhaustive review of the research topics that have brought
these deep learning methodologies to lead within computer vision. Remarkably, the search
will be focused on those currently in the state-of-the-art.

The relevance of computer vision inside the field of artificial intelligence rocketed in
the last few years. The amount of research found in almost any specialized search engine
is the most substantial evidence. This significant increase is mainly due to the deep
learning revolution led by the success of previously named CNNs (Figure 2.1b).

However, this is not to say that there was no active research before and after the advent
of CNNs. Usually, proposed none deep learning methods rely on hand-built features,
machine learning techniques, geometrical transforms, or any combination of them (Figure
2.1a). Random Decision Forest [Scharwächter and Franke, 2015] or Boosting [Sturgess
et al., 2009] are two examples of it.

For example, in [Oniga et al., 2008] and [Siegemund et al., 2010], they use digital ele-
vation maps along Hough transformation or Conditional Random Field (CRF) to detect
and reconstruct curbs. Going further back in time, [Felzenszwalb and Huttenlocher, 2004]
uses a graph-based representation to segment the regions of an image, and [Otsu, 1979]
employs an optimal threshold as the discriminant for segmentation from the grey-scale
histograms.

(a) Traditional machine learning approach. (b) Novel deep learning approach

Figure 2.1: Learning approaches in machine learning.

9
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2.1 Deep learning for semantic segmentation

Moving away from the field of traditional computer vision methods and into deep learning,
CNNs, as previously stated, boosted the research in computer vision. Notably, since the
unmatched effectiveness in 2012 in the ImageNet classification challenge [Russakovsky
et al., 2015].

Networks like Alexnet [Krizhevsky et al., 2012], VGG [Simonyan and Zisserman, 2014],
and GooleNet [Szegedy et al., 2015] and their mentioned effectiveness are the ones to
blame for this significant increase in machine vision research in general and in CNNs in
particular. These architectures focus on feature extraction from images, using sequential
convolutional layers for subsequent classification. The training images are obtained from
massive datasets specially generated for the task, in which usually efficiency rankings are
established, e.g., [Everingham et al., 2010], [Russakovsky et al., 2015] and [Geiger et al.,
2012]. This end-to-end automated supervised learning methodology applied to massive
amounts of data usually outperforms hand-crafted features in most of the tasks.

Introduced in 2015, Fully Convolutional Neural Networks (FCNNs) [Long et al., 2015]
proposes a method based on an encoder-decoder pipeline (Figure 2.2) to segment pixel-
wise an image in each of its classes. The encoder part of the network is in charge, as
in traditional CNNs, of obtaining context and spatial information. This operation is
performed by means of gradually down-sampling the images and synthesizing them in a
set of meaningful features. After that codification, the encoder’s classification layers are
discarded, and the set of features is delivered to the decoder part of the network. Sub-
sequently, the decoder applies up-sampling operations on the supplied features through
a series of sequential deconvolutional layers [Zeiler et al., 2010] until a probability map
of the same input image size is obtained for each of the classes. The parameters of the
deconvolutional layers can be learned during the training process, as in convolutional lay-
ers. Alternatively, they can be fixed, for example, in a bilinear interpolation, depending
on what the researchers consider most appropriate for the system’s best performance.

Figure 2.2: Encoder-decoder architecture [Iglovikov and Shvets, 2018].
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FCNNs research has significantly advanced since 2015, introducing new improvements
in both efficiency and effectiveness. Simultaneously, the significant increase in the number
of datasets [Cordts et al., 2016,Wang et al., 2019b,Xie et al., 2016,Mnih, 2013] provided
for semantic segmentation tasks noteworthy facilitates the validation and testing of new
methodologies. Some examples of this assertion are listed below.

[Ronneberger et al., 2015], whose work implements a new architecture with a contract-
ing path and a symmetric expanding path to facilitate precise localization in biomedical
image segmentation. [He et al., 2016] proposes ResNet, an architecture with shortcut con-
nections between layers to create a residual learning framework to learn residual functions
referenced to layer inputs in order to avoid the vanishing gradient problem. This approach
facilitates the optimization of deeper networks, generally more accurate than those pre-
viously implemented, which could be used in segmentation and semantic classification
tasks. [Badrinarayanan et al., 2017] introduces SegNet, an encoder-decoder architecture
in which the encoder part is a VGG network, and the decoder part uses the pooling indices
computed in the max-pooling step of the corresponding encoder to perform non-linear
up-sampling of the features. [Chen et al., 2017] proposes the dilated/atrous convolution
(Figure 2.3) to enlarge the field-of-view without no resolution loss of the feature descrip-
tors. [Chen et al., 2014a] uses CRFs as a post-processing feature classifier to improve
location capability to increase the precision in the segmentation of the boundaries of the
object. ParseNet, architecture defined in [Liu et al., 2015], uses global average pooling
to entirely use global and local image features. In [Zhao et al., 2017], the aggregation
capacity is exploited, through the pyramid-pooling module, of the different region-based
context information to obtain global context information.

Figure 2.3: Dilated/Atrous convolution kernels example [Chen et al., 2017].

Newly, some research that utilizes depth and light detection and ranging (LiDAR)
information for scene understanding has arisen. These methods usually extend the RGB
images with a fourth channel that contains the three-dimensional information transform-
ing them into RGB-D images. This new data source can be just concatenated to the
RGB channels, like in [Couprie et al., 2013], or pre-processed and encoded to extract
richer features as can be with HHA images [Gupta et al., 2014].

Moving to 2020, in [Liu et al., 2020b], a new module and some new network architec-
tures that benefit from it are proposed to solve the scene understanding task. The pro-
posed module, Built-in Depth-Semantic Coupled Encoding (BDSCE) (Figure 2.4), adap-
tively extracts and fuses RGB and depth information inspired by binocular stereo vision
methodology. The module is divided into three sequential parts that act on two input
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feature maps: Feature Map Shifting (FMS), Correlation Distance Calculation (CDC),
Compression and Depth-Semantic Coupling (CDSC). The first one, FMS, shifts the right
feature maps to match them with their corresponding left feature maps. The CDC mod-
ule then calculates the difference via the L1-norm between the left and already shifted
right features. The third one, the CDSC module, compresses the third channel’s results
to acquire the positional deviation of the corresponding points and obtain the geometric
information. Then Depth-Semantics Coupling sub-module matches the complementary
features between the RGB input and the new depth information extracted.

Figure 2.4: BDSCE workflow example [Liu et al., 2020b].

The researchers suggest four network models, CEncNet-FCN, CEncNet-Deeplab and
CEncNet-PSP, CEncNet-Multinet, CEncNet-FCN, based on the proposed module intro-
duced to validate its improvement in each assigned task. In the CEncNet-FCN, a BDSCE
module is positioned at specific points to calculate the corresponding features’ depth in-
formation and integrate it with the information coming from lower layers of the network
to provide a correct scene understanding. CEncNet-Deeplab and CEncNet-PSP are two
minor actualizations on the Deeplab and PSP architectures that introduce the BDSCE
module on top of the conv5 layer. Its results are fed to the Atrous Spatial Pyramid Pool-
ing (ASSP) module to obtain the final prediction. CEncNet-Multinet is an architecture
actualization of Multinet, a network designed to perform parallel work, road segmen-
tation, and vehicle detection. The BDSCE module is placed in the network’s encoder
part, between all the three convolutional layers, and its results are fed to the two decoder
branches, which remain unchanged. Each decoder branch is in charge of each different
task: road segmentation and vehicle detection.

Furthermore, during 2019 was published [Deng et al., 2019] proposing a new convolu-
tion type to deal with training images with significant distortion, Restricted Deformable
Convolution (Figure 2.5), a version of the deformable convolution introduced in [Dai
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et al., 2017]. This particular convolution is based on correcting the lack of spatial in-
formation that the deepest layers of CNNs suffer from. This augmentation of spatial
information is led by a set of offsets applied to the sampling locations. These offsets’
values are learned simultaneously as the convolutional kernel weights during the training
process, which does not substantially increase the difficulty of the training. Knowing this,
the idea behind Restricted Deformable Convolutions is fixing the kernel’s central location
since the authors believe that model transformations strongly rely on the outer sampling
locations.

Figure 2.5: Restricted deformable convolution example [Deng et al., 2019].

A regular convolutional layer with fixed channels is used since the offsets’ values
should be learned together with the weights’ values. This convolutional layer establishes
a bidirectional relationship between its weights and the offset values that will then be
applied to the original kernels.

Also, for training purposes, the work uses a data augmentation method called Zoom
Augmentation that transforms the input images from panoramic view to fish-eye view.
This transformation is made to supply the need for a large-scale dataset of context images,
usually provided from surround camera systems that typically produce fish-eye images.

It is worth commenting that other research areas exist inside the semantic segmen-
tation field, as can be the instance-aware semantic segmentation. Instance segmentation
focuses on target objects within the provided data and labels only those objects and not
all the image pixels. One of the most remarkable examples of this approach is proposed
in [He et al., 2017].

2.1.1 Deep learning for road semantic segmentation

So far, the growing importance of scene understanding has been seen within the field of
deep learning and, in particular, in autonomous vehicles. However, understanding the
whole scene is not always necessary to have enough information for proper driving safety.
As will be seen, road segmentation is a particular field within semantic segmentation
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that is very useful and in which the amount of research has been increasing exponentially
over time. Perhaps, when one thinks of road semantic segmentation, one has in mind a
panoramic image in which all the road pixels are correctly labeled. However, as will be
shown below, in recent years, other approaches may also substantially influence the field
of autonomous driving.

In [Henry et al., 2018], the input data is not an RGB image obtained from a car’s
dashboard; instead, it is synthetic-aperture radar satellite images. The research focuses
on extracting roads from this particular type of image since this information has a great
value in keeping maps up-to-date and automatic map building. Three FCNNs were
proposed to be trained end-to-end to solve the task: FCN-8s, U-Net, and DeepLabv3+.
Also, because of the class imbalance in the training data, a spatial tolerance parameter
is set to transform the task from a binary classification to a binary regression to avoid
spatially small mistakes. Finally, pre-and post-processing of the data, such as non-local
filtering and fully connected CRFs, are studied to improve the results. These last steps
did not work well in this precise task, validating something prevalent in deep learning:
the improvements that worked in specific research will not always work in similar other
ones.

If we continue with the remotely-sensed images, [Panboonyuen et al., 2017] proposes
a methodology following similar ideas to the previous research: road extraction in very-
high-resolution images or satellite images, with a specific conformed network made for
the task. The network’s adaptations can be labeled into two categories, post-processing,
and processing.

Starting with the processing upgrade, this consists of modifying the base architecture,
in this case, SegNet [Badrinarayanan et al., 2017], to introduce a new activation function,
the Exponential Linear Unit (ELU) [Clevert et al., 2015] (Figure 2.6), as opposed to
the Rectified Linear Unit (ReLU) based on its performance. In addition, the number
of parameters is optimized by discarding the three fully connected layers between the
encoder and decoder.

Figure 2.6: ELU activation function comparison [Clevert et al., 2015].

Following with post-processing upgrades, CRFs must be mentioned again, in this
case, together with Landscape Metrics (LMs). This last method is focused on false object
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removal based on the shape complexity of previously detected objects, followed by a
filtering process whereby any object with a complexity index lower than 1.25 is discarded
as a candidate. In order to increase the correctness of the LMs method, two previous
steps are done. The first is a Gaussian smoothing to remove unnecessary details. The
second is a connected component labeling to combine and group all the pixels of object
candidates. After all, this initial post-processing CRF comes into play. A fully connected
CRF is used to sharpen segmentation results by adding explicit dependencies among the
neural network outputs.

A significantly different approach is taken in [Shamsolmoali et al., 2020], where a Fea-
ture Pyramid network (FP) combined with domain adaptation with adversarial networks
is used to segment the road in remotely-sensed images.The adversarial training aims is
to minimize the gap between the sample images and the target domain by generating
realistic synthetic images based on authentic images.

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] generally are com-
posed of two modules: the generator in charge of creating samples of a domain from
random noise and a discriminator that tries to recognize the fake samples from the real
ones (Figure 2.7). These two modules compete with each other to obtain equilibrium be-
tween is losses. In this work, the generator aims to produce artificial feature maps similar
to the real ones that can minimize the domain gap between them. The generator is a
specially designed multiconnected FP to extract multiscale pyramid features from noise
and specific features of processed synthetic images. That module is followed by fusion
and concatenation to produce additional descriptive features, which are in turn merged
to finally obtain different scale feature maps that are then collected and processed to
assemble a prediction, in this case, an artificial feature map. The discriminator, in this
case, is a Multilayer Perceptron (MLP) that uses as inputs the feature maps vectorized.

Figure 2.7: GAN workflow [xenonstack, 2019].

Moving on to other approaches, transfer learning is a training technique widely used
in deep learning research and, therefore, road segmentation. [He et al., 2019] uses this
technique to solve generalization problems under specific domain data changes. The
system workflow runs as follows. First, a U-net is trained with easy data, such as, in
this case, daylight RGB remote-sensing images that are easily accessible. Then the lower
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layers of the architecture are frozen, which are those that are in charge of learning deep
semantic information, and the higher layers are re-trained, which should extract the basic
local features of the new type of data, cross-modal images.

The U-net input is limited to three channels since it is trained with RGB images.
However, cross-modal images are not limited by channel number, so they would not be
compatible. To overcome this, the authors propose a three-layered autoencoder module
that transforms the multi-band input data through convolutions to thirty-two channel
data and subsequently to three-channel data. This autoencoder is trained before attaching
it to the baseline net.

Focusing on road segmentation in panoramic images research has increased signifi-
cantly in the last few years, especially with the appearance on the scene of the KITTI
specific benchmark [Fritsch et al., 2013]. It is possible to fall into the trap that deep
learning has taken over all the research in road segmentation due to its excellent results.
However, work continues outside of it, such as in [Fan et al., 2018]. In that research,
only three-dimensional information is used to obtain a segmentation map, specifically
disparity data. The process follows three basic steps:

1. The estimation of roll angle γ by least-squares fitting to rotate the dense disparity
map to its ideal position where each row’s disparity values are similar while they
change in the vertical axis.

2. The projection of the road pixels from the v-disparity map by dynamic programming
and minimum energy search. This part is focused on fitting a road model parabola.

3. The final transformation of the disparity map, where the function previously calcu-
lated is applied to each disparity value and added a constant to maintain all values
in the positive range.

Then the map is rotated by −γ previously calculated, obtaining a disparity map where
the road’s disparity values become very similar.

If we return to the use of deep learning for the task of road semantic segmentation, it
should be said that the research purpose is not always focused on autonomous vehicles.
Other devices, such as mobile robots, need to know which areas of their environment will
be capable of circulating. In turn, and as seen above, the conditions under which the
input data are obtained can affect the results. Different luminosity or rain are conditions
that can negatively affect the quality of the data. That assertion is discussed in [Zhang
et al., 2018], where the main idea is to construct a deep learning architecture to segment
roads in all-day outdoor data.

The network is divided into two phases. The former one is the forward model, com-
posed of a generative network and a segmentation network. The latter one is a mirror of
the former one (Figure 2.8).

The main idea behind this architecture is that the forward model is the one that is in
charge of learning the proposed problem and the backward model supervises the learning
process of the forward one. The forward phase of the generative model tries to map from
the input data, which are poor quality images, to an image domain with richer semantic
information. A GAN makes that process in which, as mentioned above, the generative



2.1. Deep learning for semantic segmentation 17

Figure 2.8: Workflow of segmentation architecture [Zhang et al., 2018].

model competes with a discriminator. Then the segmentation model, an FCNN, returns
the segmentation result. As said above, the backward model is only active during the
training process and supervises the forward model since it has difficulties segmenting road
boundaries correctly. The generative model of the backward phase also makes a mapping,
but in this case, it is in the opposite direction, from a rich semantic information image
to a poor quality image. This generative model shares the weights with the segmenta-
tion module of the forward model. The segmentation module of the backward shares the
weights with the generative module of the forward and segment the road in poor qual-
ity images. This weight-sharing methodology supervises the whole training focusing on
maintaining the road borders information to secure it for the subsequent testing phase,
where only the forward model is used.

Generally, the road semantic segmentation task focuses on labeling each visible pixel
at the input image. That approach can be advantageous in ideal conditions or clean
environments like highways. Anyhow, these ideal conditions are not often fulfilled since
heavy traffic is expected in an urban environment. To the extent of the researcher’s
knowledge, cars around the vehicle-ego lead to poor results due to the lack of information
about the road situation.

[Wang et al., 2019a] addresses this problem by inferring the occluded road by an
extensive insight into the location’s geometry and semantic. Researches proposed a new
architecture based on the previously mentioned encoder-decoder method as the baseline
and a loss function with spatially-dependant weights to pay attention to road edges.
Unlike other works, the input data are not raw data, such as RGB images or point
clouds, but instead previously obtained semantic representations of the image.

The encoder task comprises several block types, the context downsampling block,
the factorized block, and the dilated block. The context down-sampling block combines
a regular convolution block and an attention branch that bypasses the main branch to
prevent the vanishing gradient and add the attention capability. The factorized block is
applied to extract dense features and the dilation block, as has already been reported,
enlarges the field of view of the encoder. The decoding task comprises two modules: the
joint context up-sampling block and the residual bottleneck block. The first one merges
two feature maps of different encoder stages, therefore of different sizes. That operation
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is made in order to group the spatial information, which comes from the higher resolu-
tion map, and the context information from the lower ones, and is performed employing
convolutional blocks and bilinear up-sampling. Therefore, this module is in charge of the
up-sampling operations inside the decoder. The bottleneck residual blocks are located
between the encoder and the decoder and deal with the vanishing gradient problem. In
the early stages of the encoder, the factored residual blocks are used to extract dense
features to send them directly to the decoder phase. In the final stages of the encoder,
dilated convolutions are used to increase the receptive field, and the extracted features
are also sent directly to the decoder. A continuous regular residual block is inserted inside
the decoder branch itself, every joint context up-sampling block.

The other innovation proposed in the last work is the loss function. Based on the
authors’ hypothesis that the pixels closest to the road edge are the most difficult to
detect, they propose modifying the cross-entropy function by adding distance-dependent
weights to a set of pixels located around the road boundaries. The distance used for the
calculation of these weights is the Manhattan distance.

Other works, such as [Liu et al., 2020a], focus on integrating different data sources
to improve the segmentation performance. The network architecture follows the already
known encoder-decoder scheme, but unlike other works, it is proposed to merge the RGB
data and the LiDAR data during the decoder stage. The Refine Fusion Unit performs
this data fusion (Figure 2.9).

This unit aims to refine the score maps obtained at the encoding stage with the
LiDAR maps generated at various scales. This strategy makes it possible to avoid the
drawbacks of both early and late fusion strategies and not require considerable structural
modifications to prevent the use of pre-entrained networks. Its construction consists of
two phases. In the first one, the LiDAR information is fused with the feature maps of the
same stage and the previous stage. Convolution operations make the data fusion, while
upsampling operations are made for resolution adaptation and addition from different
stage maps. A chained residual pooling is applied in the second one, similar to the one
used in RefineNet [Lin et al., 2017a], which tries to capture as much important information
as possible from the combined LiDAR feature data.

Figure 2.9: RFU Unit architecture [Liu et al., 2020a].
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The LiDAR data is obtained by projecting the 3D points in the RGB image plane.
Since the authors’ idea is to use the complete projected data in all the stages of the
deconvolution process, they used a multiscale reprojection by introducing a scale factor
in the camera’s intrinsic parameters to obtain a set of pseudo-parameters that will do the
scale reprojection.

In 2020, [Yan et al., 2020] presented a work in which they disregard RGB images and
work directly with LiDAR point clouds to obtain a road segmentation in bird’s eye view,
eliminating possible occlusions of the road.

Their work’s main contribution is the multitasking network architecture, which can
segment the road and obtain a crossing typology classification and a dense picture of the
road height estimation (Figure 2.10). The backbone network architecture is based on
MixNet [Tan and Le, 2019b] and follows the encoder-decoder pattern proposed in many
other works. A named Joint Up-sampling Module is added to the backbone to implement
a skip pathing between the encoding and decoding stages. This module’s function is to
up-sample the smaller feature maps with the large resolution ones to concatenate them.
A cascade convolution and squeeze and excitation blocks are then used to wisely adapt
the feature sources into a unique one that models its interdependencies. Then, this new
and better feature map is sent to the corresponding decoder stage.

Figure 2.10: Multitasking architecture [Yan et al., 2020].

In order to fulfill the multitask objective, the architecture proposes a feature-sharing
module. This module selects significant features of different stages of the main task and
merges them to provide convenient features to satisfy the other tasks. The corresponding
decoding phase gathers these features for each corresponding task. Each decoder processes
features individually to return the height estimate image, or the crossover classification,
in the form of a probability vector, as appropriate to each.

As can be seen, this last work shares many of the intentions of this thesis and links
to the next section of this chapter, the classification.
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2.2 Deep learning in classification

As discussed in chapter 1, intersections are interesting for vehicle navigation. Therefore,
they must also be a point of interest in the field of autonomous driving. Recognizing the
environment of the autonomous vehicle, as discussed in the previous section, is crucial.
However, to recognize intersections, it does not seem necessary to know which pixels
belong to which branches of intersections since the road have been previously wholly
segmented. Therefore, this problem can be approached differently through classification.

