
sensors

Article

CAPformer: Pedestrian Crossing Action Prediction
Using Transformer

Javier Lorenzo 1,* , Ignacio Parra Alonso 1 , Rubén Izquierdo 1 , Augusto Luis Ballardini 1 ,
Álvaro Hernández Saz 1 , David Fernández Llorca 1,2 and Miguel Ángel Sotelo 1,3

����������
�������

Citation: Lorenzo, J.; Alonso, I.P.;

Izquierdo, R.; Ballardini, A.L.;

Saz, Á.H.; Llorca, D.F.; Sotelo, M.Á.

CAPformer: Pedestrian Crossing

Action Prediction Using Transformer.

Sensors 2021, 21, 5694. https://

doi.org/10.3390/s21175694

Academic Editor: Kyandoghere

Kyamakya

Received: 5 July 2021

Accepted: 16 August 2021

Published: 24 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 INVETT Research Group, Universidad de Alcalá, Campus Universitario, Ctra. Madrid-Barcelona km, 33, 600,
28805 Alcalá de Henares, Spain; ignacio.parra@uah.es (I.P.A.); ruben.izquierdo@uah.es (R.I.);
augusto.ballardini@uah.es (A.L.B.); alvaro.hernandezsaz@uah.es (Á.H.S.);
david.fernandez-llorca@ec.europa.eu (D.F.L.); miguel.sotelo@uah.es (M.A.S.)

2 Joint Research Center, European Commission, 41092 Seville, Spain
3 INVETT Research Group, Colegio de San Ildefonso, Universidad de Alcalá, Plaza de San Diego s/n,

28801 Alcalá de Henares, Spain
* Correspondence: javier.lorenzod@uah.es; Tel.: +34-91-885-6702

Abstract: Anticipating pedestrian crossing behavior in urban scenarios is a challenging task for
autonomous vehicles. Early this year, a benchmark comprising JAAD and PIE datasets have been
released. In the benchmark, several state-of-the-art methods have been ranked. However, most
of the ranked temporal models rely on recurrent architectures. In our case, we propose, as far as
we are concerned, the first self-attention alternative, based on transformer architecture, which has
had enormous success in natural language processing (NLP) and recently in computer vision. Our
architecture is composed of various branches which fuse video and kinematic data. The video branch
is based on two possible architectures: RubiksNet and TimeSformer. The kinematic branch is based
on different configurations of transformer encoder. Several experiments have been performed mainly
focusing on pre-processing input data, highlighting problems with two kinematic data sources: pose
keypoints and ego-vehicle speed. Our proposed model results are comparable to PCPA, the best
performing model in the benchmark reaching an F1 Score of nearly 0.78 against 0.77. Furthermore, by
using only bounding box coordinates and image data, our model surpasses PCPA by a larger margin
(F1 = 0.75 vs. F1 = 0.72). Our model has proven to be a valid alternative to recurrent architectures,
providing advantages such as parallelization and whole sequence processing, learning relationships
between samples not possible with recurrent architectures.

Keywords: pedestrian; prediction; action classification; transformer; deep learning; autonomous vehicles

1. Introduction
1.1. Context

Road safety is one of the main concerns in the world, being the eighth leading cause
of death and the first among young people between 5 and 29 years old. Traffic accidents
caused approximately 1.35 million deaths and between 20 and 50 million of non-fatal
injuries worldwide in 2016. The social and psychological problems arising from road
accidents are also followed by a considerable impact on the economy, costing 3% of gross
domestic product in most countries [1].

Vulnerable road users (VRUs) represent more than half of all these deaths. Pedestrian
Vulnerable Road User (VRU) group is the most affected one in urban roads in European
Union, with 40% of the total VRUs deaths, as stated by European Transport Safety Council
(ETSC) [2].

Thanks to various European Union (EU) initiatives and actions, the number of road
fatalities has been decreasing since 2011 following a promising and continuous trend.
However, it has not been enough to achieve the initial target of 50% reduction by 2020. To

Sensors 2021, 21, 5694. https://doi.org/10.3390/s21175694 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6350-2460
https://orcid.org/0000-0002-3889-018X
https://orcid.org/0000-0002-6722-3036
https://orcid.org/0000-0001-6688-5081
https://orcid.org/0000-0002-3779-6474
https://orcid.org/0000-0003-2433-7110
https://orcid.org/0000-0001-8809-2103
https://doi.org/10.3390/s21175694
https://doi.org/10.3390/s21175694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175694
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175694?type=check_update&version=2

Sensors 2021, 21, 5694 2 of 22

continue this reduction, a new ambitious long-term goal has been established, pursuing
zero road deaths by 2050. The main tools proposed to reach this goal, try to accommodate
human error: highlighting better legislation around risks, such as speeding, drinking while
driving, and mobile phone distractions. In addition to these measures, automated, and
Autonomous Vehicles (AVs) can provide a reliable platform to help increase human safety
within the traffic scenario.