Classification within deep learning is one of the oldest and most researched tasks.
Since its beginnings as MLPs as universal approximators [Hornik et al., 1989], it has
reached heights of success that had never been achieved before. As discussed earlier
in the first paragraphs of Section 2.1 above, the introduction of CNNs was a significant
boost to deep learning research and, therefore, in classification tasks. This type of model’s
effectiveness in image classification ultimately displaced the previous ones, [Russakovsky
et al., 2015]. However, MLPs have not been completely discarded. For example, [Mohsen
et al., 2018] uses such architecture to classify feature vectors previously extracted from
MRI scans to identify and classify three types of brain tumors. Alternatively, in [Qi et al.,
2017], a set of MLPs combined with max-pooling and feature transformations is used to
label point sets directly and even segment them from raw point clouds.

Nevertheless, returning to CNNs, medicine is one of the fields they have come to be
used very effectively. In [Stephen et al., 2019], they are trying to classify lung X-ray
images according to whether the patient is affected by pneumonia or not, and in [Tan
and Le, 2019b] blood cell images, classification is used to differentiate the healthy ones
from the abnormal ones present in cases of leukemia.

In general, image classification using CNNs is performed in two stages, the encoder
stage and the classification stage (Figure 2.11). During the encoder stage, successive
convolutions are applied to the input image until the image’s relevant characteristics are
extracted. After that, in the classification stage, generally, one or more fully connected
layers are applied to those features to transform them into a probability/confidence vec-
tor. That is the basic structure followed by models explained in the previous section
to introduce FCNNs, such as Alexnet [Krizhevsky et al., 2012], VGG [Simonyan and
Zisserman, 2014], and GooleNet [Szegedy et al., 2015].

Figure 2.11: CNN architecture example [Tabian et al., 2019].
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This type of network’s versatility can be almost infinite, as long as a data set supports
the training. For example, [Kagaya and Aizawa, 2015] classify images as food or non-food
or in [Kim, 2014] for sentence classification within natural language processing. [Nakazawa
and Kulkarni, 2018] uses a CNN to classify the twenty-two possible defects that can
appear in wafer maps during semiconductor wafer manufacturing. [Saleem et al., 2019]
provides an overview of deep learning classification techniques for plant disease detection.
Mainly, this last one shows the multiple ways of approaching the same problem using
deep learning, which means that the versatility of CNNs affects the multiple problems
that can be solved and the multiple ways of solving the same problem.

As discussed in section 2.1, remote imagery is also one of the fields in which deep
learning is most widely used. In [Kussul et al., 2017], the aim is to segment crop types
from satellite imagery. However, it does not use an FCNN approach with encoder-decoder
but only an encoder and classifier approach to categorize image patches according to the
classes provided. In [Chen et al., 2014b], they also try to classify hyperspectral images,
but in this case, using stacked autoencoders and a logistic regression layer employing the
column vector of each hyperspectral image pixel as input data.

Out of what can be considered standard, it is also possible to classify something as
mathematical as time series utilizing CNN, as shown in the paper [Gamboa, 2017] in
section 4, where he reviews ways to transform the time series into an image and then
classify them.

One of the most outstanding examples that classification through deep learning is still
on the cutting edge is the recent publications of the Efficient-Net and NFNet architecture
families [Tan and Le, 2019a,Brock et al., 2021], which beat the Top-1 accuracy metrics
in ImageNet in their respective years of publication (Figure 2.12). The former is oriented
to model scaling in order to optimize model size, training, and performance. This model
balance is performed by the compound scaling technique, which establishes a ratio coef-
ficient applied to the network’s depth, resolution, and width. The latter, which has far
surpassed the first, focuses on eliminating batch normalization layers through adaptive
gradient clipping while maintaining the instability control benefits they provided and
eliminating the drawbacks such as batch size dependency.

2.2.1 Deep learning for intersection classification

One of the latest works that can be found regarding the classification of intersections is the
one carried out in [Kuo and Tsai, 2021]. In this work, images obtained from Google Maps
roadmaps are used as a data source. They try to classify within five different typologies
all existing intersections. For this purpose, the authors implement a multi-model system
based on convolutional neural networks and combination rules.

The multi-model system consists of two convolutional neural networks that work to-
gether to classify the intersections. The first is a VGG16 model that performs a binary
data classification between foreground and background images. Authors consider as fore-
ground images all those in which there is a road intersection and as background images
the rest.

1Image obtained from the paper [Brock et al., 2021].
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(a) Efficient net family models Top-1 Accuracy. (b) NFNets family models Top-1 Accuracy.

Figure 2.12: Top-1 accuracy comparison between NFNet and Efficient Net.1

The second one takes the data provided by the previous binary classification model
and tries to classify all those positive samples in five different types of intersections. For
this purpose, an InceptionResnetV2 model is used, followed by a 6-layer fully connected
classifier. This process is repeated three times taking three different pre-set image sizes,
small, medium, and large.

Finally, for the consolidation of results, the authors propose filtering and combining
occurrences of each one through rules that allow refining each one of the detections.
Since the classification is performed using three pre-established sizes, these three sources
of information are used to eliminate duplicates. For example, the detection is filtered
when the same type is detected in the three sizes. However, a combination rule comes
into play when a specific type is detected using a size window, and after enlarging the
size window, a different type is detected.

More focused on the scope of this thesis, there are also publications and research on
road crossing detection using data obtained from the ego-vehicle perspective. However,
given the importance that, in our opinion, the subject deserves in view of the accident
rates indicated in section 1, it seems surprising not to have found much more documen-
tation.

One of the earliest works on the subject can be found at [Kushner and Puri, 1987],
where two old-fashioned computer vision methods are presented. The first one extracts
the road boundaries and tries to match them to a predefined intersection model us-
ing heuristic methods. Rather than recognizing the image road intersection, the second
method finds free space corridors through which it is safe to drive.

Later, in 2013, Andreas Geiger published his Ph.D. [Geiger, 2013] in urban scene
understanding. In his thesis book, two new approaches to intersection detection are
proposed that, in many cases, can be considered the kick-off of the recent research on
this field. The former is a new intersection modeling with flexibility in the number of
intersecting streets and the location, orientation, and width of crossing branches. The
latter efficient learning and inference algorithms based on Markov Chain Monte Carlo
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Sampling and belief propagation are developed to infer scene design.

In different contexts to the above but with a similar approach, authors in [An et al.,
2016] and [Ballardini et al., 2017] exploited RGB images from vehicle front-facing cameras
and standard computer vision techniques to create temporally integrated occupancy grids.
In turn, they compared them to predetermined shapes to assess the presence of upcoming
intersections.

The approach proposed in the [Habermann et al., 2016] work is substantially different
from the above ones. The data input is solely based on point clouds obtained by LiDAR.
These raw data clouds go through three independent processes that will generate a binary
classification of whether they belong to an intersection or not. The first process extracts
the most relevant features from the point clouds. These features capture appropriate ge-
ometric and statistical properties for further classification using three different classifiers,
an MLP, an Support Vector Machine (SVM), and the AdaBoost algorithm at the second
step. Since these methodologies produce a single frame classification, which can produce
much noise, the third step of the methodology includes Hidden Markov’s Models and
CRFs that will model the sequence of observations.

[Baumann et al., 2018] work is closer to the scope of the present study and uses
transfer learning techniques in CNNs to classify intersections. The idea behind transfer
learning is using the learned feature representations from a network to solve a similar
problem, usually training only the classifier part of the architecture (Figure 2.13).

Figure 2.13: Transfer learning methodology example [Baumann et al., 2018].

In this case, researchers start from an FCNN trained to predict the future path of the
ego-vehicle. The decoder is discarded, and all the encoder weights are frozen and will not
be modified during training. Then the encoder will be in charge of extracting the feature
sets from the input data. After that, the proposed architecture called Intersection Net,
composed of a series of convolutional and pooling layers together with a fully connected
layer at the end comes into play. This last architecture is the one that is trained from the
obtained encoder’s features. Its function is twofold, making the obtained features more
specific and classifying them using the fully connected layer.

The work proposed in [Tümen and Ergen, 2020] also uses a personalized deep con-
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volutional model to classify five types of multiple lane roads images. Three intersection
types can be found within the labels: left separation, right separation, and multiple inter-
sections. In addition, without being of interest to this particular thesis, crosswalks and
empty roads can be found within the labeling.

The classification method is quite similar to other state-of-the-art approaches. How-
ever, the previous stages of the classification process are pretty interesting. Assuming
that road classification from scratch is a difficult task, and there is a lack of disponibility
of images to be implemented, the authors propose a two-stage methodology to ease the
problem.

This procedure focuses on obtaining images in which the information not needed
for the task has been cleaned, hypothesizing that this will increase the classification
performance. For that hypothesis, the methodology focuses on extracting the image’s
RoI, in which most of the non-road elements are discarded. The first stage of the process
consists of calculating Cr1 and Cr2, the levels from which the image will be vertically
cropped. The authors calculate these two points by the vanishing point method. After
that step, a canny axis detection filter is applied to the image to delimit approximately
the road in parallel to this calculation. The combination of this delineation together with
the applied cropping provides an RoI with much more valuable data for classification.

So far, the already research presented based on deep learning has focused on detecting
or classifying intersections once they have been reached. However, as can be seen in
the work [Habermann et al., 2016] that employs old-time computer vision, temporal
integration can be an asset to be considered. In [Bhatt et al., 2017], this approach
is given into consideration, and an Long Short-Term Memory (LSTM) [Hochreiter and
Schmidhuber, 1997] is added to the well-known CNN for classifying intersections in RGB
images. The difference between LSTMs and other types of architectures is that they can
perform temporal integration since they have a ”short-term memory” and a ”long-term
memory” that allows them to remember what they have processed previously to decide
what they are processing now (Figure 2.14). The workflow of the final architecture is,
therefore, as follows. First, a sequence of ordered images is supplied to the CNN, which
will, in turn, return a sequence of feature vectors. These vectors are packed and sent
to the LSTM, which integrates them temporarily to extract information to classify the
sequence as an intersection or not.

[Koji and Kanji, 2019] work maintains a similar approach about temporal integration,
but instead of detecting whether or not intersection exists, it tries to classify them into
seven basic typologies.

For this purpose, it uses two data sources that the authors call Input-F and Input-T.
Input-T is an RGB image taken just before reaching the intersection, and Input-F is
a sequence of images taken while crossing the intersection. To process these two data
sources, the authors use an architecture composed of three different modules, F-Net,
TNet, and I-Net.

T-Net is a VGG16 network in which the transfer learning paradigm is applied. The
classifier is replaced by two fully connected layers that are then trained to distinguish
between the seven classes, freezing all the other weights. F-Net is a combination of an
Inception-V3 and an LSTM architecture. Inception-V3 extracts the optical flow from the
image sequence, and the LSTM classifies between straight, right-facing, and left-facing
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Figure 2.14: LSTM Cell architecture [Guillaume Chevalier, 2018].

crossings. I-Net is the architecture in charge of integrating previous results to return a
final classification using Bayesian multimodal information fusion [Xu et al., 2016].

Reliable intersection detection is only possible if there are sufficient data sources from
which to extract the features. However, it has been even more challenging to find labeled
datasets with which researchers can carry out their work.

In [Ballardini et al., 2018], the authors propose a methodology to build datasets for
intersection classification from existing datasets using GPS positioning and Open Street
Maps. This combination of data sources allows the authors to establish a semi-automatic
labeling methodology that significantly speeds up the dataset generation process and
calculates the distance to the center of the crossing for each frame.

It is possible to mention that along with the arduous task of searching for data sets
commented on before, the task of finding papers intersection classification has been no
less complicated. Our opinion is that these difficulties are intrinsically intertwined and of
notorious importance. Therefore, their causes and consequences for the research during
this dissertation are discussed further during the presentation of the results in chapter 4.

2.3 Conclusions

As a conclusion of this brief investigation of the classification and segmentation techniques
that are considered relevant for the development of this doctoral thesis, it can be observed
that although their origin dates back to the dawn of artificial intelligence research, they
are still valid today. It is an great research effort to minimally improve methodologies that
have already been developed for so long. However, based on the accident data presented
in Chapter 1, their improvement is still vital if the autonomous car is to become a real
thing in the future. Both self-localization and free driving space identification remain
critical points, and any slight improvement in the procedures capable of carrying out
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these tasks is essential.
One of the approaches observed in work investigated focuses on the search for new

proven techniques, such as novel architectures or training methods that improve the
results of a particular problem.

Two clear examples of this are papers [Wang et al., 2019a] and [Tümen and Ergen,
2020] that use architectures wholly designed from scratch for the particular job. These
approaches tend to work very well as a rule for particular tasks, and there is the benefit
of gaining complete control over the architecture. However, they generally require a very
high cost in resources, both computational and research time.

In [Yan et al., 2020], a slightly more straightforward approach is used. It employs
an existing network architecture and applies it to a particular problem. This procedure
facilitates the research by significantly shortening the design time, which is a great benefit.
However, no pre-trained weights are used for the proposed architecture. That fact, as
a rule, causes the training convergence to require substantially longer times. Another
possible weakness is the data sources, consisting of point clouds, discarding RGB images.
The implementation in a real system becomes much more complex due to the high costs
of LiDAR devices.

The use of methodologies that have been used previously for other problems, adapting
them to the specific matter to be solved or improved, is also a common approaches that
can be found. Using that type of approach, the authors try to rely on development that
has already proven its good results as the foundations of the new methodology that tries
to resolve the proposed problem, which can also yield excellent results without the need
for a large number of resources involved in research from scratch.

[Kuo and Tsai, 2021], for example, uses two already designed architectures such as
VGG16 and InceptionResnet v2 and their pre-trained weights. This method makes the
training process for both architectures much less time-consuming. However, given the
nature of the input data, the final processing requires establishing a set of combination
rules. This latter process must be specifically designed for the problem, and we believe
it is not very useful for our particular problem. A very similar approach is used in
[Koji and Kanji, 2019] work on the Inception V3 + LSTM and VGG16 architectures. It
combines transfer and fine-tuning learning approaches, both focused on reducing training
and development costs and can extract temporal information from the data. However,
the whole system becomes slightly complex and cannot be easily trained end-to-end due
to the Bayesian Multimodal Information Fusion method for merging the data from both
architectures.

[Habermann et al., 2016] also uses temporal data integration, showing its usefulness in
problems whose data can be easily obtained as ordered sequences. Despite using computer
vision techniques outside of deep learning, he obtains excellent results. However, these
are only for detection and do not fall within the classification field, which limits the
information obtained and, like [Yan et al., 2020], only uses point clouds as input data.

[Baumann et al., 2018] uses the transfer learning methodology that has already been
discussed and can give outstanding results and shorten development and training times.
However, in this work, the input data are occupancy grids, which require a pre-processing
that can be costly and not always accessible since three-dimensional measuring devices
are used to obtain them.
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[Bhatt et al., 2017] used the already debated temporal integration and fine-tuning
of pre-trained weights seeking to find good results in sequence classification. It is an
approach that is widely agreed upon since it is simple and can be trained end-to-end
even though LSTMs are usually not pre-trained. However, one disadvantage is that it
only focuses on RGB images, which are much more accessible data as a general rule, but
usually will not be the only data source in autonomous systems. The results obtained are
very encouraging; however, as in [Habermann et al., 2016], they refer to detection and
not to classification.

Curation, pre-processing and data domain adaptation are also commonly used in
the state-of-the-art researching. Most of the deep-learning-based investigations require a
massive amount of data for the results to be optima, as has been seen by the importance
that researchers tend to give to the dataset they are working with. However, this amount
alone does not necessarily achieve good results. It is vitally important that the data
provide as much information as possible to solve the problem, discarding as much noise
as possible.

The [Zhang et al., 2018] and [Shamsolmoali et al., 2020] work focuses on the input
data’s domain changes through adaptations with GANs and Spatial Laplacian Pyramid
Networks. These approaches are very valid and can obtain excellent results in generalizing
the training data sets in order to obtain much more robust systems in the face of changes
in the environment. However, the convergence of generative models tends to be very
complicated and usually requires a long-term commitment.

[Liu et al., 2020a] work brings together several exciting approaches. It uses an already
known and proven architecture, such as Resnet50, which allows pre-trained weights in
the ImageNet dataset, with the benefits already mentioned. At the same time, a data
fusion is implemented at the decoder level, which allows the use of several sources to
solve the problem. Moreover, since the fusion is implemented at the decoder level, the
modification of the network architecture does not affect the pre-trained weights, and the
whole process can be trained end-to-end. The only drawback of the work is that the
Resnet50 architecture is capable of extracting outstanding context features, but it is not
specific for extracting spatial features, which are very important in some tasks.

As a final though, obtaining results is not the only thing that must be taken into
account when approaching deep-learning research; efficiency is crucial. Before initiating
the development of the methodology, or during the same one, it is necessary to establish
the training process’s optimization methods, as it has been observed. The proposed
solution’s efficiency, whether it is a new architecture, a new data pre-processing system
or a new training methodology, is critical to obtain results in a reasonable time.

Table 2.1. below shows the results of the papers analyzed during the research process
of this doctoral thesis. One thing to note with respect to the classification of interactions,
in particular, is the lack of existing data sets. Of the explored methods shown in the
table, five of the seven works use the KITTI dataset, which is not even specific for the
task.
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Reference Methodology Dataset Results

Road semantic segmentation methods

[Shamsolmoali et al., 2020]
Domain adaptation and Feature

Pyramid Network

DeepGlobe Road Extraction,
Massachusetts Road, EPFL Road

Segmentation
69.58%, 78.85%, 81.68% (IoU)

[He et al., 2019]
Domain adaptation and Transfer

learning
WorldView-3 46.8%, 43.2%, 36.1% (IoU)

[Fan et al., 2018] Roll angle estimation EISATS ≈ 0.0647◦

[Zhang et al., 2018]
Semantic information complement

with GAN
UAS, Kitti-ROAD, Cityscapes 98.48%, 97.19%, 98% (PA)

[Wang et al., 2019a]
OFSRNet, Spatially dependant loss

function
Kitti-OFRS 92.2% (F1)

[Liu et al., 2020a] Encoder-Decoder, Data-fusion Kitti-ROAD 93.98% (F1)

[Yan et al., 2020]
Encoder-MultiDecoder

LMRoadNet
MultiRoad based on SemanticKitti 94.2% (F1)

Intersection classification methoda

[Habermann et al., 2016]
Feature extraction + ANN |

AdaBoost | SVM + HMM | CRFs
Carina 2, Kitti 87.89%, 91.04% (Acc)

[Baumann et al., 2018]
Encoder + Classification &

Transfer learning
Own 72% (Acc)

[Bhatt et al., 2017] CNN + LSTM Oxford Robot Car, Lara 72.05%, 78.25% (Acc)

[Koji and Kanji, 2019]
CNN + LSTM + Bayesian

multimodal information fusion
Kitti 42% (Acc)

[Ballardini et al., 2017]
Stereo vision, CRF, TextonBoost,

Visual odometry
Kitti 39% (Acc)

[Kuo and Tsai, 2021]
CNN + LSTM + Bayesian

multimodal information fusion
Kitti 42% (Acc)

[Tümen and Ergen, 2020]
Stereo vision, CRF, TextonBoost,

Visual odometry
Kitti 39% (Acc)

Table 2.1: A comparison of deep learning segmentation and classification methods.

aThe results presented are not entirely comparable since they depend on the number of classes proposed in each investigation.



2.4. Objectives 29

2.4 Objectives

After the review of the state-of-the-art, and considering the discussion presented in the
introduction and the conclusions exposed in the last point, the objectives of this thesis
are as follows:

1. To build a road segmentation system that efficiently recognizes all the space where
an autonomous vehicle can drive without risk for both the driver and the surround-
ing users.

(a) Constructing a network architecture based on an already developed and tested
network architecture.

(b) The developed architecture must be able to integrate various types of data
efficiently without limiting the end-to-end training of the architecture or the
possibility of using pre-trained weights.

2. Implement an intersection classification system in the urban environment that al-
lows an autonomous vehicle to obtain sufficient information for self-localization and
safe navigation of intersections.

(a) Exploring existing temporal integration methods and training techniques that
allow faster convergence without loss of efficiency for the particular task.

3. Establish improvement methods that optimize the systems used to achieve the above
objectives and achieve the most outstanding possible efficiency in extracting the
dataset’s relevant information.

(a) The development of guided optimization techniques allowing the use of the
proposed systems more efficiently.

(b) Using data pre-processing techniques for three-dimensional information data
sources that improve the information extracted from it focused on resolving
the road segmentation problem.





Chapter 3

Road Semantic Segmentation

As previously stated, one of the main objectives of this thesis is the detection of the entire
surface over which an autonomous vehicle can circulate. With such purpose in mind, this
thesis research intends that once implemented on a large scale, the autonomous vehicle
can reduce the large number of accidents that occur by a departure from the road. The
exhaustive research carried out in chapter 2 has allowed us to conclude that the best
way to approach this task is to employ semantic segmentation techniques through deep
learning, which is one of the most widespread and best-performing techniques.

3.1 Introduction

Semantic segmentation is a specific computer vision technique for classification. Unlike
standard classification, which tries to assign a label to one or multiple objects in an image,
segmentation tries to classify each image’s pixels by assigning them a label and forgetting
about the object that those pixels may form themselves. With that in mind, it is possible
to know which part of the entire image’s pixels set belongs to a label and its occupation
within the image and, therefore, the environment.

Usually, as seen in Chapter 2, semantic segmentation is carried out through deep learn-
ing techniques, explicitly using FCNN. Briefly introduced earlier, this type of networks
usually have an encoder-decoder structure, (Figure 3.1).