1.2. Motivation

Car-to-pedestrian impacts are one of the most frequent accidents occurring in urban
environments due to the high level and intensity of interactions between vehicles and
pedestrians. Car manufacturers are developing Autonomous Emergency Braking (AEB)
systems [3] to support the driver in avoiding when possible (by autonomous braking) or
mitigating such crashes. These systems, which depend on the accuracy of the pedestrian
detection system, can be much more effective if they can anticipate the intention or action
of pedestrians to cross, as an experienced driver does.

Understanding human behavior has been widely studied through trajectory predic-
tion systems (see [4] for a detailed overview). However, as discussed in [5], only using
kinematics and positions of humans is not enough to anticipate human action, since global
awareness of the scene is necessary, through semantic 3D maps. Although trajectory-based
are suitable for this task, they need annotated 3D data and map information. To the best
of our knowledge, there is currently no public dataset with these characteristics. As an
alternative, camera sensor data can be used for behavior understanding at a higher level,
treating the problem as a classification task and establishing as optional the use of maps.

The understanding of human behavior from video data, also known as video action
recognition, has experienced considerable development over the last decade due to the
rise in popularity of deep learning and the lower cost of hardware (read [6] for a more
detailed overview). These methods rely on hidden patterns from camera sensor data to
predict the correct action being performed by humans, exploiting both temporal and spatial
data features.

Recurrent models have been one of the main options in temporal tasks over the last
years. However, since the proposal of the Transformer architecture [7], this new architecture
has increased in popularity due to its major improvements in language translation and
other natural language processing tasks. These models benefit from parallelization and
input sequences are processed as a whole, reducing the risk of forgetting past information.

Recently, the first pedestrian benchmark [8] for crossing action prediction has been
released. This work helps in the standardization of the results of the proposed models in
the task, allowing a just comparison by using the same splits of data sequences and the
same processing techniques.

In this work, we propose a new multi-branch model where all non-image information
is processed by a transformer-based model. As far as we are concerned, this is the first
method that proposes a model based on this architecture. Although our proposed model
follows a similar pipeline to the best performing models in crossing action prediction
problem, we innovate in the blocks rather than in creating a different pipeline, including
novel methods for both video and kinematics branches. In the video branch, we confirmed
that TimeSformer model, based on transformer architecture, is suitable for encoding video
information and it is successful in a fine-tuning strategy and that 3D-shifts modules pro-
posed in RubiksNet network can considerably minimize the size of the model with respect
to 3D convolutions, maintaining comparable results. In the kinematics branch, the usage of
transformer encoder architecture accelerates training with parallelization and allows the
computing of relationship among all samples in input sequence. In addition, instead of
using a different encoder for each feature, we used a single encoder which combines all of
the kinematic features. In our proposed model, we use the previous benchmark for training
and evaluation, but we propose alternative pre-processing techniques and strategies for
the different sources of input data, to increase the performance before the optimization of

Sensors 2021, 21, 5694 3 of 22

the model. We perform a set of experiments to quantify the effect of these pre-processing
techniques and empirically highlight problems found with some of the input features.
Finally, to validate the proposed architecture, we compare it with the one proposed in the
benchmark, reaching state-of-the-art results.

2. Related Work

Previous work on the pedestrian crossing action prediction task has been structured
by dividing it into subsections. In each subsection, a dataset is introduced along with the
methods that use it in their experiments.

2.1. JAAD

In the field of AVs, several datasets contain pedestrian annotations that allow research
on pedestrian detection and tracking, which leads to trajectory prediction. However,
behavior information is not a common feature in these datasets. One of the first publicly
available dataset with behavior annotations was JAAD [9] (details in Table 1). For this
dataset, the authors proposed a group of baseline models based on convolutional neural
networks [10] focused on learning context and behavioral cues from a pedestrian to use
it to classify its crossing behavior. However, this approach is based solely on the current
frame without temporal information. From this work, most of the proposed systems rely
on temporal information, showing an improvement in the results.

Table 1. Information about the two datasets included in the benchmark. # of ann. fr. refers to
the number of annotated frames; SNC and SC refers to the number of non-crossing and crossing
pedestrians, respectively; Ego-veh. mot. refers to ego-vehicle motion.

of ann. fr. SNC SC Diff. Weather Diff. Loc. Ego-Veh. Mot.

JAAD 75 K 495 2291 Yes Yes No
PIE 293 K 512 1322 No No Yes

In [11], pedestrian 2D pose keypoints sequence from a specific time interval (≈0.5 s) is
used as an input to classify, with a random forest model, the pedestrian crossing action
being performed. In [12], precomputed features extracted from the complete sequence
of pose keypoints are used as input for a multi-branch 2D CNN network. In [13], whole
sequences of pedestrian’s keypoints are used in a similar way to the previous one, but
generating adjacency matrix representations based on the pose graph, as an approximation
to graph learning. Although the previous pose-based approaches rely on temporal data,
they do not use temporal models.

Most of the recent methods on the topic use temporal models. Among them, we can
highlight two commonly used architectures: recurrent neural networks and 3D CNNs.

One pure example of RNNs is [14], where an LSTM-based encoder-decoder architec-
ture is used to forecast future pedestrian bounding box coordinates and binary intention at
each future timestep. In [15], a combination of 2D CNN for image feature extraction (using
pre-trained models) and bidirectional RNNs (LSTMs and GRUs) are used for crossing
action prediction in a fixed future horizon (1s) using a fixed input temporal window of
≈0.5 s. Ghori et al. [16] also combine a 2D CNN model with an LSTM network, but using
the CNN for extracting pose information. Another example of this combination of 2D CNN
and RNN is explored in [17], where a multi-task model is proposed for action classification,
final crossing action, and the future bounding box coordinates forecasting. Reference [18]
proposes another multi-task approach based on this combination, where current action
recognition is predicted along with time to cross regression.

In [19], a 3D CNN is used as a classifier at the end of a pipeline for pedestrian crossing
behavior, which includes detection and tracking. The 3D convolutional model is trained
with the cropped pedestrians’ bounding boxes detected. On [20], a pedestrian crossing
intention recognition (PCIR) framework is proposed, which jointly infers both pedestrian

Sensors 2021, 21, 5694 4 of 22

crossing intention and scene perception. Scene perception is performed using an object
detector, which filters target pedestrians by only attending to pedestrians standing on
curbsides. Target pedestrian crossing intention is inferred using a 3D CNN. In addition
to the previous modules, distance information extracted from image data is encoded and
fused with the feature vector obtained with the previous 3D CNN. In [21] an end-to-end
method based on the previous one is developed improving its results by including pose
information. 3D CNNs are also used for video frame prediction as a previous step towards
crossing classification [22]. In [23], 3D networks are combined with convolutional LSTM
layers. However, these methods train the action classifier with whole future frames, treating
equally all the pedestrians on the scene.

2.2. TITAN and STIP

Although the previous work evaluated their models in JAAD, there are other datasets
with behavioral data. TITAN [24], is a relatively large dataset recorded entirely on the
streets of Tokyo. It contains fine-grained labeling of road agents’ actions. In [24] they also
propose a model which combines 2D and 3D CNNs and RNN models, however crossing
action is not the task in this approach.

Another dataset with crossing behavior, binary annotated in this case, is STIP dataset [25].
This dataset is recorded with a multi-camera setup and includes hand-labeled bounding boxes
at a low annotation rate. A tracking algorithm is used for sequence creation and to interpolate
the annotations at a higher rate. Reference [25] proposes a graph-based approach where a
scene graph is created for each pedestrian sequence to benefit from environment information.
After graph creation, a GRU recurrent model is used to anticipate crossing action. Although
these datasets are a good alternative to JAAD, they have restrictive terms of use.

2.3. PIE

In [26], the creators of JAAD released a new dataset, called PIE (details in Table 1),
recorded continuously in a single day in Toronto, with clear weather. In addition to label
more relevant objects than in JAAD, it includes ego-motion information of the car. This
new information is used in combination with estimated pose keypoints, bounding box
coordinates, and bounding boxes image crops to train a stacked GRU model in [5]. In
the same release article of PIE [26], a multi-task and multi-branch model is proposed. It
combines the use of LSTM layers for non-image information (bounding box coordinates
and ego-motion information through ego-vehicle OBD measures) and convolutional LSTM
layers for image information (bounding boxes crops). In addition to the intention estima-
tion, which uses human responses statistics as ground truth, the model predicts future
bounding box coordinates and ego-vehicle speed.

2.4. PePScenes

Due to the lack of 3D information in all the previous datasets, PePScenes [27] extends
nuScenes dataset [28] with behavioral annotations. A multi-branch model is proposed in
the same work which uses 3D trajectory, ego-motion, full-frame image sequences, and
map information as input data to a combination of 2D CNNs and LSTMs. A graph-based
model is proposed in [29]. It uses PePScenes’ 3D information as input to model pedestrians’
interactions with their environment through clustering and importance weighting.

2.5. Benchmark

Machine learning approaches discussed before, mainly based on deep learning, show
an increasing trend of crossing behavior understanding tasks. However, the lack of stan-
dardization in the evaluation of the models makes it virtually impossible to compare all
of them. Kotseruba et al. address this problem with the creation of a benchmark based
on JAAD and PIE datasets [8]. Several baselines are evaluated in it and a newly proposed
model called PCPA, combining a 3D CNN for video sequence embedding and GRU lay-
ers for pose keypoints, bounding box coordinates, and ego-vehicle speed. The attention

Sensors 2021, 21, 5694 5 of 22

mechanism is also included in the model as an enhanced feature fusion strategy. In [30],
the authors use a model based on PCPA which includes semantic information among the
input features. However, they only performed the evaluation on the JAAD dataset and
without including semantic information in the PCPA model for a fair comparison.