Figure 3.1: Encoder-Decoder example.1

The encoder is the part of the network in charge of encoding the input data to obtain a
set of features as representative as possible of the input data. As in classification networks,

1Image obtained in https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

31



32 Road Semantic Segmentation

that extraction is usually done by convolution layers. Convolution is the process of adding
each element of the image to its local neighbors, weighted by the kernel, and can be
denoted by the mathematic expression 3.1 where g(x, y) is the filtered image, f(x, y) is
the original image, and w is the kernel.

g(x, y) = w ∗ f(x, y) =

a
∑

dx=−a

b
∑

dy=−b

w(dx, dy)f(x+ dx, y + dy) (3.1)

The kernel weights are responsible for extracting or enhancing certain image features,
which will be highlighted in the output image. An example of this would be the sobel
operator [Sobel, 2014], which applies two kernels to an image to obtain the gradient
intensity at each pixel and, therefore, the probability that an edge exists.

During the training process of a CNN, the weights of the kernels of each convolu-
tional layer are modified so that, employing convolution operations, they can extract the
necessary information to solve the problem. The information throughput is usually done
sequentially so that the deeper convolutional layers extract the information from the fea-
tures that have been extracted by the layers immediately above. During this process,
the encoder usually seeks to compress more and more features so that the final result
is grouped into a single feature vector or a series of small two-dimensional arrays. This
compression is usually done utilizing variables such as stride or padding in convolution
and pooling layers, eq 3.2 and 3.3.

Hout =
Hin + 2 ∗ padding[0]− dilation[0] ∗ (kernel size[0]− 1)− 1

stride[0]
+ 1 (3.2)

Wout =
Win + 2 ∗ padding[1]− dilation[1] ∗ (kernel size[1]− 1)− 1

stride[1]
+ 1 (3.3)

The decoding part of the network is in charge of transforming the set of features
extracted by the encoder into a two-dimensional matrix of the same size as the input
image and with a number of channels equal to the number of classes into which it is
being classified plus one, which represents the empty class. Each channel will contain a
confidence map indicating the confidence that each pixel belongs to the class that this
channel represents. The opposite operation to convolution, deconvolution, or transposed
convolution, usually performs that process denoted by the expression 3.4 As in the en-
coder, the weights of the deconvolution layers can be trained, but in this case, they can
be fixed, e.g., as a bilinear filter.

g(x, y) = w ∗ f(x, y) (3.4)

As in the convolutional layers, the deconvolutional layers are usually sequential in the
decoder, so the input data usually comes from the decoded features obtained from the
previous layer. Some more complex architectures add shortcuts between the encoding and
decoding phase or between different layers of the same phase that seek to avoid gradient
vanishing and improve results, as seen in some working examples in Chapter 2.
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3.2 Method

With the idea of how semantic segmentation usually works in mind, during the following
section and its corresponding subsections, it will be explained the proposed methodology
and its evolution from the beginnings through a simple encoder-decoder architecture to
the final 3D-Deep and 3D-Deepest proposals.

3.2.1 Road Segmentation

The beginnings of this doctoral thesis are based on the work by Jesús Muñoz-Bulmez
about road segmentation in 2017, [Muñoz-Bulnes et al., 2017]. That research implements
a road segmentation system using an FCNN architecture based on ResNet101 and random
data augmentation.

The first point of enhancing this work to improve the results obtained is in the se-
lected dataset. The dataset used to implement the work is the KITTI dataset for road
segmentation. This dataset contains a total of 579 road images divided as follows: 289
for training, with their respective labels, and 290 for testing. This number of images is
clearly far from optimal, which is why data augmentation is so necessary, so as a first
approximation, image increase is a clear choice.

For this purpose, the chosen dataset is Cityscapes [Cordts et al., 2016] that contains
5000 images with fine annotations and 20000 images with coarse annotations. Unlike
KITTI, the Cityscapes dataset is labeled with thirty classes, so in order to use it, the
labeling had to be modified. Following the KITTI labeling policy, the road class is kept,
the other classes are considered suitable terrain (not road), and the void classes are
considered invalid terrain.

After grouping both datasets’ training sets, several trainings are performed using
thirty random images of the KITTI dataset as validation. These trainings obtained
substantially worse results than those achieved in the initial work [Muñoz-Bulnes et al.,
2017]. The trainings were performed using the same methodology used in the original
work, CAFFE, together with its python interface. The Data Augmentation used is also
the same, as it is considered perfectly suitable.

3.2.2 Intersection Segmentation

In turn, as an improvement of the initial road segmentation work, the possibility of train-
ing an intersection segmentation network was considered. The purpose of this network is
that when arriving at an intersection, the vehicle would be able to instantiate the different
terrains through which it could circulate to be later on used for the vehicle’s navigation.
A specific example would be a T-shaped intersection. This type of intersection has two
possible trajectories: one on the right arm of the intersection and the other on the left
arm. The idea behind that research is that a network can segment the road belonging to
each of the arms and subsequently understand what would be a left turn.

For this research, and since no available dataset was labeled in the way that was
needed, a set of recordings was made with the INVETT laboratory vehicle. Since this
work was intended to be a proof of concept to validate whether it is possible to implement a
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(a) Image of the segmentation of the main road
in a roundabout.

(b) Image of the segmentation of the inner
road in a roundabout.

Figure 3.2: Roundabout instance segmentation. The green pixels are true positive
samples, blue pixels are true negative samples and red pixels are false negative samples.

system such as the one proposed in the hypothesis, approximately 300 images were labeled
from the recorded videos. The labeling is conducted similarly to the KITTI training set,
containing various types of intersections, such as T-intersections, cross intersections, or
roundabouts. The training results are not as intended, as can be seen qualitatively in the
images (Figure 3.2). Unlike the road segmentation without instantiation, the network
seems to have severe problems delimiting which part of the road belongs to which section
of the junction. These poor results seem to be somewhat logical because using RGB
images, in many cases, it is difficult to determine where each section of a junction ends,
even for a human.

A prominent hypothesis seems to be that urban intersections have a complexity that
the network has not been able to deal with. In order to validate this, a way to reduce the
complexity of the junctions to be segmented is sought. One of the simplest intersections
that can be found on the road is incorporations and detours on a highway. This type of
crossing in general always has the same structure: the main road, frequently with several
lanes, and a junction or a detour, usually with one or two lanes whose trajectory is secant
to the main road.

As with the prior hypothesis, a proof of concept is performed by training two well-
established and previously used networks, ResNet 101 and ResNet 50 with FCNN imple-
mentation, to segment both the main road and the junctions/turnouts that appear on
the road. A series of sequences are recorded to perform the training with the INVETT
laboratory car on the Spanish M-40 highway, a Madrid ring road with fine intersection
examples. After that, and as with the city segmentation, about 300 examples are labeled
in which both the main road and the road belonging to the intersection or detour are
marked.

The results seem promising both numerically and qualitatively (Figure 3.3); however,
it can be observed that there are still some problems with the delimitation of the respective
lanes, which may cast doubt on their use in production. Therefore, the next step decided
to go back to basics, implementing a segmentation system that can be considered state-
of-the-art.

3.2.3 Working hypothesis

Considering the results obtained in sections 3.2.1 and 3.2.2, and given that the associated
working hypotheses could not be validated, it is intended to improve them by means of a
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(a) Image of the segmentation of the main road
in a highway.

(b) Image of the segmentation of the detour
lane in a highway.

Figure 3.3: Highway instance segmentation. The green pixels are true positive samples,
blue pixels are true negative samples and red pixels are false negative samples.

new approach.

The previous results have been obtained with a network architecture that only uses
RGB images as input data. However, currently, there are many other data sources, such
as disparity or point clouds obtained by LiDAR sensors, that we believe can provide
information that is much more difficult to appreciate in RGB images. Knowing that
precedents and based on them, the following hypothesis is formulated. If a network
architecture that gives good results using RGB images is selected and modified to accept
other types of information such as disparity maps or point clouds, semantic segmentation
results obtained so far can be improved.

3.2.3.1 Backbone architecture

As shown in Figure 3.4 and explained in previous sections, convolutional neural networks
used for semantic segmentation traditionally extract all the context from the input data
by convolutions to arrive at a score vector. This vector is through which, usually with
transverse convolutions, the final probability map is obtained. Occasionally, additions
can be made to the architecture to improve its performance, in this case, intermediate
connections, which try to solve gradient vanishing.

Figure 3.4: Fully convolutional network implemented on ResNet50 architecture.

Although they work reasonably well, these types of architectures tend to forget the
input data spatial information, which can be considered a drawback. Some research has
found that spatial information obtained through a large receptive field is as key as context
information to obtain high-grade results [Zhao et al., 2017,Chen et al., 2017].

This assumption leads us to search for an initial architecture to implement the update
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proposed in the hypothesis that can integrate context information and spatial informa-
tion effectively and efficiently. It is possible to think that developing an entirely new
architecture would be an idea to consider. However, building a network architecture from
scratch requires a level of both time and analysis that was utterly out of reach when
the problem was posed. Therefore, the solution that seemed most reasonable when the
decision was made was to select a network that performed well in semantic segmentation
and met the necessary prerequisites. These prerequisites are met with the BiSeNet archi-
tecture [Yu et al., 2018], designed explicitly for semantic segmentation, and having two
distinct branches for each information type: context and spatial.

As shown in Figure 3.5, the network architecture is differentiated into two branches
that extract information independently from the images, the context path and the spatial
path. The context path is in charge of extracting the context features. These features
must be sufficiently rich and high-level to provide the necessary information for image
segmentation. In addition, and given its vital importance, a global average pooling layer
is included at the end of the branch to obtain a sufficiently wide receptive field from the
extracted features. This branch can be built with most of the available architectures of
a classical convolutional neural network, such as VGG or ResNet.

On the other hand, the spatial path is responsible for obtaining sufficient spatial
information, for which it is essential to maintain as far as possible the original spatial size
of the image. For this purpose, a series of convolution operations are performed, followed
by batch normalization and activation functions that return a feature map with a size
of 1/8 of the original image. The features of both branches are fused using the Feature
Fusion Module that will be depicted further.

The results presented by the researchers in the BiSeNet article are sufficiently exciting
both in terms of computational speed and accuracy to consider it a more than adequate
architecture to take as a reference for the subsequent phases of this research.

3.2.3.2 3D-Deep

Once a valid network architecture has been selected, the main idea is to update it so that
it can work simultaneously with image data and three-dimensional data, such as point
clouds or disparity maps, as shown in Figure 3.6.

Initially, the most trivial transformation to think of is increasing the number of input
channels of the first convolutional layers of both branches. This modification would allow
input images to store one or more channels containing the three-dimensional information
after the three main RGB channels. However, this approach had certain disadvantages
that dismissed it for use. The increase of channels at the input of the convolutional layer
allows extracting combined features from all the input data. However, this augmentation,
in addition to substantially increasing the number of parameters, limits the possibility
of extracting specific features on three-dimensional information. These features can be
considered crucial due to the importance of understanding the location of road curbs to
segment the road edges accurately, [Wang et al., 2019a]. These city elements usually have
a noteworthy difference in altitude with the road but are not always marked in color/-
texture. In addition, since BiSeNet implements a specific feature fusion module, it seems
reasonable to extract the features by different paths and then merge them accurately.
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Figure 3.5: BiSeNEt Architecture.
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Figure 3.6: Flow diagram of the system.

Therefore, this chapter will present a new branch to be added to the BiSeNet archi-
tecture, the deep context path, which will extract all the context information that can be
obtained from the three-dimensional data. This modification, however, leaves aside the
spatial information that can be obtained from the three-dimensional data. These data
can also provide quality information, especially with the scene’s geometry. Nevertheless,
for the sake of simplicity, and considering in this case that the information is compatible
with that obtained from the RGB images, the spatial path is in charge of processing the
RGB data and the three-dimensional data together.

These two modifications led to creating a new architecture, shown in Figure 3.7,
which will be the focus of our semantic segmentation research throughout this chapter,
and which will henceforth be denoted as 3D-Deep. With this architecture, which will
be explained more in detail further, a series of tests and experiments were carried out to
validate its correct performance and usefulness when used in road semantic segmentation.

3.2.3.2.1 Context path

The context path has the same function as it has in the original architecture, and it
is intended to obtain all the context information through convolution operations. If we
look at a basic architecture like the one in Figure 3.1, the context path would be the
encoder. There are many possibilities within the networks belonging to the state-of-the-
art to choose as context path, may consider practically any classification network. In this
case, ResNet architectures [He et al., 2016] were used as the initial basis for continuity
with previously conducted research.

ResNet architectures consist of 5 convolutional blocks applied sequentially on the data
reducing it to a vector of characteristics of size 2048 in its versions 50 101 and 152 and
512 in its versions 18 and 34. These vectors store all the context information and will
usually be used to classify the data.

In our case and for the sake of simplicity, the data extracted from the context branch
come from the same layers as in the original architecture. The feature maps of convo-
lutional blocks 4 and 5 are extracted and used later in the attention refinement module
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Figure 3.7: 3D-DEEP network architecture.
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and the loss function. In addition, a global average pooling operation is applied to the
features of block 5, whose results will also be used to obtain the final segmentation.

3.2.3.2.2 Three dimensional data transformation

Before going into detail with the depth context branch, it is advisable to focus on the
three-dimensional data. As mentioned above, the idea behind generating a new architec-
ture is to deal with three-dimensional data in order to obtain new sources of information
that can improve segmentation results. However, three-dimensional data cannot always
be obtained in the same format or by the same means. Point clouds obtained by LiDAR
or disparity maps obtained by stereo vision are a clear example of this. The shapes of
these data types are entirely different, and it is impossible to process them raw with the
same convolutional layer. A three-dimensional convolutional layer would be needed to
process a raw point cloud, and the data would have to be adapted to a grid. However,
disparity maps are a two-dimensional representation of three-dimensional information ob-
tained by stereo vision, and in general, a two-dimensional convolutional layer will be used
for processing it.

It is not always possible to choose the data sources, so the idea is that the pro-
posed architecture should be able to work with both types of data prior to processing.
Considering that using three-dimensional layers may cause the number of trainable pa-
rameters to be larger than desired and that transforming two-dimensional data into three-
dimensional data is not a trivial process, it has been decided to transform point clouds
into two-dimensional data. Moreover, it is a process that seems to give good results when
segmenting roads, [Chen et al., 2019].

Usually, the road surface does not have significant differences in altitude, especially in
short distances, which, however, the margins usually have due to the curbs of the sidewalk.
This idea allows us to focus on the altitude as a determinant feature to enhance the value
of the data obtained through point clouds through the necessary transformations. The
data adaptation process will therefore consist of the following sub-processes:

1. Projection of the points from the LiDAR coordinate system to the two-dimensional
coordinate system, in this case, the one belonging to the camera of the RGB images.

2. Use the height (Z coordinate in the LiDAR) to establish a significant difference
between the points at road level and those that cannot.

3. Fill in the spaces where the LiDAR resolution has not been able to obtain informa-
tion.

The first process is relatively trivial. It is necessary to know the rotation and trans-
lation matrix between the LiDAR coordinate system and the camera coordinate system
and the projection matrix that will convert the coordinates into pixels.

Each of the cloud points is multiplied by the rotation and translation matrix. Then
the last row of the result is discarded, and the rest is multiplied by the projection matrix.
This last operation returns the coordinates of each point in the camera system (pixels)
and a scale factor in the third row. Then it is necessary to divide each point by its
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scale factor to obtain the final scaled coordinates. Once all the points are obtained, it is
essential to perform filtering to discard all those outside the image frame. All this process
is shown in the Eq 3.5
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This first procedure produces a black and white image in which one white point
appears for each projected point of the cloud. However, as mentioned above, it is believed
that more helpful information can be extracted. As introduced above, the road, as a
general rule, does not have abrupt changes in height. In addition, it is usually located
in a low position compared to the rest of the scene. That is why height is the metric
chosen to obtain more helpful information. It is represented by one of the coordinates
in the reference system of the point cloud. In order to carry this information to the
transformed points, each point intensity value is chosen since the generated image is in
grayscale. First, the previous filtering must be done to discard those points that are not
useful or directly outliers. This filtering will be done by two values: the angle of view and
the height value given by the corresponding coordinate. The last is essential since the
road will not be much more distant from the center of coordinates than two meters since
it is always measured from the vehicle. All points with a lower value are of no interest to
us and are discarded and will generally be measurement errors since it is rare that there
is anything below the road.

On the other hand, the angle of view is essential to discard other points that generally
do not matter to us in the vertical range, such as the sky or excessively high points, such
as the top of a building, and at the same time maximize the information in the horizontal
angle that allows us to recognize what is to the left and right of the vehicle. A study was
conducted to find the optimal values resulting in the ideal horizontal angle ranging from
-60º to 60º and the vertical angle ranging from -14º to 3º. All points not in this range
are also filtered out.

Once we have selected the points to be worked on, their height value will now be
normalized, so in order to transform it into an intensity value. For this purpose, the max-
imum and minimum height values are selected, and all values are standardized between
0 and 1. These values will be used as intensity when projecting the points in the camera
coordinate system. The final result is an image like the one shown in Figure 3.8a, in
which the higher points will be brighter, and the lower points will be darker. In Figure
3.8a, the intensity of the projected points was modified for visibility reasons.

As can be seen in Figure 3.8a, the image is essentially black. This lack of data is
because the number of projected points will depend on the LiDAR resolution with which
the data is being taken, and this is usually not comparable to the resolution of an image.
Since it is considered that an image in which most of its points do not provide any
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(a) Normalized LiDAR projected points. (b) Elevation pattern image.

Figure 3.8: Three-dimensional transformation. On the left, LiDAR projected points
according to their elevation. On the right, after applying the dilation.

information may not be the best way to help in the segmentation process, it is necessary
to extend the information of each point to its neighbors that do not have it. For this
purpose, a dilation operation with a kernel of size 9 x 9 completes part of the missing
information satisfactorily, as shown in Figure 3.8 image. This set transformation gives
us what we called an Elevation Difference Images (EDI), a grayscale image in which the
elevation differences obtained from the LiDAR data are adequately represented.

The EDI image, in our opinion, provides more information to the neural network,
and these transformations also make the architecture compatible with various three-
dimensional data sources, such as point clouds or disparity maps, as intended.

3.2.3.2.3 Deep context path

The depth context branch will be in charge of processing the three-dimensional data in
the form of an image, as introduced in Section 3.2.3.2.2. Like the context branch, its
purpose is to extract a set of features from the three-dimensional data through a set of
convolutional blocks. These features are intended to contain as much context information
as possible of the 3D data.

This branch is designed to mirror the context branch, so its structure will be exactly
the same. Therefore, the architecture selected from the possible ResNet models for the
context branch will be the architecture for the three-dimensional context branch, and the
size of the feature vectors will be the same. Accordingly, the features will be obtained
from the same points of the ResNet architecture: the feature maps of the convolutional
blocks 4 and 5. As in the context path, these features are the ones to be sent to the
respective attention refinement module. In addition, and as in its twin branch, global
average pooling is applied on the features returned by block 5 to obtain the model’s tail
that should capture the full global context of the data.

3.2.3.2.4 Spatial path

As in the original architecture that serves as its backbone, the spatial path is the part
of the network architecture responsible for having sufficient resolution to obtain spatial
information as representative as possible from the data. There are other approaches
capable of processing/extracting spatial information in semantic segmentation, like [Zhao
et al., 2017] or [Yu and Koltun, 2015]. However, in order to keep the development
procedure as simple as possible, try to maintain the processing speed, and not increase
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memory consumption, we have tried to keep it as similar as possible to the BiSeNet
architecture.

As in the original architecture, the spatial path contains three convolutional layers.
However, the ones belonging to the proposed architecture contain slight differences that
make them suitable for the new input data type. Each layer includes a convolution with
stride 2, followed by batch normalization [Ioffe and Szegedy, 2015] and ReLU [Glorot
et al., 2011]. In order to adapt the layers to the RGB-E and RGB-D data inputs, the
number of input channels of the first convolutional layer was increased from three to four.

These minor modifications allow maintaining the initial idea of making prevail the
original spatial size of the data and coding sufficient spatial information since the size of
the output feature maps of 1/8 of the original size of the image is maintained. In our
opinion, these maps are large enough to obtain rich spatial information.

3.2.3.2.5 Attention refinement module

Attention mechanisms have become one of the essential concepts in the field of deep
learning. In convolutional architectures, the attention mechanisms are developed to guide
the learning process using high-level information that focuses on relevant features and
filters the excess data. They try to emulate one of the most critical mechanisms of complex
living beings, as the name suggests, the attention mechanism. This system is the one that
allows living beings to filter the excess of information coming from the environment and
focus their attention on the distinctive parts that best allow them to process the situation.

In our case, the attention refinement module is in charge of implementing this function
in the 3D-Deep architecture. There are many different attention mechanisms, but for the
sake of simplicity, the same as in the backbone has been used, a self-attention variant of
the Convolutional Block Attention Module (CBAM) methodology [Woo et al., 2018].

Figure 3.9: Attention Refinement module depiction.

The proposed module only focuses on channels, unlike the CBAM module, which has
spatial and channels attention. As can be seen in Figure 3.9, the operation is simple.
First, a global average pooling is performed, returning a vector of size C, the number of
channels. Then a convolutional layer is applied with a kernel of size 1x1, which will try
to detect the most remarkable high-level features. Then, a batch normalization layer and
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a sigmoid function are applied to the convolution results. The resulting vector of weights
is used to balance the importance of each channel.