3. Proposed Approach

In this work, we propose CAPformer, a novel multi-branch deep learning temporal
model based on transformer architecture rather than recurrent layers. By avoiding recur-
sion, our transformer encoder processes input sequences as a whole, learning all possible
intersample relationships, and leaving no room for a possible loss in information.

3.1. Problem Formulation

Pedestrian crossing behavior anticipation is a special case of action recognition where
the model, instead of predicting the action performed through the video, predicts the final
action of the sequence with a limited observation interval as input.

This problem belongs to the group of binary classification, where the final pedestrian
crossing action at TTE = 0 (time to event) is inferred. As input features, a fixed-length
sequence of N frames is used. Sequences are extracted from the end part of pedestrian’s
tracks, being the last frame of each sequence (fN−1) between 1 and 2 s before the event.
In the case of the data used, all video sequences are recorded at a framerate of 30 fps.
Therefore fN−1 ∈ [TTE− 60, TTE− 30]). The output of each sequence is a probability for
each class, crossing and not crossing which sum 1.

3.2. System Description

Our proposed model is composed of three main blocks: two encoding blocks and one
fusion block. Figure 1 illustrates a detailed diagram.

Figure 1. Detailed model diagram. B stands for batch size, N is the sequence length, H is image
height, W is image width, BBs is bounding boxes coordinates.

3.2.1. Video Encoder Branch

The objective of the video encoder is to obtain an embedding vector of size d3D
for each video sequence in the batch. We have explored two architectures for this task:
RubiksNet [31] and TimeSformer [32]. All of them use sequences of length N/2 (N = 16
in the benchmark and our experiments). This length is the one used for training the
pre-trained models.

RubiksNet is a network capable of obtaining state-of-the-art results while maintaining
a high processing rate, thanks to its reduced number of parameters and operations. This
is achieved by using a learnable 3D spatiotemporal shift operation. On the other side,
TimeSformer is a slower network based on transformer architecture, which has been
introduced in the computer vision field and has achieved state-of-the-art results comparable
or even better than convolutional approaches (see [33] for a more detailed classification of
transformer architectures in computer vision field). The main reason for using TimeSformer
is the need for a reproducible environment for experimentation since RubiksNet contains

Sensors 2021, 21, 5694 6 of 22

custom CUDA blocks that use non-deterministic operations. We selected TimeSformer as
the reproducible solution to check if a fully transformer-based architecture can achieve
comparable results with the ones achieved by the current state-of-the-art method PCPA [8].

3.2.2. Kinematics Encoder Branch

This branch is in charge of encoding a heterogeneous group of features composed by
2D bounding box image coordinates, extracted directly from ground truth annotations, 2D
image coordinates of pose keypoints, obtained as the output of a pose estimation algorithm,
and ego-vehicle speed, a continuous variable obtained from the ground truth annotations
extracted from an OBD sensor. In Figure 1, the last dimension of each kinematic feature
represents the raw dimension of each sample in the sequence. In the case of bounding
boxes (BBs) coordinates this number depends on the strategy used (see Section 4.1.2). For
pose information, 36 value corresponds to 18 pairs of 2D coordinates, representing the
image localization of the 18 output keypoints of the pose estimation model. Since the three
features have different ranges, we normalized them using min–max scaling for bounding
boxes and pose keypoints, where the minimum and maximum values are obtained from
the image dimensions (maximum 1920 for x coordinate and 1080 for y coordinate and
minimum 0 for both coordinates), obtaining values between 0 and 1. Ego-vehicle speed is
z-score normalized (or standardized) by subtracting the mean and dividing by the standard
deviation of the training set.

This branch is based on different variants of the transformer encoder architecture
proposed initially in [7]. Two different encoder architectures (composed of L layers)
are proposed:

• ViT encoder: similar to the one proposed in [34] for image classification. It applies a
layer normalization on the embedded input before forwarding it into a multi-head
attention layer. Its output is added to the original embedded input through a residual
connection. After that, another layer normalization is applied and forwarded to a
multi-layer perceptron composed of two linear layers with a Gaussian error linear
units (GELU) activation between them. After another residual connection, the output
of the layer is used as input for the next layer. The L layer’s output is summarized and
the resulting vector is forwarded through a layer normalization and a simple feed-
forward layer. Dropout is applied through all the processes, after every feed-forward
layer, except for the last one. The diagram of this architecture is shown in Figure 2b;

• Vanilla transformer encoder: using the original proposed encoder in [7]. The main
difference with the previous one is the application of layer normalization. Instead
of applying it to embedded input, it is applied to the output of the second residual
connection. The diagram of this architecture is shown in Figure 2c. Another difference
is the usage of ReLU activation instead of GELU in the multi-layer perceptron.

Before forwarding features into the encoder, a linear embedding is applied to the raw
input x0, . . . , xN−1. This embedding consists of a feed-forward layer.

To account for the order of input data, a positional encoding vector p0, . . . , pN−1
is added to each position of the previous embedded sequence e0, . . . , eN−1. We have
experimented with two possibilities: ViT encoder uses a learned encoding initialized
randomly, sampled from the standard normal distribution (Equation (1a)); vanilla encoder
uses a fixed positional encoding as in [7] (Equation (1b)). In the equation, pos refers to the
position in the sequence, from 1 to N, and i corresponds to the position in the embedding
dimension, from 0 to d.

P ∼ N (0, 1) (1a)

P =


sin(pos

10000
2i
d
), i mod 2 = 0

cos(pos

10000
2i
d
), i mod 2 = 1

(1b)

Sensors 2021, 21, 5694 7 of 22

Feature embedder

x0 xN-1
...

e0 eN-1
...

+

p0 pN-1
...pC

CC

p0 pN-1
...p0 pN-1
...pC

C e0 eN-1

p0 pN-1
...p0 pN-1
...pC

C e0 eN-1

pCpC
+ +

Embedded input

(a) Embedding

 L

x̄

LN

MLP

+

LN

MHA

+

Linear

LN

(b) ViT

 L

x̄

MLP

+

+

LN

MHA

LN

Linear

LN

(c) Vanilla
Figure 2. Detailed diagrams of embedding procedure and transformer encoder architectures. MHA
stands for multi-head attention, LN for layer normalization, MLP for multi-layer perceptron. Grey
part of embedding diagram corresponds to the class token, which is used in ViT encoder.

The ViT encoder also includes a class token c, which is concatenated to the embed-
ded output of positional encoding. This token is a learnable parameter whose purpose
is to represent an aggregate sequence representation for classification tasks. Positional
encoding is also applied to it (pc). A detailed diagram of this embedding block is displayed
in Figure 2a.

The output dimension of the transformer encoder is the same as the input one.
Two different methods are applied to the sequence to summarize the temporal dimen-
sion: averaging over the temporal dimension and flattening the output logits into a
one-dimensional vector.

3.2.3. Feature Fusion Block

A feature fusion block is needed for joining the information of both branches of the
model to attain a final unique prediction. Two different alternatives for this block are tested
in the architecture:

• Concatenation through fully connected: The output of the video encoder is con-
catenated with the output of the kinematics encoder. This is forwarded through a
multi-layer perceptron with one hidden layer, dropout regularization, and a ReLU
activation. The output dimension of this layer corresponds to the number of classes;

• Modality attention: An attention mechanism is used to weigh the outputs of both
encoders. This attention mechanism is presented in [35] and also used in PCPA model
in the benchmark [8].

3.3. Training

This section briefly describes the datasets used and explains in more detail the loss
function used, the optimizer, the training schedule, and the hardware and software used
for training and testing.

3.3.1. Datasets

We used the three datasets proposed in the benchmark [8] for training and testing.
All of them are imbalanced with the non-crossing class being more represented than the
crossing one, except for the JAADbeh:

• JAAD [9]: This dataset is composed of 346 short clips (only 323 are used, excluding
low resolution and adverse weather or night ones) recorded in several countries us-

Sensors 2021, 21, 5694 8 of 22

ing different cameras. Two variants of the annotations are used in the benchmark:
JAADbeh and JAADall. JAADbeh includes only pedestrians with behavioral annota-
tions: 495 crossing and 191 non-crossing, giving rise to 374 non-crossing and 1760
crossing samples. JAADall comprises the entire set of pedestrians in the sequences,
adding 2100 non-crossing pedestrian far from the road, resulting in 6853 non-crossing
and 1760 crossing sequence samples. The sequence samples from pedestrian tracks
are extracted using a sliding window approach with an 80% of overlap between
them. Bounding boxes are manually annotated and provided for each pedestrian
track. However, ego-vehicle state information is not measured, and the only related
annotation is the categorical ego-vehicle state. Since this annotation is not used in the
original results in the benchmark, we decided not to include it in our ranking process;

• PIE [26]: This dataset is composed of a continuous recording session in Toronto,
Canada, spanning 6 hours during the day in clear weather. In addition to bounding
boxes, as in the case of JAAD, PIE provides real measurements of the ego-vehicle
state, obtained using an On-Board Diagnostics (OBD) sensor. As in the case of the
benchmark, we decided to include this information as input for some of the trained
models in both experiments and the ranking process. It contains 512 crossing and
1322 non-crossing pedestrians, which leads to 3576 non-crossing and 1194 crossing
samples, using an overlap of 60%.