3.2.3.2.6 Feature fusion module

Since the proposed architecture processes the different types of data in different paths, it is
necessary to integrate all the features obtained by each branch to perform the upsampling
process that allows us to obtain the probability maps for each class. For this purpose,
the feature fusion module proposed in BiSeNet [Yu et al., 2018] has been used with slight
variations in order to be able to work with the features of three branches instead of two.

As shown in Figure 3.10, the structure is practically the same as the original one,
with the only difference being that the number of input channels is higher, as they come
from three different branches. This increase means that the first convolutional block
must be modified to accept a different channel number than the one used in the original
version. For example, if the context path chosen is a ResNet50, the first convolutional
layer must accept data inputs of 6400 channels. The calculation of this number is given
as follows. The fourth convolutional block of the context path provides 2048 channels,
and the third convolutional block provides 1024. On the other hand, since it mirrors
the context, the depth context path provides the same number of channels. Finally, the
spatial path returns 256 channels. Adding them all together gives the 6400 channels that,
in this particular case, must be accepted by the convolutional block. These modifications
will always depend on the architecture selected for both context branches.
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Figure 3.10: Feature Fusion Module depiction.

Going a little more in detail, the idea of the module is the following. Once all the
characteristics have been concatenated, the first block tries to re-balance them employing
the sequence: convolution + batch norm + ReLU. After them, by means of a squeeze
and excitation block, similar to those proposed in [Hu et al., 2018], a vector of weights
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is computed that re-balances the features so that they are selected and combined in the
most appropriate way possible. This vector of weights is computed using global feature
pooling and convolution operations. In the end, a sigmoid function is used in the vector
to normalize the weights. These merged and refined features are the ones that will be
upsampled to obtain the confidence maps of each class, and therefore the final prediction
of the network.

3.2.3.3 3D-Deepest

After the results achieved with the 3D-Deep architecture were presented in [Hernández
et al., 2020] and presented in detail in Section 3.3.2, the next logical step was to explore
the possibility of updating/optimizing the architecture.

Optimization is one of the most critical issues in neural network development. It
is useless to find a model that solves a problem with practically total effectivity if it is
necessary to invest an excessive amount of resources to implement it in production. To
the extent of our knowledge, most systems based on neural networks require a lengthy
training process, especially if the training is done from scratch and transfer learning
methods are not used.

There are two primary forms of optimization within artificial neural networks,
structural modifications (architecture) and optimized searching to find the best hyper-
parameters that allow the model to converge (learning rate, momentum, optimizer). For
example, two of the most successful architectures, [Tan and Le, 2019a], and [Brock et al.,
2021], focus mainly on optimizing the architecture by reducing the number of trainable
parameters. Reducing their number decreases training times substantially, and, in these
two particular cases, it also increases the model’s accuracy.

Architecture optimizations may also begin in its construction phase, an approach
that can be seen in the work of [Barrios et al., 2001] and [de la Hoz Galiana, 2020]. Both
investigations try to encode the network architecture so that the new codification can
be treated by an optimization algorithm, in this particular case, by genetic algorithms.
Another possible option for optimizing architectures is to start with an oversized one and
then discard the parts known not to solve the problem, like in [Stier et al., 2018], in which
they use a cooperative game to prune the useless nodes of the hidden layer.

Inside the hyper-parameter search field, a learning rate schedule is also a method to
avoid stagnation at local minima and erratic and oscillating training behaviors. In [Park
et al., 2020], the researchers aim to introduce cost functions into learning rate optimization
methods that increase or decrease the learning rate value taking into account the training
behavior.

However, since we believe that the hyperparameter search is already well covered by
the sweep training configuration that will be discussed later in this section, the most
relevant updates on 3D-Deep focus on the architecture.

A restriction of the previous architecture gave the most straightforward idea for ar-
chitecture optimization: both context branches were a mirror image of each other. It
seems logical to think that the complexity of an RGB image does not have to be the same
as the complexity of a single-channel image, especially if the latter is a disparity map.
This hypothesis allows us to deduce that perhaps both branches do not need the same



46 Road Semantic Segmentation

architecture.

On the other hand, limiting that context branches can only be ResNet models seems
to be a relatively high restriction. Therefore, in this new architecture, the possibility of
using ResNext models as context branches has also been introduced. Maybe this variation
does not seem very relevant since it only requires to be consequent with the output
feature sizes. However, the idea behind this is to verify model independence, letting
that more architectures that have previously obtained good results as encoders can be
used, permitting in the future to use new state-of-the-art models to extract contextual
information.

One of the most effortless updates to test is given by the presentation of the paper
[Brock et al., 2021]in 2021 of the Normalize-Free Networks architectures. It explains the
improvements that have been achieved by eliminating batch normalization and replacing
its function by creating new residual blocks, Scaled Weight Standardization, and Adaptive
Gradient Clipping. The upgrade to test the improvements has been straightforward
since these refinements can use ResNet as the base model, as in the proposed 3D-Deep
model. Also, there is a python library named nfnets-pytorch where predefined methods
are available to implement these improvements in already loaded models.

The in-depth design analysis gives another more direct update of the 3D-Deep archi-
tecture. As mentioned above, the context branches have a CBAM-based attention module
that tries to guide the training by extracting high-level features through per-channel re-
weighting. If we look at Figure 3.11, belonging to the CBAM paper [Woo et al., 2018],
there is also a spatial attention module, so it seems pretty logical to use it in the proposed
architecture’s spatial path and verify if there is any sign of improvement. This module
operation is the same as the original paper and is given by the following points.

1. Application of max-pooling and average pooling operations across the channel axis.

2. Concatenation of both feature descriptors.

3. Convolution operation on the concatenated descriptor to obtain a spatial attention
map that encodes which parts of the information need to be emphasized and which
parts are dispensable.

Figure 3.11: Spatial Attention Module.2

2The image is taken from the paper [Woo et al., 2018]



3.2. Method 47

3.2.3.3.1 Graph-based filter explainability

As seen at the beginning of section 3.2.3.3, there are different approaches to optimizing
a neural network depending on how one wants to face the problem.

The network architecture that has been proposed throughout this chapter is focused
on semantic segmentation in general and road segmentation in particular. Therefore, in
the following section, it is proposed, as a proof of concept, an optimization methodology
that tries to enhance the network architecture so that it works better and is more efficient
for a specific task, in the particular case at hand, road segmentation.

Initially, in order to try to understand better how the network architecture worked
on the data, the NVIDIA Feature Map Explorer tool was used. This tool is capable of
displaying the feature maps returned by a convolutional layer as an image along with
detailed numerical information about them. Therefore, it is also possible to visually and
numerically analyze each channel individually to understand each convolutional layer’s
performance. Figure 3.12, for example, shows the feature maps belonging to channels
1, 11, 13, and 47 of the first convolutional block of the context path. This tool’s initial
analysis of the filters provided a relatively quick conclusion. The first convolutional block
of the three branches did not use all of its filters. Some of the feature maps appeared
visually black, and the statistical values provided by the platform, minimum, maximum,
mean, and standard deviation, all appeared with a value of 0.

(a) (b)

(c) (d)

Figure 3.12: Feature maps number 1, 11, 13, and 47 belonging to the first convolutional
layer of the same image.

These visual results are pretty helpful, but they did not answer a fundamental question
after viewing them: What contribution to the final solution did each active filter make?
Some of the visualized filters looked very similar, which made us wonder about the genuine
contribution of the two as a whole. To understand the amount of contribution, it is
necessary to know how similar the results of the filters are for the same image. With
that information, it can be estimated how many of the filters that have an active output
contribute to the resolution of the problem. This need is the reason why the following
methodology for comparing filters through graphs has been developed.
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The initial idea is to obtain the feature maps of a convolutional block, i.e., the 64
channels returned after the first convolutional block of the context path, and compare each
one with the rest of them. In order to perform this comparison as efficiently as possible,
it has been done through sparse matrix operations, which also can be representations of
weighted graphs. The steps to follow are as follows:

A random image is selected from each epoch’s batch from which the feature maps
to be analyzed are obtained. This selection type is proposed to avoid bias and give
us a three-dimensional array for each photo (C,H,W ). This three-dimensional array is
reshaped to a two-dimensional matrix with dimensions C and H ∗W and then stored as
a sparse matrix.

The cosine similarity is used to compare the vectors of this new matrix. This particular
distance is the one selected, but any other vector distance function can be used as desired,
such as the Euclidean distance. This function returns the similarities in the form of a
sparse square matrix with the shape (C x C), where vij is the similarity value between
vector i and vector j. This last operation returns a sparse matrix in which the non-zero
values represent the higher than the preset threshold similarities between feature maps.

As mentioned before, sparse matrices can also be representations of graphs so that
the existence of the value vij represents the weight of an edge between nodes i and j.
This representation offers an advantage, and that is that by calculating the connected
components of a graph, it is possible to know the number of filters whose similarity does
not exceed the predefined threshold because those that exceed it will be represented as a
connected sub-graph.

Therefore, it is possible to calculate the number of feature maps whose similarity does
not exceed a certain threshold for each batch to obtain the average number of feature
maps used for the whole dataset and the maximum value of the feature maps. These
values give us an approximate idea of the utility value of each of the convolutional layers
of the network.

3.2.3.3.2 Architecture update

The analysis of the architecture through the methodology described in the previous point,
plus the visual and numerical information obtained through the Feature Map Explorer
application, led us to certain conclusions that triggered the modification of the initial
3D-Deep architecture.

The first conclusion that the analysis already exposed above could be reached is that
the first convolutional layer of both context branches did not use many of its kernels.
However, an analysis of the second convolutional layer, in which there were no maps with
zero value or with similarities higher than a threshold of 95%, allowed us to deduce that
the information of the feature maps of the first convolutional block was sufficient for the
second one to work at 100%.

Besides, with the methodology described in the previous point, it is possible to com-
pare filters from different branches, something done with each of the convolutional blocks
of the context and the spatial branches. This analysis gave us some exciting conclusions.
The deepest convolutional blocks of each branch did not share similarities. Regardless,
the first convolutional block had different behavior discussed below.
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The first convolutional block of the context branch did not share similarities with the
first convolutional block of the three-dimensional context branch. However, the feature
maps of each of the context branches’ first convolutional block showed many similarities
with the first convolutional block of the spatial branch. That analysis allowed us to
deduce what was assumed at the beginning of the creation of the architecture, that
the information extracted from each data source is different. Moreover, the similarity
between spatial and context paths seems logical since the spatial branch works with both
data sources, and also, the first convolutional layers usually tend to focus on the most
superficial data features such as edges. It can be concluded that this similarity led to
think that the first convolutional layer of the spatial branch consisted of a particular
”fusion” of the characteristics of the first convolutional blocks of the other branches.

Given the excellent performance that the Feature Fusion Module has in the 3D-Deep
architecture, it seems a logical hypothesis to think that replacing the first convolutional
layer of the spatial path with a Feature fusion module that has as input the feature maps
returned by the first convolutional blocks of both context paths, it will be possible to
obtain better results.

After that modification, the architecture was reanalyzed visually and by employing
the graph method. The results were enlightening. The initial feature fusion module
produces an output of 64 feature maps, the same as the first convolutional block of the
original spatial path. However, none of them has similarities with the others, and none
of them has 0 output which is considered a success.

After all the modifications made to 3D-Deep, the final architecture network has been
rebranded as 3D-Deepest, and its complete structure is shown in 3.13.

3.3 Experimental Analysis

In the following points, the results obtained during the research process will be presented,
both with the 3D-Deep architecture published in the paper [Hernández et al., 2020] and
3D-Deepest architecture. In addition, an analysis of the datasets used for training will
be performed.

3.3.1 Experimental set-up

Different methodologies have been carried out in the battery of tests described in the
following points. The tests performed with the 3D-Deepest architecture were carried out
with an NVIDIA TITAN RTX graphics card. The tests performed with the 3D-Deepest
architecture have been carried out using the Wandb [Biewald, 2020] tool, which allows
an automatic search among the configurable parameters through a sweep procedure.

The cross-entropy loss function was selected during all the training performed with
the 3D-Deep architecture. Usually, the loss function is calculated from the final results of
the architecture with respect to the labels. However, following the methodology exposed
in [Yu et al., 2018], the loss function is given from the weighting of several auxiliary error
values besides the loss of the whole architecture. The supervision module is the one in
charge of providing these auxiliary values. As can be seen in Equation 3.6a, lp represents
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Figure 3.13: 3D-DEEPEST network architecture.
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the cross-entropy loss of the whole model, and α and β represent the weighting given to
the loss values of the context path and the depth context path, respectively.

loss = lp +
n
∑

i=1

α ∗ L(ARMi) +
n
∑

j=1

β ∗ L(ARMj) (3.6a)

L(ARMi) =
1

N

∑

n

− log

(

exp(pi)
∑

j exp(pj)

)

(3.6b)

This module consists of a convolutional layer and an upsampling step that, only
during the training process, transforms the outputs of each of the Attention Refinement
Module into a feature map equivalent to the network’s final output so that it can also be
compared with the labels. This loss calculation can be seen in Equation 3.6b, representing
the auxiliary cross-entropy loss obtained from the Attention Refinement module i. The
role of auxiliary loss functions produced by the supervision layers is to control the output
of the context branches independently from the overall architecture, similar to discussed
in [Xie and Tu, 2015], and train the attention modules independently.

For the loss functions of the 3D-Deepest architecture, in addition to the Cross-Entropy
already used in the 3D-Deep architecture, the Focal Loss (FL) function has been added,
[Lin et al., 2017b]. This option was selected since it is considered to be able to obtain
outstanding segmentation results. The use of one loss function or another has been
random since it was configured as one of the parameters used in the training sweep.

The calculation of the losses of the model using focal loss does not involve a substantial
variation with respect to its implementation. The loss function remains the same as in
equation 3.6a but substituting all the terms where the value is calculated using cross-
entropy by focal loss, Equation 3.7.

loss(pt) = (1− pt)
γ log(pt) (3.7)

3.3.1.1 Dataset

The datasets used to carry out the test battery are Cityscapes [Cordts et al., 2016]
and KITTI in its road segmentation variant [Fritsch et al., 2013]. These two have been
selected precisely because each has a different source of three-dimensional information. In
Cityscapes, the three-dimensional data is provided by the disparity maps obtained from
stereo vision. However, in the case of KITTI, the three-dimensional input is provided by
point clouds obtained from LiDAR.

For training with the Cityscapes dataset under the 3D-Deep architecture, 2975 images
from the left camera and their respective disparity maps were used. These images belong
to the set of images whose ground truth is finely annotated from the semantic segmenta-
tion benchmark. With the idea of improving the disparity maps, the technique proposed
in [Min et al., 2014] is applied to complete the information available in the original maps.

For the training with KITTI, the 289 road images provided in their semantic seg-
mentation road dataset and their respective point clouds were used. Since no validation
images are provided, Monte Carlo cross-validation [Xu and Liang, 2001] was used during
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the training as a method of validating the results. Thirty images with their respective
point clouds are randomly separated in each iteration and used as a validation set. The
number of iterations considered for each training is four. This number will be increased
to 10, with the idea of generating much more stable results, once all the hyper-parameters
that previously gave the best results have been decided.

In both datasets, Kaiming initialization is used for those layers that, like spatial path,
do not use Imagenet’s pre-trained weights.

3.3.1.2 Data Augmentation

Since the size of the KITTI dataset is relatively small, it is necessary to implement tech-
niques that prevent the proposed trainings from overlearning, something that can happen
in such cases. That is why data augmentation techniques have been implemented in the
system to mitigate this possible disadvantage of the KITTI dataset. In addition, these
techniques have also been extended to the Cityscapes dataset based on the hypothesis
that will improve the training results.

As is widely known in deep learning research, this type of methodology increases the
robustness and generalization capacity of the system in the face of possible variations when
working with data outside the training set. It consists of making minor modifications to
the training data without altering its nature to generate new data. In the case of images,
two types of transformations may be performed:

• Geometric transformations, such as affine transformations, perspective changes,
cropping and scaling.

• Variations in pixel values, such as the addition of noise or shifts in color spaces.

The transformations focused on pixel value changes used in the process were of two
types. Those based on noise include Poisson noise, salt and pepper noise, speck noise,
and Gaussian blur. Those based on color space changes include two different types of
modifications: color casting and color jittering, [Wu et al., 2015,Wei, 2015]. On the
side of geometric modifications, the ones applied are perspective, distortion, cropping,
mirroring, and related random transformations.

All these operations are performed at runtime, which makes the size of the dataset
virtually infinite with only a slight trade-off in computation time.

3.3.2 Experimental results

All the training process described below has been performed with the data augmentation
techniques explained in Section 3.3.1.2.

3.3.2.1 Cityscapes

The first training set was done with the ResNet18 network as the backbone for the two
context paths, using a stochastic gradient descent optimizer and with 5e−3 as the learning
rate. As shown in Figure 3.14a, the results were not as good as expected as from epoch
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20, the mIoU does not improve, and its maximum value reached is close to 50%. The
change of optimization method to ADAM did not get the desired results either, as seen
in the same graph, even slightly varying the learning rate. In both runs, the maximum
values remained around 45%.

The optimization algorithm that worked best in this first attempt was ASGD [Polyak
and Juditsky, 1992], which showed a more stable trend and reached maximum values for
mIoU of 56%. These are still not as good as desired, but they were considered a good
starting point, so all the successive training executions in 3D-Deep architecture were done
with an ASGD optimizer.

Once the optimization algorithm was decided, the following training sessions were
oriented towards choosing the optimal hyperparameters and backbone for the context
and three-dimensional paths. Due to the GPU memory limitation caused by the high
resolution of the cityscapes images, a heavy learning strategy was implemented [Shelhamer
et al., 2017].

As shown in Figure 3.14b, the learning rate remained close to the values used in the
initial trainings. However, in some cases, the learning rate has been increased by 0.01.
This increase is done since it is considered that the depth context path requires a more
severe modification of its layer weights due to the fact that they are not pre-trained, as
are those of the context path. The results obtained confirmed that the optimum learning
rate was around 0.02 and that the ideal backbone was ResNet34. Increasing the network
depth, for example, with the ResNet50 architecture, clearly worsened the results. It is
hypothesized that due to size limitations during ResNet50 training, it was necessary to
reduce the size of the images by half, which probably also affected the accuracy results.

Finally, two minor improvements were applied to the initial training that improved the
results, as seen in the purple graph in Figure 3.14b. First, using the pre-trained weights
of Imagenet for the three-dimensional branch. This modification might seem somewhat
counterproductive considering that the input images of an Imagenet-trained architec-
ture (RGB) are very different from the input images of the depth context path (three-
dimensional data) but surprisingly improved the results. Second, the use of NVIDIA’s
Apex library [NVIDIA, 2019] enabled a significant reduction in system memory consump-
tion, allowing a minibatch size of two to be used. This minibatch increase ruled out the
use of heavy-learning techniques, but as can be seen, it substantially enhanced the results,
increasing the mIoU to a maximum of 72.34%.

Although the results were acceptable, especially since the mIoU is a very restrictive
metric, they were not considered good enough to be ranked in the Cityscapes benchmark.
The results in test data are usually worse than the validation ones, so more work was put
on the system until a way to improve the results was found.

3.3.2.2 KITTI

The training with KITTI images with the 3D-Deep architecture was less restrictive in
memory consumption thanks to their smaller size than Cityscapes. The absence of the
previous limitations made it possible to test all ResNet architectures and increase the size
of the minibatch to four. Furthermore, as the trainings were conducted after the ones
using the Cityscapes dataset, everything discovered previously was adapted to make the
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(a) Evolution of mIoU on training for different
optimizers.

(b) Evolution of mIoU on training for different
learning rates and context paths.

Figure 3.14: Evolution of training according to the backbone model, the batch size,
learning rate, and optimizer.

process much more efficient and quicker in searching for optimal results. Therefore, from
now on, all the trainings are considered to be done with the ASGD optimization method.
In addition, both context branches will have their weights initialized with the Imagenet
pre-trained weights.

The first training with images belonging to KITTI’s dataset, taken as a starting point,
already obtained excellent results: the minimum F1 value of 96.16% for the ResNet18
architecture and the maximum F1 value of 96.80% for the ResNet152 architecture. Due to
the good results reported, it was determined to use a learning rate scheduler to improve
the performance, specifically, a cyclical and decreasing cyclical learning rate scheduler
with triangular functions, [Smith, 2017]. The upper and lower limits for the scheduler
were previously calculated using the“learning rate range test”methodology also proposed
in the paper, with the selected values being 0.25 for the upper limit and 0.0001 for the
lower limit. However, this scheduler did not lead to any results improvement, in some
cases, even worsening them. Nevertheless, the limits of the learning rate obtained in these
tests provided us with helpful information for the subsequent development steps.

To continue with the idea that establishing a scheduling policy would help the training
convergence, it was decided to use a decreasing polynomial scheduler. Taking advantage of
the previously calculated upper limit, this and its successive three divisions by two (0.125,
0.0625, 0.03125) are used as the initial value of the learning rate so that it would come close
to the previously obtained lower limit in the last training stages. This idea substantially
improved the results enough to consider ranking them in the KITTI benchmark, as can
be seen in Table 3.1.

Appendix A shows the complete tables of all the training performed up to the time
of ranking the work in the KITTI benchmark, which is not shown here for the sake of
simplicity.

Ranking in KITTI posed a problem since the results must be delivered in Bird’s eye
view (BEV) confidence maps, and all the training had been done in panoramic view.
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Table 3.1: Training results in the KITTI dataset with polynomial scheduler for the learn-
ing rate.

Backbone Initial lr F1 value Max F1

ResNet152 0.25 96.87% 97.3
ResNet50 0.125 97.37% 97.66
ResNet34 0.0625 97.33% 97.77
ResNet152 0.03125 97.11% 97.35

Initially, the probability map returned by the network was transformed to a BEV per-
spective, but the results were not good. Therefore it was decided to transform the whole
dataset to BEV (using the code provided with the dataset) and train directly in that
perspective. The training sesions were equal to the perspective ones and obtained out-
standing results, with maximum values of around 98% for the F1 value.

As the last step, a training session was carried out, but with ten iterations in the Monte
Carlo Cross-Validation technique. The idea behind it is to obtain an ”average” value that
could be as close as possible to what would be obtained in the test images. This final
step was accomplished using the best configuration achieved at the moment: ResNet101
as the backbone and a learning rate of 0.03125. This training gave an average value for
the F1 error of 97.09% and maximum values close to 98% between all the iterations. The
results were good enough to rank the model, so the test images were passed through the
network to deliver the probability maps. The eighth position was obtained at the time of
submission, tied with the seventh, as shown in Table 3.2.

Table 3.2: KITTI dataset Evaluation Results in test images. (percentage)

Benchmark MaxF AP PRE REC FPR FNR

UM 95.35 93.50 95.20 95.51 2.20 4.49
UMM 97.27 95.76 97.01 97.54 3.31 2.46
UU 94.67 93.04 94.23 95.12 1.90 4.88

URBAN 96.02 94.00 95.68 96.35 2.39 3.65

Going into more detail, Table 3.3 shows that our network is 0.12 above the second
in AP within the UMM ROAD category. This category, in which the network proposed
in this article has its best results, includes urban roads with multiple marked lanes.
Within the general category URBAN ROAD, which includes the categories UU (Urban
Unmarked), UM (Urban Marked), UMM (Urban Multiple Marked), the network is only
0.04 of the first position in the average accuracy. It has been considered an excellent
result (see Table 3.4).

3D-DEEP also ranks first in AP and third in MaxF, with more than acceptable results
for implementation in a real-time system, considering the fastest methods classified (see
Table 3.5).
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Table 3.3: Comparison of KITTI evaluation results in UMM. (percentage)

Method MaxF AP PRE REC

3D-DEEP (Ours) 97.27 95.76 97.01 97.54
PILARD [Chen et al., 2019] 97.77 95.64 97.75 97.79

LidCamNet [Caltagirone et al., 2019] 97.08 95.51 97.28 96.88

Table 3.4: Comparison of KITTI evaluation results in Urban (UM+UMM+UU). (per-
centage)

Method MaxF AP PRE REC

PILARD [Chen et al., 2019] 97.03 94.03 97.19 96.88
3D-DEEP (Ours) 96.02 94.00 95.68 96.35

LidCamNet [Caltagirone et al., 2019] 96.03 93.93 96.23 95.83

Table 3.5: Comparison of evaluation results in KITTI for the fastest architectures. (per-
centage)

Method MaxF AP PRE REC Runtime

NF2CNN 96.70 89.93 95.37 98.07 0.006 s
ChipNet [Lyu et al., 2018] 94.05 88.29 93.57 94.53 0.012 s

LoDNN [Caltagirone et al., 2017] 94.07 92.03 92.81 95.37 0.018 s
multi-task CNN [Oeljeklaus et al., 2018] 86.81 82.15 78.26 97.47 0.0251 s

ALO-AVG-MM [Reis et al., 2019] 92.03 85.64 90.65 93.45 0.0296 s
LCFNet 96.42 91.05 96.60 96.24 0.03 s

3D-DEEP (Ours) 96.02 94.00 95.68 96.35 0.03 s

Quantitatively the results are also excellent for each category evaluated, as shown
in Figure 3.15. The network detects the majority of the labeled road in the test images
(pixels labeled green) with hardly any false positives (pixels labeled blue) or false negatives
(pixels labeled red). Together with the corresponding quantitative ones, these qualitative
results allow 3D-DEEP to consider an optimal architecture for an autonomous driving
system implementation.

The results in the KITTI dataset with the 3D-Deepest architecture are not as detailed
as those with the 3D-Deep architecture. This shortage of detail is because the architecture
update is only a proof of concept for a possible validation of the proposed optimizations.
That is why 3D-Deepest also is not ranked in the KITTI road segmentation benchmark.

A sweep has been defined in which the different proposed optimizations are introduced
as hyper-parameters in order to explore the best configuration extensively. In addition,
this methodology allows us to group the training by parameter, which lets us obtain
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(a) Urban unmarked road.

(b) Urban multiple marked road.

(c) Urban marked road.

Figure 3.15: Results for KITTI dataset in test images.

averages of the network performance, giving us an approximate understanding of each of
the updates separately. As in the 3D-Deep architecture, the training has been executed
using the Montecarlo cross-validation methodology with a k-fold equal to ten.

If we only consider the updates involving the extension of the context paths archi-
tectures and the initial feature fusion module proposed in Section 3.2.3.3, the results are
interesting. As shown in Table 3.6, the results have surpassed the maximum value of
the F1-score; yet, the average value has decreased, although it has remained close. How-
ever, it is worth mentioning that, as shown in Table 3.1, with the previous architecture,
the mean and maximum values did not have to coincide in the same configuration of
architectures for the context paths, which has happened with the updates in 3D-Deepest.
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Table 3.6: 3D-Deepest best results by optimization.

Optimization Type Max F1 Average F1

3D-Deep 97.77 97.33
Graph Optimization 98.02 97.17
NFNET 97.67 97.31
Spatial Attention 98.12 97.36

The best values are shown among all the trainings performed with the exposed techniques. Note that
the values of the 3D-Deep architecture were obtained using a Kfold=4.

Focusing on the Nfnet optimization, if we look at the best training values, it can be
seen that the maximum F1-score value is very similar to that obtained with the initial
3D-Deep architecture, although the average value slightly drops (see Table 3.6).

If an average of all trainings grouped by this inclusion is made, the results seem to be
consistent with the previous results, as can be seen in Table 3.7. The average values are
slightly better if the Nfnet optimizations are included, but the average of the maximum
values is slightly higher if they are not included. It should be mentioned that no training
has been excluded for the calculation of the mean values shown. Not even those that
could be considered outliers, so the values are significantly lower than those of the best
training sessions. As in the rest of the averaged results, this proceeding has been done
because the main idea was not to seek the best results but rather to perform a proof of
concept that would allow us to know if the research was on the right track.

Table 3.7: NFNET optimization impact.

Max F1 Average F1

NFNET=True 94.30 91.94
NFNET=False 95.25 91.14

The F1 values shown are the mean values calculated from all training runs including and not including
NFNET optimization.

The inclusion of the spatial attention module update also provides engaging informa-
tion. When analyzing the values obtained for the best training, shown in Table 3.6, they
are similar to those obtained without this update. However, if the average values of the
whole sweep in which this update was included are examined (Table 3.8), the values are
markedly higher, which indicates that if it does not provide a significant improvement in
the maximum accuracy, it does in the stability of the training processes.

Table 3.8: Spatial Attention optimization impact.

Max F1 Average F1

Spatial=True 95.91 92.35
Spatial=False 94.78 91.54

The F1 values shown are the mean values calculated from all training runs including and not including
Spatial Attention optimization.
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In order to avoid bias in comparison, the entire testing methodology performed with
the panoramic view images has been repeated with the BEV images, like was done with
the 3D-Deep Architecture.

Focusing, as with the panoramic images, only on the updates obtained by analyzing
the filters, the results are fascinating. Each of the different optimizations offers very
similar results in the maximum value of F1 reached by the training run and slightly
higher values in the average of the whole set of K-folds. It is also worth noting that this
time the comparison is made with values with K equals 10, which is a more accurate
comparison.

Table 3.9: 3D-Deepest best results by optimization. (BEV)

Max F1 Average F1

3D-Deep 97.85 97.09
Graph Optimization 97.83 97.22
NFNET 97.83 97.10
Spatial Attention 97.77 97.12

The best values are shown among all the trainings done with Birds Eye View perspective performed
with the exposed techniques.

If we target Table 3.10, in which the average values of all the training sessions are
delivered, some quick conclusions can also be drawn. It can be seen that, unlike what
happened in the panoramic images, the use of NFNET optimizations, in this case, has
not meant an improvement compared to not using them, although taking into account
the best of the training sessions, it has. This contradiction concerning Table 3.9 may
indicate both that the contribution of the architectures without batch normalization in
this problem is not significant and that since this is a proof of concept, a much more
detailed exploration of the solution space is necessary.

Table 3.10: NFNET optimization impact. (BEV)

Max F1 Average F1

NFNET=True 95.80 94.35
NFNET=False 96.53 95.02

The F1 values shown are the mean values calculated from all training runs including and not including
NFNET optimization using Bids Eye View perspective.

The spatial attention module results are surprisingly contradictory to the results ob-
tained with perspective images. The comparative results in Table 3.11 show that the
network’s performance with spatial attention is slightly inferior to that using bird’s eye
view images. Furthermore, in Table 3.9, which shows the best training results for each
enhancement, training with spatial attention is not a significant improvement, remaining
on par with the other enhancements. It is possible that this is due to the fact that spatial
information is much more critical in panoramic perspective images than in bird’s eye view
images since the latter has a considerable distortion in the background.

In general, we are pleased with the performance achieved with the different method-
ologies proposed in this section. The results seem to be encouraging and suggest that
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Table 3.11: Spatial Attention optimization impact. (BEV)

Max F1 Average F1

Spatial=True 95.90 93.97
Spatial=False 96.16 94.68

The F1 values shown are the mean values calculated from all training runs including and not including
Spatial Attention optimization using Bids Eye View perspective.

this research can be continued in the future to obtain a complete and functional system
for an autonomous vehicle.



Chapter 4

Intersection Classification

As seen throughout Chapter 1, estimating the scene in front of a vehicle is crucial for safe
autonomous vehicle maneuvers, and it is also key to Advanced Driver Assistance Systems
(ADAS). Once the estimation of the drivable surface has been solved, the next step of
this investigation leads to intersections.

Indeed, intersection areas are one of the most critical for both drivers and pedestrians.
It is where vehicle’s paths might cross at some point, and it is also where pedestrians are
most likely to cross the roadway.

Consequently, within the navigation system of an autonomous vehicle, it can be con-
sidered of paramount concern to have a reliable system able to identify this specific traffic
scene. For example, the vehicle control system might notice the number of road entries
to the upcoming crossing and therefore estimate from which trajectories can come either
other vehicle or pedestrian who are on a collision course with it. Besides the safety field,
the information about the crossing area can allow the vehicle to perform safe maneuvers
without the need to have a complete and detailed map of the area, as a human being
would do when asking for directions in a city s/he does not know.

From a parallel point of view, it is also believed that the detection and classification
of intersections can be exploited for multiple purposes, such as an input to high-level
classifiers of other drivers’ maneuvers. The achievement of this hypothesis might ease
the prediction of position and intentions of Vulnerable Road Users (VRU) or plan how to
drive centered and safely without road markings.

4.1 Introduction

In computer vision, classification is the task of assigning a label to an image based on
what appears in it. If, in addition, the system wants to locate the object within the same
image, it would be talking about the field of detection. In the latter case, this does not
have to be limited to a single target per image but can detect more than one and of
different classes.

As seen in Chapter 2, classification in deep learning is usually performed by convolu-
tional neural networks. As briefly introduced in Chapter 3, this type of network usually
has an encoder-classifier structure (Figure 4.1).
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Figure 4.1: Encoder-classifier example.1

The encoder performs the same job as explained earlier in Section 3.1 in detail, re-
ducing the image to an n-dimensional feature vector. However, unlike FCNN, features
are not expanded again by the decoder but are transformed into class probabilities or
confidence values.

This transformation is carried out by the classifier that is the part marked as Fully
connected in the Figure 4.1.

The classifier can be of multiple types. Usually, it consists of a linear or fully connected
layer, as in ResNet architectures, which transform the features into a confidence vector
of the number of classes through trainable weights and biases, eq(4.1). Another option,
as in VGG architectures, is to use several fully connected layers sequentially for the same
purpose. In this case, the first layers usually reduce the size of the feature vector, e.g., in
VGG16 from a size of 25088 to 4096, and the last layer is in charge of transforming the
last feature vector into a confidence vector. Then, if one wants to work with probabilities,
it will only be necessary to apply the softmax function to the output confidence vector.

hini = houti−1 ∗Wi +Bi (4.1)

There are also options outside the fully connected layer, but in general, they cannot be
trained together with the encoder, as is the case with a linear layer classifier. An excellent
example of it is SVMs or the k-nearest neighbors (K-NN) algorithm. Both algorithms are
used to classify the neural network feature vectors after being trained independently of
the neural network.

4.2 Method

Considering how classification usually works, the following section and its corresponding
subsections will explain the methodology followed during the research for the classification
of intersections and the different techniques tested to compare the results and find the
one that best suits the problem.

4.2.1 Early works

Early work on intersection classification was conducted in conjunction with the road
intersection segmentation work discussed in Section 3.2.2.

1Image obtained by creative commons license. [Commons, 2015]
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(a) Image labeled as no intersection. (b) Image labeled as intersection.

(c) Image detected as no intersection. (d) Image detected as intersection.

Figure 4.2: Example of images belonging to the dataset recorded on the M-40 highway
with which the classification network has been trained.

One possible approach to improving the intersection segmentation system consisted of
a divide-and-conquer strategy. If one can train a network that is able to detect whether
an intersection exists in an image of a highway, then the task can be divided into the next
steps. For images where there is no intersection, a network is already in place that gives
good segmentation results and which at the time was intended to be improved (see ection
3.2.1). On the other hand, for images where there is an intersection, it seems a simple
assumption that a network that segments the main road and the detour or incorporation
will do the work much better if only trained with intersection images.

The training of this classification model, and since it is also considered a proof of
concept, do not pose great difficulty. The dataset used is the same as for segmentation in
Section 3.2.2, labeled in sequences of frames in which there is or is no intersection (See
Figures 4.2a and 4.2b). The networks to be trained are also the same; however, they are
not FCNN networks but the original architectures proposed in paper [He et al., 2016]
substituting the last 1000-class fully connected layer by a bi-class one.

The results obtained at first sight were quite promising, reaching in some cases an
accuracy of 94%. However, a more detailed analysis of the results revealed some essential
flaws in the system. As shown in Figures 4.2c and 4.2d, the intersection’s detection in
most cases was performed a few meters from the end of the road convergence, which does
not seem to be a safe situation for the vehicle if it wanted to take the intersection. In
addition, a more detailed analysis of the reason for this led to the conclusion that the
network was not learning the intersection geometry and its intrinsic features but was
detecting both the previous zebra marks and the presence of the green plastic divider
(see bounding boxes in Figure 4.2d. This misdetection was a risk since the system could
detect as intersections places where there had been one, and the road markings were still
painted, but now there was a concrete wall preventing access to the intersection.

This first approach has made us realize that intersection classification is not a simple
research topic and requires more effort to achieve good results. As seen in Chapter 2,
there is more research for a consult or draw upon if the focus is on urban intersections.
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Therefore, studying the possible procedures that can improve the urban intersections
classification in this section seems a sensible aim.

As with highway intersections, the initial approach is through a preliminary study,
[Ballardini et al., 2021]. This research initiated evaluations by studying the classification
capabilities of two well-established networks for image classification, namely the ResNet
[He et al., 2016] and VGG [Simonyan and Zisserman, 2014] networks. For this purpose,
intersection images were directly classified as a starting point, and the results obtained
were compared with the same architectures trained using a Teacher/student methodology.
The results, although preliminary, are promising since, in most of the categories, better
accuracy is obtained using the Teacher/student methodology than the direct classification.

Overall, the classification of intersections by deep learning can yield good results,
and the benefits that this would bring to autonomous vehicle development are clear.
Therefore, the subsequent research step is a more detailed examination of the subject.
So, this investigation’s purpose consists of assessing different methodologies addressed
to detect the geometry of an upcoming intersection inside metropolitan areas. To this
end, the classification capabilities of state-of-the-art CNN systems have been evaluated,
including networks designed to analyze single-frame images as well as video sequences.

Furthermore, concerning single-frame image analysis, the aim is to confirm the perfor-
mance gain of the metric learning and teacher/student learning paradigm for a standard
classification baseline. Different loss functions have also been investigated, including triple
loss techniques. Each of these network configurations and training methods is carefully
described in the following sections, exploring the entire research activity. For the sake of
simplicity, Table 4.1 and Figure 4.3 summarize all the approaches presented.

Table 4.1: Overall Scheme of Training Approaches.

Learning Scheme Key Features

Baseline
End to End Classification

Standard RGB image classification method

Metric Learning
Learning to classify by using distances between

embedding vectors

Teacher/Student
Two networks are sequentially trained
metric learning can also be applied

LSTM
These networks are well-suited to process time

series data

PyTorchVideo
Deep Learning library for video understanding

research
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Figure 4.3: The picture includes all the approaches researched in this chapter.
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4.2.2 Baseline

As in the preliminary study, it is necessary to establish a baseline against which to com-
pare the proposed training techniques. This baseline will be established by the results
obtained by direct classification. For the sake of an unbiased evaluation of the proposed
methodologies, more network architectures were incorporated to explore the possibilities
of other backbone capabilities. In addition to all common ResNet and VGG implementa-
tions,MobileNet v3 [Howard et al., 2019] and Inception v3 [Szegedy et al., 2016] architec-
tures have also been included. Besides representing the more trivial learning paradigm,
these end-to-end configurations allowed us to create an architecture baseline to compare
systems with each other.

Following the first preliminary work concerning the KITTI and KITTI-360 sequences,
the RGB images from the left camera of the stereo rig are the ones used for the direct
classification, as will be explained in detail furthermore. For all KITTI image sequences,
similar to that proposed by other authors, a second image set was prepared in which
a 2D-homography is applied for transformation to the BEV perspective. In addition,
this same transformation has been performed with the new images of the Alcalá dataset
introduced later in Section 4.2.2.1. The intention in creating BEV images for each of the
correspondent RGBs is trying to help the classification network by eliminating cluttering
elements of the scene, e.g., above horizon elements, while at the same time emphasizing
the intersection geometry.

Together with the RGB images directly acquired from the camera, these sets of images
allowed us to perform a first classification assessment of the networks mentioned above
and evaluate the improvements described in the following sections.

4.2.2.1 Datasets

It is intended to address the intersection classification challenge by exploiting the most
popular datasets available in the autonomous driving field, even though not designed
explicitly for intersection detection purposes.

This dataset selection would help compare the previous classification works’ results ef-
fortlessly. However, the first faced issue was related to the locations where these datasets
have been recorded. As can be seen in Figure 4.4, these datasets were collected inside
massive metropolitan areas like San Francisco (Pandaset/Lyft5), Beijing, and other cities
in China (ApolloScape/Baidu), Boston, and Singapore (nuScenes). The intersection ge-
ometry configuration on these Manhattan-like environments is simple and repetitive, and
the dominant difference consists only on the traffic conditions. Moreover, it is of extreme
difficulty to generalize these kinds of settings to mid-sized cities. The intersection visi-
bility in these conditions is hampered due to several reasons, including the width of the
avenue and the related lens’ field-of-view, the separation of travel directions that make
two-way traffic streets look like one-way ones, and not least the vast amount of vehicles.
One possible solution for the identification and classification in these extreme conditions
would be, for example, exploiting the detection of traffic lights and the analysis of other
car trajectories, such as in work in [Geiger, 2013]. On the other hand, less urbanized areas
like the ones in Figure 4.5 can benefit from the capabilities of classification networks.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Manhattan-like environments images.

The figure depicts typical intersections in the well-known ApolloScape (a-b), Lyft-5 (c-d), NuScenes (e-f)
and Pandaset (g-h) datasets.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: KITTI and Alcala dataset image comparision.

Some examples from the mid-size cities of Karlsruhe for the KITTI and KITTI-360 datasets and Alcalá
de Henares (our recorded dataset). The reader can appreciate the differences in the spatial distribution
of street elements with respect to Figure 4.4, as well as the change in the field-of view between the KITTI
cameras (a-c) and our dataset (d-f).
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To the best of our knowledge, the only public dataset previously evaluated for the
urban intersection classification problem is the KITTI dataset and its recent extension,
KITTI-360. There are two issues that, after careful analysis, prevent state-of-the-art
works based on image-based detectors from obtaining excellent results. First, as can be
seen in Table 4.2, the number of intersection frames is relatively low. These issues make
the training phase of any network extremely challenging. Please note that the number
of frames is not related to the number of different intersections, as multiple consecutive
frames can be associated with the same area.

Table 4.2: Intersections frames per-class, all datasets.

Sequence 0 1 2 3 4 5 6

Alcala-1 (jan26) 4693 1321 1467 2144 4429 2291 5374
Alcala-2 (feb12) 2686 745 446 1893 1973 1287 2948
KITTI-ROAD ✗ 308 21 452 52 523 1035
KITTI-360 1190 711 999 1040 706 1048 1129

Total 8569 3085 2933 5529 7160 5149 10486

The number of frames associated to each intersection class, for each of the used datasets.