3.3.2. Loss

Imbalance is present in the binary classification problem we are trying to solve. To
avoid that the model always predicts the majority class, we have included a weighting
strategy to simulate an oversampling of the minority class, applied to the cross-entropy
loss. This weight is calculated as indicated in Equation (2), where S corresponds to the total
number of samples in the dataset, C refers to crossing class, and NC to non-crossing class.

wC = SNC/S,

wNC = SC/S, (2)

S = SC + SNC

The loss function is detailed on Equation (3). x refers to the logits or raw outputs of the
network for a sequence, composed of two values, one for each class. c is the ground truth
class for the current sequence which could be 0 or 1 (not crossing and crossing, respectively).
wc is the weight of the ground truth class. xc is the raw output for the ground truth class.
Finally, the index j traverses the interval [0, 1], representing all of the classes.

loss(x, c) = −wclog

(
exp(xc)

∑j exp(xj)

)
(3)

3.3.3. Optimizer

We have used AdamW optimizer [36] with a fixed learning rate whose value depends
on the experiment. A scheduler is also activated which reduces the learning rate by a factor
of 10 if the validation loss does not improve.

To accelerate the experimentation, we included an early stopping callback, focused on
validation loss, for an early over-fitting detection during training. We perform a validation
epoch every 25% of a training epoch, to have better control and avoid unnecessary computing.

3.3.4. Hardware and Software Details

All the experiments using TimeSformer and most of those using RubiksNet have been
performed using a single NVIDIA A100 GPU with 40 GB of memory and an AMD EPYC
7742 64-Core CPU @ 2.25 GHz.

Sensors 2021, 21, 5694 9 of 22

We have chosen to use PyTorch Lightning [37] for all the experiments. This software is
a high-level interface for PyTorch deep learning framework [38]. For experiment tracking
and visualization of results, we have used Weights and Biases [39].

4. Experimental Setup

Before validating our proposed model in the previously discussed benchmark, we
performed an ablation study concerning data pre-processing techniques. The objective of
this study is the analysis of the importance of each input feature and also the importance
of the pre-processing strategy. After this analysis, we have performed a set of experiments
to see the importance of combining data for training and the generalization ability of our
models. Concerning the model architecture, we performed an ablation study for video
backbones and transformer encoder architectures. Finally, we evaluated the performance
of our models in the benchmark.

4.1. Data Ablation Study

We performed several experiments concerning the input data to measure the impor-
tance of each feature and the pre-processing method applied to each of them. In addition,
to measure generalization capabilities, we performed a study of the improvement achieved
by our model if trained on the combination of both datasets in the benchmark.

4.1.1. Bounding Boxes Image Cropping Strategies

In the benchmark, bounding boxes coordinates are used to crop the pedestrian region
from the full image frame, following different strategies: local box, where the bounding box
is cropped and padded (black regions) to maintain the aspect ratio; local context, where
the longest edge on the image is enlarged by a factor and the shortest is also enlarged to
reach a square shape; local surround is the same as the previous one but deleting the image
information inside the bounding box of the pedestrian and replacing it with gray pixels.
Figure 3 shows a visual example of each cropping strategy.

(a) Local box (b) Local box warp (c) Local context (d) Local surround
Figure 3. Visual example of all types of bounding boxes cropping strategies.

In our experiments, we included a fourth strategy which we called local box warp
(Figure 3b). This approach is similar to the local box one, but without keeping aspect ratio
and, therefore, without including padding. We propose this alternative because we think
it will benefit the learning process, saving the network from having to learn to ignore
padded regions.

In addition to cropping strategies, we experimented with different input sizes for the
video backbone. In the benchmark, the video model uses images of size 112× 112× 3,
obtained from the cropped image which is resized accordingly. However, we experimented
with a higher resolution input of 224× 224× 3 to see if it benefits the model’s performance.

4.1.2. Bounding Box Coordinates Preprocessing

The 2D image coordinates of pedestrian bounding boxes are extracted from ground
truth annotations. In the original benchmark, these coordinates, corresponding to the
top-left (xtl , ytl) and bottom-right (xbr, ybr) coordinates, are used directly, without any
normalization procedure or indirectly, through its 2D speed, obtained by subtracting to

Sensors 2021, 21, 5694 10 of 22

each 2D coordinate the previous one in the sequence, keeping a sequence of N − 1 elements.
In our case, we opted to normalize them using the min–max approach (Equation (4)) with
the minimum value for both coordinates being 0 and the maximum being 1920 and 1080
for x and y image coordinates, respectively, which is the dimensions of the frames in
both datasets.

v =
v− vmin

vmax − vmin
(4)

Additionally, we performed experiments with two variants of these coordinates (also
min–max normalized):

• Center coordinates and height: we obtain the center coordinates of the bounding box
and its height. We did not include the width to avoid redundancy, as we include it as
a measure related to the distance between ego-vehicle and pedestrian;

• Center coordinates and height including speed: in addition to the above features,
we include the speed of change of center coordinates and height.

4.1.3. Pose Keypoints Missing Data

Pose keypoints provided in the benchmark are obtained offline from a convolutional
pose estimation method. Since it is an error-prone method, we want to evaluate whether
this input feature is helpful in any way.