Besides the frame availability, another interesting number to analyze is the actual
number of intersections. As can be noticed in Figure 4.6 and considering only the numbers
associated with KITTI-ROAD sequences (a previously selected subset of the original
KITTI dataset), the number of per-type intersections is critical, far below the ordinary
number of elements typically used for CNNs training’s, especially for those networks that
use sequences instead of the mere number of frames. It should be noticed that, for a
given intersection, the visual appearance of the scene on consecutive frames has minimal
changes. Together with the low frame availability, this forced us to pay special attention
to the dataset split-phase: randomly choosing frames from the whole dataset was not an
option due to the multiple frames associated with every intersection.

By randomly selecting frames, it would have been possible to include almost equal
frames of the same intersection into both training and validation or testing, frustrating
the separation efforts and leading to biased results. Since there is no easy solution for the
availability issue, these considerations led us to create a much more extended dataset of
intersections recorded in the surrounding area of Alcalá de Henares, Madrid, Spain, during
the first half of 2021. A current subset of the dataset, which contains all intersection
geometries in different weather conditions and seasons, is used in this work, and a few
images can be appreciated in Figure 4.7. Together with a set of scripts and additional
descriptions, all the images will be released to the community2.

Among the datasets used in this work, one substantial difference lies in the availability
of single vs. stereo camera head as well as camera (single-sensor) vs. camera and LiDAR
(multi-sensor) configurations. This difference allowed or denied some of the configurations
explained in Section 4.2.3.1.3.

2https://invett.aut.uah.es/intersectiondataset

https://invett.aut.uah.es/intersectiondataset
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(a) (b)

Figure 4.6: Dataset samples distribution diagram.

Distribution of intersection types (a) and sequence lenght (b) for KITTI, KITTI-360, and the two se-
quences of the Alcalá de Henares dataset.

Figure 4.7: Examples of images from the Alcala dataset.

Each column represents an example of the seven configuration geometries that were used in this work.
The images were recorded at different times of the day and using a different camera setup.

4.2.3 Metric Learning

The so-called metric learning represents an exciting and emerging technology in the ma-
chine learning community. This notation, used as a generic term to indicate a distance,
a correspondence, or difference between elements, allows for a slightly different classifica-
tion approach from the classical classification approach. As it is well described in work
in [Bellet et al., 2014], where they use a metric-learning technique, what can be done is
to shift the classification problem towards an optimization problem, so that pair-wise or
triplet-based distance constraints between items are both enforced and minimized through
a specific loss function.

From a technical perspective, the distance is evaluated starting from the embedding
vectors associated with a couple of input images, where the embeddings are generated by a
function f(·) in the form of CNN, see Figure 4.8. For example, when using the triplet loss
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approach, the idea is that given three samples and the associated vectors called anchor,
positive and negative, a generic distance d satisfies Equation 4.2.

d(f(a), f(p)) < d(f(a), f(n)) (4.2)

In this Ph.D., two different implementations of the metric-learning technique are used
depending on the specific problem analysis. These include an ad-hoc implementation
through the teacher/student paradigm and the much more exhaustive work presented
by Kevin Musgrave in [Musgrave et al., 2020b] (please note that the remainder of the
manuscript is referred to as the metric-library).

Figure 4.8: Image distance diagram.

The distance between the two images is calculated using the numerical N-dimensional embeddings result-
ing from a generic CNN network.

4.2.3.1 Teacher/student

The first learning paradigm is proposed to evaluate the standard end-to-end scheme
concerning the so-called teacher/student. Among all the possible applications, the idea
behind this paradigm includes transferring knowledge from a simple domain to a much
more complex one.

4.2.3.1.1 The intersection Model

From a technical perspective, the proposed starting domain to transfer the knowledge
consists of a synthetic set of simple BEV images generated with the intersection generator
proposed in [Ballardini et al., 2017, Ballardini et al., 2019]. This simple intersection
generator, shown in Figure 4.9, can render all of the seven configuration classes commonly
used in the literature as seen in the state-of-the-art, in the form of binary masks, such as
those shown in Figure 4.10. From now on, these images will be referred to as Model-Based
Bird Eye View (MBEV). These masks contain the shape of the most common intersections
entities found in the mid-size cities. The model parameterization allows us to generate
different intersection geometries, i.e., changing the number and position of intersecting
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Figure 4.9: Intersection model diagram.

On the top of the image, the seven so-called canonical intersection classes along with the model used to
generate the training dataset. In the leftmost part of the figure, identified with the label ”w/o noise”, a
triplet consisting of two samples of the canonical type-three (for simplicity also shown in the last box of
the row) and a different one, e.g., type-five. Before passing these images to the teacher network during
the training phase, random noise is added to each of the images by an increasing extent along the vertical
direction. The effect is shown in the rightmost part of the figure identified with the label ”w-noise”.

Figure 4.10: More examples of MBEV images generated with the model in Figure 4.9.

roads, the center position for the generated image, and finally, the roadway of each road
segment involved. Without pretending to be the definite intersection generator, as many
configurations still cannot be represented with this proposal, e.g., complex intersections
that can be typically seen in extensive metropolitan areas, this model allowed us to
assess the intersection classification capabilities of the evaluated network configurations
using the datasets proposed in Section 4.2.2.1. This model also acted as a trivial data-
augmentation scheme for the CNN during the training phases of the teacher networks.
To mimic how some of the training images are created, an increasing amount of random
noise is added optionally starting from the bottom part of the mask in a line-by-line
fashion, as visible in Figure 4.9.

4.2.3.1.2 Triplet Loss

Within the plethora of metric-learning different patterns, the triplet approach described in
[Schroff et al., 2015] has been used. In this technique, a set of three images (Ma

1 ,M
s
2 ,M

d
3 )

belonging to the same domain, i.e., M , composed of one anchor class image MA
i , a sample

of the same class (positive-anchor) MS
j and a different class sample (negative-anchor)

MD
k , are passed through the triplet margin loss function. Again, the idea is to have a
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CNN generating a high-dimensional embedding vector associated with input images. The
distance between vectors belonging to different intersection classes should be higher than
the distance derived from the vectors of same-class intersections. This loss function is
defined similarly to each of the two parts of Equation 4.2, as follows:

L =
∑

i

[d(f(MA
i ), f(MS

j ))− d(f(MA
i ), f(MD

k )) +m]+ (4.3)

where [·]+ means max(0, [·]) and d(xi, yi) = ‖xi − yi‖p with p as the norm degree for
pairwise distance and m is an extra scalar value used to extend the margin between the
embeddings.

4.2.3.1.3 RGB pre-processing

In order to exploit the MBEV images generated with the intersection model, a set of
three different pipelines is created to transform the RGB images into a similar viewpoint.
This set includes:

• 3D-Generated Bird Eye Views (3D-BEVs): this first transformation, applicable
only to datasets supporting stereo-camera configurations, creates a bird’s eye view
representation of the scene using a 3D-reconstruction process. This transformation
is the most accurate 2D plan view that could be generated from images, as no
distortions are introduced in this procedure. The effect of the virtual camera can
be seen in the center box of Figure 4.11. The work in [Xu and Zhang, 2020] is used
to generate the depth image that in turn allowed us to create a 3D representation
and then the desired 2D image. Please notice that having a 3D representation
allows us to change the virtual camera position, retaining the scene’s consistency
and simultaneously acting as a data augmentation methodology.

• Masked 3D-Generated Bird Eye Views (3DMASKED-BEVs): for this second trans-
formation, the previous pipeline is extended by including the segmentation results
exposed in Chapter 3 and published in [Hernández et al., 2020] to remove the 3D
information that does not belong to the road surface, thus generating an image
containing only road pixels. The central insight here is to evaluate whether the
classification may benefit from less cluttered yet pre-segmented images. For this
purpose, the previous depth image is combined with the generated road mask be-
fore creating the 2D view.

• Warping with Homographys (WARPINGs): this last transform tries to overcome the
limitation of stereo and LiDAR availability at the cost of introducing distortions in
the generated images. Standard computer vision techniques are applied to create a
homography between the RGB image and the desired 2D image. As homographies
are only defined for flat surfaces, but roads usually have at least slight roughness and
undulations, this image transformation introduces distortions to the final image, as
depicted in the warping images in Figure 4.11. Moreover, since fixed homographies
are used, the actual attitude of the vehicle introduces similar distortion effects as
the vehicle moves along its route. Nevertheless, since the videos have more than one
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frame-per-intersections, this effect can be conceptualized as a data augmentation
scheme, as the same intersection visually appears different across successive frames.
Please notice that this scheme is the same one proposed for the RGB-Baseline
described in Section 4.2.2.

All of these three configurations, where feasible, i.e., if LiDAR data is not avail-
able 3DMASKED-BEVs images are not created, were evaluated concerning the learning
schemes presented in this research in addition to the primary RGB data.

Figure 4.11: Image transformation workflow.

The figure depicts the overall pipeline used to generate the 2D planar images used in this work. Among
them, only the 3DMASKED-BEV uses the LiDAR data. In the central part of the image, the picture
shows the two methods of the Data augmentation scheme, i.e., the 3D-based realistic virtual camera that
exploits the 3D point-cloud based reconstruction of the image and the 2D-based homography.

4.2.3.1.4 Applying the teacher-student paradigm

Besides the teacher/student paradigm, the central insight is learning a shared embedding
space between the 2D images created with the intersection model and those generated
by the pipelines mentioned above. This approach is inspired by the work of Cattaneo
[Cattaneo et al., 2020], which performs visual localization using 2D and 3D inputs in a
bi-directional mode, teaching two networks to create a shared embedding space and thus
enabling a two-way localization, starting either from 2D or 3D inputs.

Recalling the metric technique described in the first part of Section 4.2.3, the teacher-
student paradigm introduced some minor changes, particularly to Equation 4.2. In detail,
given two instances of the same intersection class belonging to different domains, e.g.,
Class 0 in domains D1 and D2 (D1

C=0
and D2

C=0
), such as D1 is the space of the

images with the intersection model, and D2 is the RGB-transformed space, and two
different non-linear functions f(·) and g(·) represented in the form of CNN, the distance
between the embeddings is lower than any other negative intersection instance, e.g., D2

c=2.
Formally, given the Intersection-Model domain M and the Camera domain C such that
M = C = {0, 1, 2, 3, 4, 5, 6}, each of which contains the seven intersection typologies
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considered in our intersection model, and given one element mi ∈ M , then Equation 4.4
is satisfied ∀i, j ∈ C|i 6= j, where d(·) is a distance function.

d(f(mi), g(ci)) < d(f(mi), g(cj)) (4.4)

Regarding the teacher network, which is the first part to work with, it is trained with
the triplet loss scheme mentioned before, but this time the images generated from the
intersection model are used, see Figure 4.12. Once the teacher model has been trained,
the student network is trained using the pre-processed RGB images presented in Section
4.2.3.1.3 as input data in a way to obtain a similar embedding vector. Towards this goal,
the loss-function of the student network is composed as follows:

L =
∑

i

[d(f(MA
i ), g(CS

i ))] (4.5)

whereM and C are the model-domain and camera-domain respectively andMean Squared
Error (MSE) was used as distance function d(·) between the embeddings. Differently from
Equation 4.3, here, the triplet scheme is replaced by a pair-wise distance between the
embedding vectors. It is worth mentioning that to maintain a consistent distance within
same-class classifications,MA

i elements were chosen not from the list of embedding vectors
used in the training phase of the teacher network but rather from the average of 1000 new
random samples generated after the teacher network was trained, i.e., never seen before
from the CNN. These per-class averages, i.e., cluster centroids, are shown in Figure 4.13
with black crosses and represent therefore the MA

i set.

(a) (b) (c)

Figure 4.12: Metric learning hypothesis.

The picture depicts the intuition behind the metric learning approach. Good (green) and bad (red)
constraints in (a) and (b) respectively are used to find a metric in a way that similar images are grouped
as in (c) in clusters. Besides this first intuition of constraints in terms of pairs, we can imagine triplets
to increase the complexity of the optimization problem further, helping the system to obtain better and
broader distances between clusters.
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Figure 4.13: Embedding clusterization visual space.

The embedding space is visually represented using 7K samples from the intersection model, using the
T-Distributed Stochastic Neighbor Embedding (T-SNE) function. In black, we conceptually represent the
centroid of each of the clusters.

4.2.3.1.5 Training details

A data augmentation process was introduced in both networks to avoid overfitting during
its training phase. A set of 1000 per-class intersection configurations is generated by
sampling the generative model for what concerns the teacher network. A normal random
noise is applied to the seven canonical intersection configurations on each parameter
involved in the generation of the intersection, e.g., width, angle, and intersection center,
in a measure of [2.0m, 0.4rad, 9.0m]. As far as noise is concerned, an increasing number
of random noise is added to each line, always starting from the bottom of the image, to
mimic the 3D density effect of the 3DMASKED-BEVs. At this time, despite its triviality,
it should be noted that the point-density of 3DMASKED-BEVs is not constant over the
distance with respect to the vehicle. Therefore, to simulate comparable MBEVs random
noise is added proportional to the distance, see Figure 4.9. Regarding the student network,
since the low number of intersections present in the two KITTI datasets in comparison
with the overall number of frames, data augmentation is performed by adding a 6-DoF
displacement to a looking-down virtual camera initially set at [10m, 22.5m] above the road
surface and [17, 22m] in front of the vehicle for the KITTI and KITTI-360 respectively.
Due to the nature of type-1 and type-2 intersection classes, which contain any curve
without a specific curvature threshold, the rotation along the vertical axis is zeroed to
limit the chance of assimilating these samples to the type-0 class. The code leverages
the PyTorch 1.6 learning framework [Paszke et al., 2017], and both teacher and student
images were scaled to images with a size of 224x224 pixels.

4.2.3.2 Metric library

The investigation with the metric library began by directly verifying the benefits in-
troduced by the metric learning approach. First, according to Equation 4.3, different
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distance functions were evaluated. Starting from the basic ‖·‖
1
and ‖·‖

2
, the distance

function set has been expanded to assess the impact of Signal-to-Noise Ratio and Cosine
Similarity functions provided within the metric library. As the reader might guess, not
all the samples will have similar scores. Unexpected geometries might also generate con-
fusion and lead to unsatisfactory results. For this reason, the use of the Triplet Margin
Miner feature is proposed to specify a minimum distance threshold for the generation of
the triplets.

Specifically, this miner model has been used in this research, with two of its possible
configurations, ”all” and ”hard”. The first of these configurations lets estimate the loss
value by using all the triplets that violate the preset margin. The second one allows for
creating a subset of the previous triplets, where the positive example is further away from
the anchor than the negative example and using them to calculate the loss. These two
miner configurations allowed focusing the training efforts on the most challenging exam-
ples of the dataset for the neural network. However, for completeness, training without
any miner has been performed, letting the system use any possible triplet regardless of
its difficulty.

Since this training methodology works directly with distances, it is necessary to iden-
tify a metric to evaluate the system’s performance. The metric library provides different
functions that can be used in this situation, such as Mean Average Precision@R (MAPR),
Mean Average Precision (MAP), Precision-at-1 (PA1), R-Precision (RP). All these values
have been recorded during the training process to assess how the training was performing.
However, the value taken into account to run the validation patience and select the best
training is MAPR, as this metric operates directly on the embedding space and provides
better information [Musgrave et al., 2020a].

Once the model has been trained, it is necessary to find a way to use it as a classifier,
as an embedding does not directly refer to a specific intersection type. An easy and trivial
way could be to use the metrics above to calculate the minimum distance for a specific
class representative vector. For example, using a clustering procedure, the representative
vector might be the centroid of each cluster. However, apart from relying on such elements
as centroids, the following methods were also evaluated. Following the distance concept,
a first approach consists in using the Mahalanobis distance rather than the Euclidean
distance to calculate the classification of each new example in such a way to capture better
the distance concerning the learned concepts. The second method consists of a transfer
learning adaptation: once the network has been trained using the previous proposals,
its weights are frozen, and a fully connected layer is trained to classify the embeddings
returned by the network. Finally, the third proposal consists of training a SVM classifier
using the embeddings of the training and validation sets. Once the classifier is trained, the
implementation of the system in a real environment would consist of two steps, obtaining
the embedding from the trained architecture and its classification employing the SVM.

All training activities performed with this methodology have been carried out with
different data transformations, explained in detail in Section 4.2.3.1.3, for each of the
three datasets already explained above.
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4.2.4 Multi-frame approach

The research continued by assessing the results of multi-frame learning schemes. Since
the system is intended for autonomous vehicles, it seems logical to think that the vehicle
will get more information about the surrounding environment as it approaches the inter-
section, and the interpretation accuracies will increase, as confirmed in [Ballardini et al.,
2017]. Therefore, implementing a system that can exploit the spatio-temporal informa-
tion from a sequence of images until the vehicle is inside the intersection should give even
better results.

4.2.4.1 Recurrent neural networks

With the mentioned idea of further refining the work done so far with the CNN networks,
possible architectures were investigated that could be combined to perform temporal in-
tegration of the data. The two predominant models for this in state-of-the-art are the
Gated recurrent unit (GRU) and LSTM architectures. These networks usually have data
packets of vectors grouped in time sequences as input. Since the CNN architectures that
have been used so far return embeddings, the only process necessary to group the two
architectures lies in the temporal aggregation of the embeddings. For this, the following
process has been tracked. First, the images have been grouped into sets belonging to the
same intersection forming a single temporal sequence. These samples are then passed
through the already trained CNN, which returns a sequence of embeddings. It is worth
mentioning that each recurrent network was trained with the best-performing CNN previ-
ously trained for each dataset and data type configuration. Once the CNN has processed
all the batch sequences, the shortest ones are zero-padded so that all the sequences that
compose the data block supplied to the recurrent network have the same length. Finally,
since both GRU and LSTM return feature vectors, they must be classified to obtain a
label to tell us to which class it belongs.

Similarly, as has been done for the metric approaches, two different methodologies
were used to classify the embeddings: the inclusion of a fully connected layer trained
simultaneously with the recurrent architecture and the use of an SVM classifier in a
similar way as described in Section 4.2.3.2. Several architecture variations were made to
perform an adequate ablation study with both architectures (GRU and LSTM). These
variations range from the number of layers in the network or the hidden layer’s size to
the internal dropout of the architecture. The training has been performed using all the
available datasets and respective transformations presented in Section 4.2.3.1.3. More
detailed information on training will be provided later in Section 4.3.2.4.

4.2.4.2 Video Classification Networks

Apart from the recurrent architectures, a second exciting network design for temporal
sequence analysis is represented by the expansion of standard 2D architectures. The
basic idea is to feed a standard classification network with a set of consecutive images,
allowing for the creation of so-called spatiotemporal filters. The main issue with this
architecture, as mentioned before in Chapter 3, is the considerable increase in terms of
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network parameters with respect to the corresponding 2D network version, which makes
the training phase harder and computationally heavy. Moreover, the 3D extension also
seems to neutralize the benefits of pre-trained models [Carreira and Zisserman, 2017].
Extensions to these basic video recognition architectures were introduced in the very
last months by the works presented in [Feichtenhofer, 2020], where a family of efficient
video networks is presented. A preliminary remark that must be made is that all of these
architectures are usually employed to detect specific activities in video sequences. Typical
datasets include KINETICS [Kay et al., 2017], Charades [Sigurdsson et al., 2016], EPIC-
KITCHENS [Damen et al., 2020], or something-something [Goyal et al., 2017], where a
huge set of activities is provided in terms of short videos. However, it is reasonable that
similar actions or high-level concepts could also appear in a sequence representing a vehicle
approaching a type of intersection. With the idea of having a similarity between the action
“picking something up” and “approaching a type-x intersection” and the promising results
of these approaches, a decision was made to perform a set of preliminary experiments using
the works proposed in [Fan et al., 2020] and generally contained within the PyTorchVideo
framework. This kind of approach is the first time it is evaluated in the intersection
classification context to the best of our knowledge.

4.2.5 Artificial data-augmentation: GAN

As previously stated when talking of datasets, one of the major issues affecting all the
aforementioned techniques is the limited availability of intersections, primarily in terms
of intersection instances rather than the number of frames. In an attempt to overcome
this limitation, several GANs frameworks were implemented and compared, from more
simplistic approaches like DCGAN, WGAN, and CGAN to the last state-of-the-art net-
works, such as StyleGAN2, SWAGAN, or StyleGAN-ADA, which includes an adaptive
augmentation procedure to deal with limited data regimes [Karras et al., 2020a]. Given
the limited amount of data, the best quality and regularization metrics results were
founded for SWAGAN and StyleGAN2 with the adaptive discriminator augmentation.
SWAGAN [Gal et al., 2021] noticeably increases computational performance; however,
some checkboard artifacts appeared in the images, and it achieved worse perceptual path
length regularization. Hence, StyleGAN2-ADA was finally chosen. Figure 4.14 depicts
some generated examples of the latter after 800K epochs.

(a) (b)

Figure 4.14: StyleGAN-2 image comparison.

On the left, an example of the performances of StyleGAN-2. On the right, an example of the output of
the StyleGAN-2-ADA network after 800K epochs. However, to avoid presenting too similar images, we
decimated the input images to have a constant frame rate equal to 1 fps.
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Following the intuition that feeding the network with warped images could improve
the generative process since the network would be able to focus only on intersections,
different tests were performed training the GAN with RGB images and with warped
images.

In order to balance less represented classes, the GAN was trained following a con-
ditional setting. However, for RGB images, the best results were found for the non-
conditional framework. Hence, a new augmented dataset was created by generating 10K
random images and labeling them frame by frame, discarding those which do not depict
an unambiguous intersection. Figure 4.15 shows some examples of good and bad gener-
ated images. One issue found with the generated images is that most of them were similar
to the original ones. Probably, this matter is because the number of training images ob-
tained with all the KITTI and Alcalá dataset sequences is more than six times smaller
than the 30k training images used in the StyleGAN-ADA original contribution, [Karras
et al., 2020b]. Notwithstanding, results show better classification performances with the
augmented dataset

(a) (b) (c) (d) (e) (f)

Figure 4.15: Generated RGB intersections.

The image shows some examples of correctly generated RGB intersections, included in the new augmented
dataset (a-c), and discarded ones (d-f).

Although most generated images were realistic enough, many of them were discarded
due to inconsistencies on the road or an unclear intersection. This issue is currently
being tackled by introducing new elements to the standard StyleGAN proposal, and it is
planned to present the outcomes in future work.

On the other side, generated warped images showed similar performance when training
in a conditional setting, probably due to the amount of information contained in these
types of images. The latent space is better regularized, and generated images are closer
to the real ones in the embedded space. Therefore, 10 thousand warped images were
generated and added to the warped training set. Figure 4.16 shows some examples of
the generated warped images under a conditional setting. It can be seen that they are
realistic when compared to the real ones.

4.3 Experimental Analysis

The following section presents the extensive experimental results of all the tests performed
with the different methodologies. These tests have been performed using an Nvidia DGX-
A100 server.
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Real and synthetic warped images.

In the first row: some examples of generated images when training the GAN with warped real images. In
the second row: examples of real warped images.

4.3.1 Experimental set-up

The test battery, as described below, has been configured using Wandb [Biewald, 2020],
which has allowed performing an extensive ablation study using the automatic search pro-
cedure called sweep. The Wandb service automatically calculates the best combination of
hyperparameter values by performing a sweep. In order to work with embeddings of sim-
ilar size, and given that different network architectures have been used, a space reduction
should be made in those architectures that return larger feature vectors. To adapt the
returned vectors among different architectures is necessary to use fully connected layers
to reduce the size of the embeddings to 512 values. This value comes from the embed-
dings’ size used in the initial work and has been considered a standard for this research.
The selected architectures are ResNet and VGG in all its versions, the two versions of
MobileNet-v3 and Inception-v3. The used datasets have been divided, regardless of the
number of images contained in each dataset, into the following percentages: 70% for the
training set, 20% for the validation set, and 10% for the test set.
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4.3.2 Experimental results

The first training sessions carried out are those of direct classification, on which com-
parisons will be made with the rest of the methodologies. This way of action has been
done because, in the initial proof of concept, it was the chosen way of proceeding, and
for simplicity, it has been decided to continue with it.

As stated in Section 4.2.2, a sweep has been initially configured to find the best
training solution for the proposed architectures using the direct classification paradigm
with the RGB and WARPED images. The baseline results are shown in Table 4.3.

Table 4.3: Results in direct classification.

ResNet VGG
MobileNet

v3
Inception

v3

18 34 50 101 152 11 13 16 large small

K
IT
T
I

R
O
A
D

RGB
Validation 0.69 0.71 0.69 0.72 0.70 0.58 0.74 0.73 0.66 0.69 0.65

Test - - - - - - 0.53 - - - -

Warping
Validation 0.60 0.67 0.70 0.68 0.60 0.60 0.63 0.61 0.65 0.60 0.67

Test - - 0.62 - - - - - - - -

K
IT
T
I

36
0

RGB
Validation 0.83 0.82 0.77 0.81 0.81 0.80 0.84 0.81 0.82 0.73 0.87

Test - - - - - - - - - - 0.78

Warping
Validation 0.81 0.78 0.83 0.84 0.80 0.81 0.80 0.82 0.83 0.80 0.87

Test - - - - - - - - - - 0.70

A
LC
A
LÁ

RGB
Validation 0.82 0.87 0.85 0.86 0.80 0.74 0.86 0.85 0.89 0.80 0.89

Test - - - - - - - - - - 0.94

Warping
Validation 0.88 0.91 0.82 0.90 0.88 0.85 0.89 0.85 0.91 0.87 0.91

Test - - - - - - - - 0.92 - -

Results using direct classification by the proposed architectures using RGB images and bird’s eye view
images from the three selected datasets. Marked in bold are the best accuracy values for each type of
data in both training and validation.

4.3.2.1 Teacher training

The teacher is trained with artificial images created at run-time by the mentioned in-
tersection model. These images try to simulate intersections as they were obtained from
BEVs to create an easy yet effective classification problem for the teacher network. Since
the primary use of the teacher network is to obtain a set of embeddings that can represent
road junctions useful for the training of the student network, the loss function used is
Triplet loss. As in the preliminary work [Ballardini et al., 2021], this decision was taken
to separate as much as possible the space between the embeddings of different types of
intersections so that two similar types are as close as possible and two different types as
far apart as possible. Because the images are generated at run-time, once the anchor and
the positive samples are chosen, the negative one is selected randomly from the remaining
labels.
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The teacher performance was evaluated using all the proposed architectures as the
backbone and a set of 2000 artificial images for training and 1000 for validation. All
training runs, regardless of the backbone model, quickly became overfitted. The accuracy
values in the training and validation sets reached 1, so the model stopped learning and was
no longer generalizing. In case the architecture was too deep, the training was repeated
with a customized network, which contained only one or two convolutional blocks (Conv
+ BN + ReLU) depending on the chosen configuration and a classifier composed of a
fully connected layer. The results obtained were similar, so the proposed architecture was
discarded. In our opinion, this overfitting may be due to the synthetic images created
by the intersection model since those images are effortless to classify. Therefore, the
path is as follows: since it is still believed that the ease with which the embeddings of
the synthetic images were grouped can be of great help in the training of the student
network, we select as weights for the trained network those belonging to the checkpoint
immediately prior to the time when the accuracy value in the validation set reached 1.

As seen in Figure 4.13, performing a clustering analysis over the resulting set of
embeddings shows clearly how the CNN can distinguish the intersection classes. Since
it is intended to use this information to train the student network, the centroids of each
cluster are calculated to be used as reference marks in the subsequent training.

4.3.2.2 Student training

In order to explore the widest solution space possible, a Wandb [Biewald, 2020] sweep
has been deployed with the following parameters, randomly chosen at each iteration:

• Learning Rate: max: 0.01 min: 2.5e-06

• Optimizer: adamW, adam, rmsprop, sgd, ASGD, Adamax

• Loss Function: SmoothL1, L1, MSE

• Batch Size: 8, 16, 34, 64, 128

Table 4.4 presents the results obtained using different input data types (RGB, WARP-
ING, 3D-BEV, and 3DMASKED-BEV) for the three used datasets (KITTI-ROAD,
KITTI-360, ALCALÁ). Since the training activities have been performed with sweeps
the table reports the maximum validation accuracy value among all the training per-
formed in the sweep for each architecture. The value corresponding to the accuracy with
testing data is obtained using the architecture and the weights corresponding to the max-
imum validation accuracy value among all reported, marked in bold. The operation has
been performed for each dataset’s available data source.

The experimental activities were addressed to verify:

1. First, how the different data transformations exposed in 4.2.3.1.3 affect the results
in the Teacher/Student paradigm and the possible benefits.

2. Second, whether the use of the Teacher/Student paradigm substantially improves
results over the direct classification of the data.
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3. Third, if the data recording methodology and the camera angle are critical points
in obtaining good results.

4. Fourth, whether the inclusion of new architectures in training produces a significant
variation in the results obtained.

Table 4.4: Results in Teacher/Student paradigm.

ResNet VGG
MobileNet

v3
Inception

v3

18 34 50 101 152 11 13 16 large small

K
IT
T
I

R
O
A
D

RGB
Validation 0.51 0.50 0.53 0.50 0.57 0.66 0.70 0.71 0.75 0.71 0.57

Test - - - - - - - - 0.64 - -

Warping
Validation 0.47 0.58 0.70 0.59 0.52 0.61 0.63 0.66 0.66 0.64 0.57

Test - - 0.61 - - - - - - - -

3D-BEV
Validation 0.45 0.55 0.65 0.67 0.58 0.56 0.62 0.60 0.60 0.62 0.46

Test - - - 0.64 - - - - - - -

3D-Mask
Validation 0.64 0.71 0.72 0.71 0.71 0.70 0.72 0.72 0.73 0.72 0.69

Test - - - - - - - - 0.71 - -

K
IT
T
I

36
0

RGB
Validation 0.60 0.65 0.79 0.79 0.83 0.73 0.82 0.86 0.8 0.79 0.60

Test - - - - - - - 0.75 - - -

Warping
Validation 0.63 0.61 0.69 0.8 0.63 0.85 0.79 0.83 0.82 0.73 0.70

Test - - - - - 0.73 - - - - -

3D-BEV
Validation 0.51 0.65 0.71 0.75 0.65 0.61 0.68 0.59 0.79 0.73 0.57

Test - - - - - - - - 0.73 - -

3D-Mask
Validation 0.65 0.61 0.76 0.78 0.79 0.74 0.77 0.78 0.78 0.76 0.78

Test - - - - 0.67 - - - - -

A
LC
A
LÁ

RGB
Validation 0.76 0.49 0.88 0.88 0.86 0.82 0.90 0.87 0.88 0.77 0.81

Test - - - - - - 0.96 - - - -

Warping
Validation 0.88 0.87 0.88 0.87 0.91 0.88 0.90 0.80 0.90 0.88 0.90

Test - - - - 0.90 - - - - - -

Results by dataset and type of data obtained using the Teacher/Student paradigm. Marked in bold are
the best values for each type of data in both training and validation. The values shown are for accuracy.

Looking at the results in Table 4.4, no substantial difference can be seen in the pre-
cision values according to the input data type. Taking into account, for example, the
results in the KITTI-360 dataset, the lowest validation value is 0.79 and the highest 0.86,
making a disparity of 0.07. The differences in test values are equally minimal, 0.08 be-
tween the value achieved with the 3D-Masked data and the value achieved with the RGB
images. This pattern seems to be repeated across datasets, which leads us to think that
the pre-processing of the data does not seem to be such a relevant issue.

Focusing on the validation results obtained by the different architectures, there does
seem to be a notable difference. For example, in the RGB images of the KITTI-ROAD
dataset, there is a 0.25 difference between best and worst architecture. However, although
similar variations are repeated between the different datasets and data types, the best
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and worst-performing architectures do not seem to be the same. This variation leads us
to think that other factors cause the inequality, not the selected architecture.

The results do not seem to be very enlightening regarding the second working hypoth-
esis. Comparing the values obtained respectively with the baseline and the Teacher/Stu-
dent approaches (see tables 4.3 and 4.4), the differences between the values achieved on
validation are minimal, of the order of 0.01. The accuracy values achieved in testing are
also quite similar, the highest difference being 0.11, in the training of the KITTI-ROAD
dataset with RGB images.

The results obtained in the preliminary work for this research showed a slight im-
provement in almost all the Teacher/Student paradigm results concerning the direct clas-
sification. However, this improvement does not seem to have appeared during the current
research process. It is believed that this is because using the Teacher/Student paradigm
is a risky option, and the results vary considerably depending on the initial configuration
of the problem, especially if the data available are not extensive.

Finally, to validate the third working hypothesis, a comparison is made with the
results obtained using the KITTI dataset and both the baseline and the Teacher/Student
approaches (see tables 4.3 and 4.4). As can be seen, the results in the Alcalá dataset,
both in direct classification and with the Teacher/Student methodology, are substantially
higher than those achieved in KITTI in the same category. A clear example of this is the
difference in accuracy between the KITTI-ROAD dataset and the Alcalá dataset when
classifying RGB images.

In direct classification, the validation value for the Alcalá dataset is 0.15 better than in
KITTI-ROAD, and the test value is almost 0.4 higher. These results are repeated within
the Teacher/Student paradigm, with the Alcalá dataset being 0.15 better on validation
and 0.30 on testing.

These results, in our opinion, are very enlightening. The two KITTI datasets suffer
from a lack of images and field of view. These two points have been addressed in the
Alcalá dataset. It is believed that the evident improvement of the results is mainly
because the Alcalá dataset has a much wider field of view than the KITTI datasets.
After all, although it also has more images, the difference is not so significant, especially
when looking at the KITTI-360 dataset (see Section 4.2.2.1).

Since the Alcalá dataset is a proof of concept, a significant improvement in the image
number and field of view will be addressed with a complete dataset in the medium term3.

In addition, the lack of images in the KITTI dataset also seems to lead to some
instability and overfitting in the training that could be observed during the sweeps, see
Figure 4.17. This fluctuation makes us think that perhaps the conclusions obtained on
the first two hypotheses are not definitive since working with a more extensive dataset
would be necessary.

4.3.2.3 Metric-library training

Due to the results obtained with the Teacher/Student paradigm and the conclusions
drawn from them, it is believed that it is necessary to use the data available at that

3https://invett.aut.uah.es/intersectiondataset

https://invett.aut.uah.es/intersectiondataset
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Figure 4.17: Results of the first 100 runs of a sweep.

The plot shows on the ordinates axis the accuracy metric used to evaluate the performances of the system.
As the reader will notice, slightly different parameters lead to considerable differences in the accuracy
metric values.

moment more extensively to find better results. That idea led to the metric learning
library, [Musgrave et al., 2020b].

If we look at the previous methodology, the following process was used to calculate
the losses when training the student network. First, the distance between each student’s
network embedding and the centroid of the corresponding label within each batch is cal-
culated. Then, the losses are calculated based on how close the embedding is to the
corresponding centroid according to that measure. Finally, the losses are balanced ac-
cording to the weights of each class and averaged. Thus, if the batch has eight data
samples, the losses will be calculated as a function of eight different distances. Unlike
the Teacher/Student methodology, the metric-library does not use a teacher to set the
reference centroids to each label but uses distance functions to separate/join as much
as possible the embeddings returned by the network according to their labeling. This
methodology change allows the number of distances computed per batch to be substan-
tially increased since each batch element’s distance with each other can be calculated.
The actual number of distances to be estimated per batch is given by N/K, where k is
the number of batch elements needed to determine the distance and n is the batch size.
According to the researcher’s criteria, this exhaustive way of calculating the losses during
the training process could somehow circumvent the lack of data in the training sets. Then
a set of experimental activities were addressed to verify:

1. First, whether the new comprehensive way of calculating batch losses helps to alle-
viate the problems detected in the previous paradigm with the lack of images.

2. Second, once the lack of images is solved, the usefulness of the data transformations
and the improvement over the direct classification can be verified again.
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Before discussing the results, specific points that differentiate them from those shown
in the previous paradigm should be commented on.

Since the triplet loss function is implemented within the library and worked quite
well in the teacher network training, it is the one that has been chosen to perform all
subsequent training sweeps. In addition, the implementation of this loss function allows
selecting between different functions to calculate the distance between embeddings, which
allows a broader field of exploration.

In order to explore the widest solution space possible, as in the previous methodol-
ogy, a Wandb [Biewald, 2020] sweep has been deployed with the following parameters,
randomly chosen at each iteration:

• Learning Rate: max: 0.01 min: 2.5e-06

• Optimizer: adamW, adam, rmsprop, sgd, ASGD, Adamax

• Distance Function: SNR, Cosine Distance, Pairwise

• Batch Size: 8, 16, 34, 64, 128

• Margin: max: 5.0 min: 0.5 q: 0.5

• Miner: All, Hard

As a comment on the above parameters, the margin is the Triplet Margin Loss pa-
rameter that can be stated as the desired difference between the anchor-positive distance
and the anchor-negative distance.

As said before, the Metric-library offers different options to calculate the model’s
accuracy from the embeddings returned by the network. During the training, several of
them have been registered to have a global view of the training, but among them, MAPR
[Musgrave et al., 2020a] has been selected to establish which is the best performing model,
believing that it can be the one that best represents a good separation between classes. As
stated before in Section 4.2.3.2, since MAPR is not reasonably comparable to accuracy
and it is necessary to establish a direct classification methodology, the three proposed
methodologies have been tested to obtain the results. Because these methodologies have
only been used for testing, the validation values of the training cannot be fairly compared
with other methodologies such as Teacher/Student or direct classification.

Initially, training a fully connected layer to classify the embeddings returned by the
architecture was used as a testing methodology. This methodology was discarded since
the validation values of the training were relatively low, especially compared to the other
methodologies, and therefore the testing values were expected to be even lower.

Once this first methodology was discarded, the following two procedures were tested,
SVM and Mahalanobis distance. The results of both were similar, however in most
cases in the SVM was slightly better, so, and given the substantially longer computation
time required to calculate the covariance matrix to use the Mahalanobis distance, it was
decided to use SVM to perform the tests. Please notice that the values for the Metric
Learning paradigm reported in Table 4.5 always belong to the value returned by this last
methodology.
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Table 4.5: Results in Metric learning paradigm.

ResNet VGG
MobileNet

v3
Inception

v3

18 34 50 101 152 11 13 16 large small

K
IT
T
I

R
O
A
D

RGB
Validation 0.50 0.37 0.52 0.44 0.54 0.41 0.42 0.45 0.48 0.51 0.34

Test - - - - 0.56 - - - - - -

Warping
Validation 0.62 0.47 0.40 0.35 0.46 0.37 0.41 0.35 0.47 0.56 0.38

Test 0.60 - - - - - - - - - -

3D-BEV
Validation 0.49 0.48 0.41 0.43 0.47 0.29 0.32 0.30 0.44 0.40 0.36

Test 0.47 - - - - - - - - - -

3D-Mask
Validation 0.65 0.51 0.51 0.50 0.45 0.46 0.52 0.41 0.49 0.54 0.59

Test 0.72 - - - - - - - - - -

K
IT
T
I

36
0

RGB
Validation 0.32 0.64 0.64 0.59 0.74 0.59 0.23 0.25 0.55 0.53 0.72

Test - - - - 0.69 - - - - - -

Warping
Validation 0.63 0.65 0.31 0.42 0.38 0.65 0.31 0.60 0.64 0.41 0.44

Test - 0.78 - - - - - - - - -

3D-BEV
Validation 0.57 0.53 0.29 0.40 0.62 0.36 0.42 0.33 0.67 0.56 0.60

Test - - - - - - - - 0.73 - -

3D-Mask
Validation 0.65 0.61 0.76 0.78 0.79 0.74 0.77 0.78 0.78 0.76 0.78

Test - - - - 0.81 - - - - -

A
LC
A
LÁ

RGB
Validation 0.72 0.78 0.83 0.75 0.50 0.80 0.45 0.84 0.70 0.60 0.40

Test - - - - - - - 0.94 - - -

Warping
Validation 0.74 0.81 0.72 0.52 0.81 0.71 0.77 0.59 0.84 0.83 0.82

Test - - - - - - - - 0.91 - -

Results by dataset and type of data obtained using the metric learning paradigm. Marked in bold are the
best values for each type of data in both training and validation.

Looking at the testing results between Teacher/Student and Metric learning
paradigms (see Tables 4.4 and 4.5), the higher number of comparison examples per batch
has not substantially improved accuracy. Many values are similar or differ by only a few
decimal places, such as the warped images in the KITTI-ROAD dataset or the RGB im-
ages in the KITTI-360 dataset. In some cases, as with the 3D images in the KITTI-ROAD
dataset, it has even worsened slightly. Therefore, it is believed that the same problem of
missing images can be seen in both methodologies and that further comparison between
the available data has not led to a substantial improvement.

In turn, the comparison between the Baseline and the metric learning approach (Ta-
bles 4.3 and 4.5) yields similar conclusions to those in Section 4.3.2.2. As mentioned
above, the values are still very similar and have not led to a change in the trend.

Looking backward to the previous comparisons with the Teacher/Student paradigm,
the training using this new methodology seems to validate the assumptions established
earlier for the first methodology. Comparing the results obtained in the Alcalá dataset
with those obtained in the other two KITTI datasets, a substantial improvement in
accuracy values can be observed. The accuracy reaches its highest level, with a 0.3
decimals increment, comparing the Alcalá dataset and the KITTI-ROAD dataset using
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RGB images. These results virtually confirm that the critical point, as in the previous
methodology, is above all the camera’s field of view with which the images are recorded.

In order to explore the results further, they are broken down into other types of figures.
Figure 4.18 shows the confusion matrices of the best tests by training methodology and
dataset. As can be seen, the results are pretty good, more than it might seem if only the
combined accuracy of the seven classes is evaluated. These disaggregated results show
that the system’s overall performance is good and that with better starting conditions,
such as a better dataset, it can be excellent.

(a) (b) (c)

(d) (e) (f)

Figure 4.18: Confusion matrix in testing for the single-frame methodologies.

Different confusion matrix results in (a) student KITTI-ROAD, (b) student KITTI-360, (c) student
Alcalá, (d) metric KITTI-ROAD, (e) metric KITTI-360, (f) metric Alcalá. Please notice that in (a) and

(d) we did not introduce straight roads (type-zero intersections).

4.3.2.4 Recurrent Network Scheme Results

As stated before, it seems a reasonably straightforward deduction that vehicle traffic is
an event that runs overtime. The approach to an intersection is not an event that only
exists at point t. As the vehicle progresses to the junction, it looks logical to think it
will receive more information. Therefore, it appears that if it is possible to group all the
information from instant t to instant t + n when the car is already at the intersection,
better accuracy should be achieved when classifying each intersection. With this idea in
mind, the next step considered is to group, in order of approach, all the embeddings that
belong to the same intersection to be classified as a single sequence. The experimental
activities were addressed to verify:
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1. First, checking if temporal integration helps in achieving the goal of classifying
intersections.