4.1.4. Ego-Vehicle Speed Controversy

We did not include ego-vehicle speed in our data experiments, only in the benchmark
evaluation for a fair comparison with state-of-the-art models. We hypothesize that this
feature is highly correlated with pedestrian action, as pedestrians tend to cross when the
ego-vehicle stops and wait when the ego-vehicle does not stop. Because of that, a reduction
in the ego-vehicle speed triggers the crossing action in most of the positive cases and it
happens before the pedestrian decides to cross. For this reason, ego-vehicle speed should
be treated as an output of an AV and not as an input to one of its perception modules.

4.1.5. Input Features Combinations

Due to the ego-vehicle speed controversy and the automated nature of pose keypoints,
we performed a grid analysis of all the possible combinations of input variables.

4.1.6. Data Augmentation Applied

Under the hypothesis of the scarcity of training data in comparison with other gen-
eral action datasets, we experimented using three types of data augmentation for video
sequences. If the augmentation is applied, the same change is performed in all images of
a sequence:

• Horizontal flip: apply a random horizontal flip on the image plane;
• Roll rotation: apply a roll rotation of the 3D sequence, which is equivalent to applying

a 2D rotation on each image in the sequence;
• Color jittering: apply a random change in brightness, contrast, saturation, and hue of

the input sequence.

4.1.7. Combined Datasets Training

Deep learning models perform better with more varied training data, becoming
models prone to task generalization rather than over-fitting. To test this property, we
performed two different training schedules: one model only trained on the PIE dataset,
and another one trained on both PIE and JAAD. We tested both models on both datasets
test sets.

4.2. Model Ablation Study

We performed two groups of experiments, focused on the video backbone and the
transformer encoder used in the kinematics branch. For the first group, we explored

Sensors 2021, 21, 5694 11 of 22

different variants of RubiksNet and TimeSformer, pre-trained on different datasets. In
the case of the transformer encoder, we experimented with different encoder types and
different summarizing strategies.

4.2.1. Pre-Trained Backbones

For RubiksNet backbone, we have used a variety of pre-trained weights, ranging
from RubiksNet-Tiny variant (1.9 M parameters and 3.9 GFLOPs) to RubiksNet-Large
variant (8.5 M parameters and 15.8 GFLOPs). We also experimented with different
pre-training datasets: Something-Something-V2 (SSv2) [40] and Kinetics-400 (K400) [41]
datasets. TimeSformer pre-trained models are notably larger. We selected the smaller
model with 121.4 M parameters and 590 GFLOPs at inference. We also experimented with
the previous pre-training datasets and additional ones: HowTo100M [42] (HT100M) and
Kinetics-600 [43] (K600).

After several experiments with all of the above-mentioned backbones, we found that
SSv2 pre-trained models outperformed the rest by a large margin. One of the possible
reasons is the training schedule followed with the rest of the datasets. We also trained the
backbone from scratch, but SSv2 pre-trained model also outperforms this strategy. For this
reason, we have chosen this backbone in all our experiments.

4.2.2. Different Transformer Encoders

Two different transformer encoder architectures are proposed in this work. In addition,
its output is processed using the mean operation over the temporal dimension or by
applying a flattening operation, resulting in a one-dimensional vector. By combining the
encoder type and the output summarizing strategy, we obtained four different options.
The best performing option is also compared with the model without a kinematic branch,
to see if this branch improves the result.

4.3. Benchmark

After performing all of the previous experiments, we have found which pre-processing
strategies improve our model’s performance and also the importance of the different
input features.

We have compared our model variations with four different models ranked as the
best-performing ones in the benchmark:

• Multi-stream RNN (MultiRNN) [44]: Two stream architecture which combines two
RNN streams, one for odometry prediction (includes a CNN encoder for including
visual features) and the other for bounding box prediction. Instead of predicting
future bounding boxes, it is modified to predict the future pedestrian crossing action;

• C3D [45]: 3D convolutional model which combines 3D convolutional layers and 3D
max-pooling layers. It uses only the pedestrian bounding box cropped regions from
RGB video sequences as input data;

• Inflated 3D (I3D) [41]: 3D convolutional model based on 2D CNN inflation, where
filters and pooling kernels are expanded into 3D. It uses as input optical flow sequence
information, extracted from pedestrian bounding box cropped regions;

• PCPA [8]: best performing model in the benchmark. Multi-branch model with four
branches. The first branch is based on C3D network and encodes input RGB video
sequence extracted by cropping pedestrian bounding boxes. The other three branches
consist of RNNs. The information is fussed using attention at the temporal level and
the branch (modality) level.

However, for a fair comparison with PCPA, the best model in the benchmark [8], we
have used the same pre-processing strategy it followed. Using TimeSformer and RubiksNet
backbones, we experimented with the use of modal attention or concatenation as fusion
block of the output of the different branches and we have used the findings from the
ablation study of the model.