2. Second, if possible, try to see if this new approach offers more light on the previous
results.

As explained in Section 4.2.4, the inclusion of an Recurrent Neural Network (RNN)
was the most straightforward methodology to implement since they can directly work with
embeddings as input. Training has been performed with two selected RNN architectures,
GRU and LSTM. Preliminary results for both structures were very similar, with slightly
superior ones belonging to the LSTM network. Therefore, the subsequent training was
performed with an LSTM architecture. Tests have also been performed in such a way
that it is possible to obtain a final classification of the embeddings returned by the RNN,
being the options to choose, as specified in Section 4.2.4.1 SVM, Mahalanobis, and Fully
connected layers. In this case, unlike in the single-frame approaches, the best results
have been obtained by training a fully connected layer while training the RNN network
architecture. In order to explore the most comprehensive solution space possible, as in
the single-frame approaches, a Wandb [Biewald, 2020] sweep has been deployed with the
following parameters, randomly chosen at each iteration:

• Learning Rate: max: 0.01 min: 2.5e-06

• Optimizer: adamW, adam, rmsprop, sgd, ASGD, Adamax

• Loss Function: Cross Entropy, Focal

• Batch Size: 16, 34, 64

• FC dropout: max: 0.5 min: 0.1 q: 0.1

• LSTM dropout: max = 0.5 min = 0.1 q = 0.1

• LSTM hidden layer: 256, 128, 64, 32, 16, 8

• LSTM layers: 1, 2

As a comment to the above parameters, the dropout of the fully connected layer is
located just between the embedding and the classifier. The Focal Loss (FL) function has
been implemented from the [Lin et al., 2017b].

Regarding the first assumption, Table 4.6 does not reflect that temporal integration
has significantly changed the results. The validation values have increased in some cases,
as in the KITTI-ROAD 3D images, but the test value is significantly worse, indicating
overfitting. However, looking at the results in the Alcalá dataset, the values for the three
paradigms are relatively similar. This connection leads us to think that the problems from
previous approaches may have been transferred to this one. Some comparisons were made
between the results obtained by the LSTM and the results obtained by the single-frame
approach. A simple temporal integration was made by voting between the results of all
the frames of the same sequence to make a fair analysis. The results were very similar,
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Table 4.6: Results in multi-frame paradigm.

KITTI ROAD KITTI-360 Alcalá

validation Test validation Test validation Test

RGB 0,69 0,55 0,9 0,85 0,85 0,84
Warping 0,82 0,45 0,82 0,73 0,91 0,92
3D-BEV 0,88 0,65 0,84 0,79 - -
3D-Mask 0,9 0,7 0,89 0,81 - -

Results by dataset and type of data obtained using temporal integration
schemes. The accuracies in testing greatly decreases in all configurations
on KITTI datasets but not with the Alcalá one.

and analyzing them in-depth leads us to confirm the assumptions in previous points. The
problem lies on two fronts, the number of images and the viewing angle. The lack of
images produces that when grouping them in sequences, the examples used to train the
LSTM are smaller than in a single-frame approach, so it seems logical that the overfitting
has increased. The lack of viewing angle in the KITTI datasets means that the network
does not have enough information to extract good features from the crossing, something
that cannot be solved with temporal information. If the feature extractor cannot divide
the embeddings correctly, the LSTM will not be able to classify accurately.

4.3.2.5 GAN related results

Switching to GAN architectures’ results, ten thousand RGB images and ten thousand
warped images have been generated. As stated in Section 4.2.5, a conditional setting was
used for the warped images but a normal one for the RGB images since it was noticed
that a significant detriment in performance, obtaining images of poorer quality and with
strange artifacts. Figures 4.15 and 4.16 show some of the examples of the generated RGB
and warped images, respectively. Before including the artificially generated images in the
original train dataset, it was tested if they were close to the real ones by feeding them
to a model trained with images of KITTI-ROAD, KITTI-360, and the recorded datasets
and comparing the codes in the embedding space. In order to do so, distances of these
codes to the nearest clusters’ centroids previously computed with the authentic images
were measured. The same was done with a random dataset and checked the statistics of
the three setups, showing consistency among the generated and authentic images, while
random images’ embeddings were far from all centroids.

Before including the artificially generated images in the original train dataset, it was
tested if they were close to the real ones by feeding them to a model trained with im-
ages of KITTI-ROAD, KITTI-360, and Alcala datasets and comparing the codes in the
embedding space. In order to do so, distances of these codes to the nearest clusters’
centroids previously computed with the authentic images were measured. The same was
done with a random dataset and checked the statistics of the three setups, showing con-
sistency among the generated and authentic images, while random images’ embeddings
were far from all centroids.
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Table 4.7 shows accuracy results for the Teacher/Student paradigm as well as for the
metric learning scheme for both RGB and warped images. Please note that the MAPR
metric is used for validation results in the metric learning scheme. Dataset Real refers
to KITTI-ROAD, KITTI-360, and Alcala, while Real + Fake refers to the same datasets
together with the generated images. An improvement in test performance can be seen
for the four setups when augmenting the dataset with GAN images. In the RGB setting,
validation accuracy is lower in the case of the augmented dataset, which reaffirms the
hypothesis that it improves generalizability.

Table 4.7: Results with GAN-Augmented Dataset.

Warped RGB

Teacher/Student Metric Learning Teacher/Student Metric Learning

Validation Test Validation Test Validation Test Validation Test

Real 0.890 0.894 0.901 0.872 0.885 0.894 0.893 0.817

Real + Fake 0.932 0.935 0.920 0.928 0.876 0.935 0.882 0.935

4.3.2.6 Pytorch video results

The pilot experiments have been performed using ResNet3D and X3D networks [Feicht-
enhofer, 2020] together with the KITTI-360 and Alcalá datasets. Few changes to the
original code were applied. Among them, all the mirroring data augmentation schemes
were removed in the Charades data loader implementation and modified the number of
classes from 157 to our seven basic geometries. Another distinctive feature of the exper-
iments is related to the length of the input data, which strongly differs from the original
video feed. As the intersections’ frames were manually selected, the part of the code
where a clip is randomly sampled from a whole video sequence was modified. Research
experimental activities were addressed to verify:

1. First, how the video-analysis networks handle both RGB and MBEVs images, com-
paring their performances with respect to the learning schemes proposed in this
research. This test was executed using the KITTI360 and KITTI360-masked im-
agery;

2. Second, how different frame rates affect the classification capabilities. For this
second test, the Alcala-1 sequence was used, subsampling the original 30 fps to 6
and 15 fps. These experiments could not have been performed with the KITTI
sequences due to the dataset low frame rate. Please notice that all the actions
datasets originally used with these networks share the same length, which is not
realistic with videos containing intersection approaches due to different speeds of
the vehicle while approaching a generic intersection.

These tests were repeated using both the previously mentioned ResNet3D and X3D
approaches. The system was trained on an Nvidia DGX-A100 machine, following the
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video classification tutorial provided in the PytorchVideo GitHub repository, a variable
epoch number between 200 and 1000 iterations with the CosineAnnealingLR Pytorch
scheduler and the AdamW optimizer with different learning rates between 1e-1 and 1e-
5 and weight decay set to 1e−4. As for the image size, a standard 224x244 size was
used, similar to all the other approaches. Regarding the first experiment, tests showed
that different clip frame-rate does not significantly impact the prediction performances,
see Figure 4.19. This knowledge is of particular interest and suggests that high frame
rates are not strictly required for this analysis, suggesting that the network can infer the
geometry with just a few frames. A first interesting comparison can be made with respect
to the different frame length experiments. As shown in Figure 4.21c, the performances of
the LSTM system are better than all the different experiments performed with both the
ResNet3D and the X3D models and the different time lengths used. It is worth saying that
the Pytorch implementation of the LSTM considers different frame lengths, something
that, by its nature PytorchVideo framework does not. This framework restriction is a
clear advantage in favor of LSTMs approaches, as the approach to an intersection trivially
depends on the vehicle’s speed. This issue might be solved with approaches that involve
multiple pathways for activity recognition, such as the SlowFast approach. However,
this model could not be investigated further due to the PytorchVideo code’s technical
issues and the fact that it is at an early stage of development at the time of the research.
Lastly, given the results, it can be concluded that the investigated networks do not achieve
better results concerning the RGB inputs. The second experiment further corroborates
the latter opinion, and here the advantages of MBEV images are undisputed. As shown
in Figures 4.20a-4.20b and 4.20c-4.20d, both the transformed images have better results
with respect to the corresponding RGB images.

(a) (b) (c) (d)

Figure 4.19: Confusion matrix test results with different frame length.

(a/b): ResNet3D model with input at 15 or 6 fps. (c/d): X3D model with input at 15 or 6 fps. Dataset:
Alcalá-1, test-split, 51 total intersections.

Regarding the comparison between ResNet3D and X3D architectures, no clear advan-
tage within the two architectures has been observed. The comparison with respect to the
most similar temporal-sequence-oriented architectures is shown in Figure 4.21. As the
reader can see from Figure 4.21a, the LSTM approach outperforms both ResNet3D and
X3D approaches of Figures 4.20a and 4.20c, while the corresponding MBEV experiments
obtain much more similar results, see Figures 4.21b vs. 4.20b and 4.20d respectively for
ResNet3D and X3D.



4.3. Experimental Analysis 93

(a) (b) (c) (d)

Figure 4.20: Confusion matrix test results with different view.

(a/b): ResNet3D model, using RGB and MBEVs respectively. (c/d): X3D model, using RGB and MBEVs
respectively. Dataset: KITTI360, test-split, 48 total intersections.

(a) (b) (c)

Figure 4.21: Confusion matrix test LSTM results.

Results using KITTI360 dataset and RGB data (a), MBEVs (b) and Alcalá-1 RGB dataset (c).

4.3.3 Experimental conclusions

The reader might appreciate that this doctoral thesis’s research on intersection classifi-
cation has suffered from a somewhat notorious drawback. This drawback has led to a
noticeable lack in the research itself: comparative data. As mentioned in Chapter 2, it
can be observed that work on intersection detection is not very profuse among the re-
search community, as might be others, such as road segmentation. In our opinion, this is
due to two main factors. The first, which is quite evident throughout this research work,
lies in the lack of data. To the best of our knowledge, there is no specific dataset for
urban intersection classification. This lack of data is not a minor problem, as it limits
the research on two fronts. The first, and perhaps the most time-consuming, is that any
research in the field must go through creating its own dataset from an already published
dataset. Although it may seem a trivial statement, the latter must meet specific condi-
tions for its use. Not just any dataset will do for autonomous driving since it must have
enough occurrences for each type of intersection and be sufficiently differentiable so that
the training is not biased. These conditions are not easy to achieve since many of the
currently published datasets consist of fairly predefined and sometimes even repetitive
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routes. The second is given by the previous need, which results in the fact that each
investigation will work with a different dataset as a general rule. Even if the initial data
set chosen is the same for two different investigations, the final result with which one
works will certainly have notable differences due to differences in labeling. This restric-
tion implies that if each research paper uses its own dataset. Strictly speaking, it cannot
be said that comparisons are not possible, but in our opinion, they would not be fair since
they carry over the biases of the dataset’s creation.

On the other hand, and perhaps the more subjective of the two factors, lies in the
severe difficulty of the problem. A human being can visualize an intersection and under-
stand that he is at one when driving. However, if we ask about the type of intersection,
s/he may not even be able to classify it in some cases. The construction of cities, es-
pecially older ones such as those in Europe, does not always follow a clear geometrical
pattern, and of course, until recently, no thought was given to vehicles when urbanizing
them. The result is that intersections have practically infinite possibilities of classifica-
tion, not so much by the number of streets that converge but by the angle of convergence
between them. In addition, the environment in cities is highly changeable, generally due
to the vehicles themselves and parking places, which in many cases can make it very
difficult not only to classify but also to stop due to the lack of ”vision” that this causes.
Combining these two factors makes it very difficult to compare research papers without
incorporating any bias into the research, so it becomes essential to create a proprietary
data set that allows all research to start from the same place. In addition, this could
attract research in this particular field, which, as presented in Chapter 1, is of critical
importance.

Against this background, as a final qualitative conclusion to the results, we can say
that the results obtained throughout the in-depth study of intersection classification are
considered to be quite enlightening. It can be considered that the dataset is much more
critical than the methodology, obviously without forgetting about it. It is necessary
that the dataset has enough information, number of images, and that it is as complete
as possible, enough angle of view of the camera so that the results when classifying
intersections are as relevant as possible to be included in a system.

A major conclusion of this research is that this is a field in which there is still much
research to be done before it can be used in an autonomous vehicle, but it is still of crucial
importance.



Chapter 5

Conclusions and Future Work

The objective of this thesis was to implement, using deep learning, optimization, and
data preprocessing techniques, environment identification systems that allow the safe
navigation of an autonomous car in an urban environment. Together with a suitable
navigation system, these techniques could radically reduce the percentage of accidents
and fatalities that occur due to collisions between vehicles, run-overs, and off-roads. In
order to achieve the proposed objectives, the following techniques have been used:

1. Semantic segmentation

(a) Point cloud data transformation.

(b) Data integration through the creation of a new network architecture.

2. Network optimization

(a) Feature map visual inspection.

(b) Feature map analysis through connected graphs.

3. Classification

(a) Metric Learning.

(b) Teacher/Student training paradigm.

(c) Temporal integration.

(d) Data transformation through three-dimensional and RGB data fusion.

5.1 Main Contributions

The main contributions of this thesis are as follows:

1. Creation of a specific network architecture for semantic segmentation that allows
the integration of data from different sources.

2. Creation of a methodology for the projection of three-dimensional points on 2d
images for road segmentation.
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3. Creation of a feature map analysis method for use in network optimization.

4. Analysis of different methodologies for improving classification by deep learning in
the face of high difficulty problems.

5. Analysis of the usefulness of input data pre-processing when classifying intersections
using deep learning.

6. Preliminary study of the usefulness of synthesized images created using a GAN
network for solving the problem of classifying intersections in the field of intersection
classification.

5.2 Future work

Despite the good results obtained for each of the contributions during the research process
required for this doctoral thesis, there are still many possibilities for future research, some
of which are listed below.

1. A deeper and more accurate investigation of the optimization techniques proposed
in the proof of concept in section 4 to validate or refute the results in a consistent
manner.

2. Study of the possibility of using new architectures, such as the BiSeNet upgrade,
BiSeNet v2 [Yu et al., 2020], for the upgrade of the 3D-Deep semantic segmentation
network architecture proposed in this thesis.

3. Creation and release of a dataset of intersections in which the images have a suffi-
cient viewing angle to have as much information as possible of what is in front of
the ego-vehicle.

4. Implementation of a GAN-type system for generating synthesized images similar
to those used for intersection classification to allow a much more robust training
of any classification system. These images will also be included in the previously
proposed dataset in 1.

1https://invett.aut.uah.es/intersectiondataset

https://invett.aut.uah.es/intersectiondataset
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Table A.1: 3D-Deep trainin runs. (1/2)

Resnet Model Batch Size Momentum Optimizer Learning Rate Scheduler Kfold F1 Average F1 Maximum

18

1 0,99 ASGD 0,02 None 3

96,16 96,51
34 96,58 97,25
50 95,68 96,84
101 96,70 97,13
152 96,80 97,06

18

4 0,9 ASGD 0,02 None 3

96,22 96,81
34 96,66 96,78
50 97,33 97,63
101 96,88 97,05
152 96,91 97,24

18

4 0,9 ASGD N/A
Triangular

(0.25-0.0001)
4

95,78 96,98
34 96,89 97,16
50 96,94 97,59
101 96,58 97,32
152 96,82 97,42

18

4 0,9 ASGD N/A
Decreasing Triangular

(0.25-0.0001)
4

95,69 ✗

34 95,24 ✗

50 ✗ ✗

101 ✗ ✗

152 ✗ ✗

Set of runs for hyperparameter optimization in 3D-Deep architecture with panoramic view imaging
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Table A.2: 3D-Deep trainin runs. (2/2)

Resnet Model Batch Size Momentum Optimizer Learning Rate Scheduler Kfold F1 Average F1 Maximum

18

4 0,9 ASGD 0,25 Polynomial 4

96,65 97,18
34 96,70 97,01
50 96,81 97,24
101 96,65 97,37
152 96,87 97,30

18

4 0,9 ASGD 0,125 Polynomial 4

97,05 97,18
34 97,19 97,33
50 97,37 97,66
101 97,14 97,65
152 97,18 97,45

18

4 0,9 ASGD 0.0625 Polynomial 4

96,45 97,16
34 97,33 97,77
50 96,95 97,40
101 96,84 97,68
152 97,29 97,68

18

4 0,9 ASGD 0.03125 Polynomial 4

96,80 97,12
34 96,93 97.00
50 96.76 97.21
101 96.60 97.04
152 97.11 97.35

Set of runs for hyperparameter optimization in 3D-Deep architecture with panoramic view imaging
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Table A.3: 3D-Deep trainin runs BEV. (1/2)

Resnet Model Batch Size Momentum Optimizer Learning Rate Scheduler Kfold F1 Average F1 Maximum

18

4 0,9 ASGD 0,25 Polynomial 4

96,64 97,00
34 96,21 97,13
50 96,39 97,02
101 97,03 97,49
152 96,14 96,66

18

4 0,9 ASGD 0,125 Polynomial 4

96,47 97,23
34 96,88 97,52
50 96,12 96,87
101 96,23 97,12
152 96,72 97,46

18

4 0,9 ASGD 0.0625 Polynomial 4

96,02 97,33
34 96,53 96,95
50 96,28 96,57
101 96,71 97,23
152 96,76 97,85

18

4 0,9 ASGD 0.03125 Polynomial 4

95,88 97.06
34 96,66 97.21
50 96.41 96.80
101 96.81 97.08
152 96.34 97.20

Set of runs for hyperparameter optimization in 3D-Deep architecture with Birds eye view imaging
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Table A.4: 3D-Deep trainin runs BEV. (2/2)

Resnet Model Batch Size Momentum Optimizer Learning Rate Scheduler Kfold F1 Average F1 Maximum

18

4 0,9 ASGD 0,25 Polynomial 4

95,84 97,48
34 96,44 96,85
50 95,45 96,95
101 95,88 97,03
152 97,18 97,98

18

4 0,9 ASGD 0,125 Polynomial 4

97,02 97,45
34 96,21 96,51
50 97,97 97,55
101 97,29 97,77
152 97,33 97,50

18

4 0,9 ASGD 0.0625 Polynomial 4

96,95 97,24
34 97,13 97,63
50 96,71 97,11
101 97,07 97,33
152 97,26 97,66

18

4 0,9 ASGD 0.03125 Polynomial 4

96,85 97.48
34 96.76 97.15
50 97.24 97.92
101 97.34 97.66
152 97.16 97.69

101 4 0.9 ASGD 0.03125 Polynomial 10 97.09 97.85

Set of runs for hyperparameter optimization in 3D-Deep architecture with Birds Eye view imaging
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Publications Derived from this PhD
Dissertation

B.1 Journal Publications

2021 CAPformer: Pedestrian Crossing Action Prediction Using Transformer, Javier
Lorenzo, Ignacio Parra Alonso, Ruben Izquierdo, Augusto Luis Ballardini, Álvaro

Hernández Saz, David Fernández Llorca, Miguel Ángel Sotelo, Sensors (ISSN:
1424-8220), DOI: 10.3390/s21175694.

2021 *Urban Intersection Classification: A Comparative Analysis, Augusto Luis Bal-

lardini, Álvaro Hernández Saz, Sandra Carrasco Limeros, Javier Lorenzo Dı́az,

Ignacio Parra Alonso,Noelia Hernández Parra, Iván Garcia Daza, Miguel Ángel

Sotelo, Sensors (ISSN: 1424-8220), DOI: 10.3390/s21186269.

B.2 Conference Publications

2020 License Plate Corners Localization Using CNN-Based Regression, David Fernán-

dez Llorca; Ignacio Parra Alonso; Héctor Corrales Sánchez; Mónica Rentero Alonso

de Linaje; Rubén Izquierdo Gonzalo; Álvaro Hernández Saz; Iván Garćıa Daza.,
Lecture Notes in Computer Science (ISSN: 0302-9743), DOI: 10.1007/978-3-030-
45096-0 14.

2020 *3D-DEEP: 3-Dimensional Deep-learning based on elevation patterns for road
scene interpretation, Álvaro Hernández Saz; S. Woo; Héctor Corrales Sánchez;

Ignacio Parra Alonso; E. Kim; David Fernández Llorca; Miguel Ángel Sotelo

Vázquez., IEEE Intelligent Vehicles Symposium (IV-IEEE 2020), Las Vegas
(EEUU).
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106 Publications Derived from this PhD Dissertation

2021 *Model Guided Road Intersection Classification, Augusto Luis Ballardini, Álvaro

Hernández Saz, Miguel Ángel Sotelo, IEEE Intelligent Vehicles Symposium (IV-
IEEE 2021), Nagoya (Japan).

B.3 Future Publications

2022 *Multi-Season Multi-weather Road Intersection Dataset, Augusto Luis Ballardini,
Álvaro Hernández Saz, Sandra Carrasco Limeros, Miguel Ángel Sotelo, writing in
progress.

*Publications directly related to this thesis.
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