Sensors 2021, 21, 5694 12 of 22

To check if this performance similitude is due to the transformer encoder and not to the
video backbone, we developed our best transformer encoder in Tensorflow and changed
the recurrent encoders in the PCPA model with it. All non-image (kinematics) inputs
are concatenated and forwarded through it after embedding them. The rest of the PCPA
model remains the same, including the video 3D backbone and the fusion part. However,
we changed the optimizer to AdamW and tuned the hyperparameters of our model to
accelerate training. As AdamW applies weight decay, we deactivated direct regularization
on layers and applied a weight decay of 10−4 for all experiments. We also performed all
experiments only using image bounding boxes crops and coordinates, following local box
cropping strategy and without any normalization, respectively. Our combined features
transformer encoder have the following hyperparameters:

• Query, key and value size is the same dq,k,v ≡ d = 256;
• Number of self-attention heads nheads = 8;
• Number of transformer encoders L = 2;
• Multi-layer perceptron hidden layer dimension dmlp = 384;
• Dropout rate, applied after embedding and the MLP block pdrop = 0.1.

4.4. Model Hyperparameters

Unless specified, we performed all of the previous detailed experiments with the same
hyperparameters, to see the effects of data modification on the results. These experiments
are not focused on reaching the best performing metrics but on reaching average results in
a short period. This default set of hyperparameters is the following:

• PIE dataset used for training;
• Batch size of 16 samples;
• Local box warp used as the pre-processing for bounding boxes crops;
• TimeSformer used as backbone, pre-trained on SSv2 and fine-tuned. The output vector

size of 1024;
• Fusion strategy: concatenation;
• Input sequence length N = 16;
• Learning rate with value 10−4 for the fusion and kinematic encoder and 10−5 for the

video backbone;
• Input image dimension of 112× 112× 3;
• Weight decay of 10−3.

Due to the difficulty of the task given and the stochastic nature of models and training
algorithms, we gather results of every experiment using a set of eight different random
seeds, displaying on result tables the mean and its standard error, to show the discrepancy
between the group of eight samples and the real distribution mean.

For the benchmark models, we fixed random seed to 42 in both PyTorch and Tensor-
flow implementation. We have included as supplementary material the code for Tensor-
flow model.

4.5. Metrics

We have used the same metrics available in the benchmark. Accuracy does not repre-
sent a good performance estimator in imbalanced problems, so we focused our analysis of
the results on F1 score (F1) and the area under the Receiver Operating Characteristic (ROC)
curve (AUC). F1 Score is the harmonic mean of precision and recall. It is used as a measure
in which both metrics have the same weight. However, in real applications, higher recall is
more important to improve safety and higher precision is better to avoid false positives
and allow smoother driving, decreasing unnecessary braking. For this reason, we have
also included precision and recall. Finally, AUC represents the ability of our classifier
to distinguish between both classes. A value of 0.5 means that the classifier behavior is
equivalent to randomly choosing the class. Metrics are calculated for the positive class
(crossing case) using the scikit-learn library [46].

Sensors 2021, 21, 5694 13 of 22

5. Results
5.1. Preprocessing
5.1.1. Image Input Nature and Size

The results for each cropping strategy in Section 4.1.2 are shown in Table 2. Keeping
aspect ratio seems prone to over-fitting. This procedure obtains good results in the original
benchmark work because it uses a considerably lower learning rate and a bigger number of
epochs. However, in the case of the rest of cropping strategies proposed in the benchmark,
the results are much better, nearly doubling F1 score. Finally, our proposed strategy seems
to be the best performing one using our learning strategies, obtaining the best results in all
of the metrics .

Table 2. Results obtained varying input image nature.

F1 P R AUC

box 0.212± 0.078 0.309± 0.081 0.189± 0.069 0.542± 0.014

box warp 0.454± 0.040 0.532± 0.015 0.417± 0.055 0.636± 0.019

context 0.387± 0.017 0.531± 0.037 0.318± 0.025 0.599± 0.006

surround 0.379± 0.070 0.431± 0.072 0.350± 0.071 0.607± 0.022

With respect to the input size (results on Table 3), benchmark’s model video backbone
uses 112× 112. However, TimeSformer is pre-trained using four times bigger images
of 224× 224. Training the model with an image with lower resolution seems to affect
negatively, even when the video backbone is fine-tuned. Higher details in input image, both
from the pedestrian and from the minimal context included in the local box cropping strategy,
are better for the results than applying data augmentation (detailed in Section 5.1.4). One
drawback of this approach is the memory consumption, which reaches ≈39 GB with a
batch size of 16 samples.

Table 3. Results obtained varying input image size.

F1 P R AUC

112× 112 0.454± 0.040 0.532± 0.015 0.417± 0.055 0.636± 0.019

224× 224 0.528± 0.020 0.572± 0.021 0.507± 0.042 0.636± 0.011

5.1.2. Bounding Box Coordinates Preprocessing

Among the three pre-processing strategies applied to the bounding box coordinates,
only the one using center coordinates and height obtains better results than the only-
image case (see Table 4). The recall is lower compared to the only-image case. Precision
is higher in all cases except for the last one, which includes the speed of coordinates.
The image plane localization information provided by bounding boxes coordinates could
help the network discriminate samples with similar image information (e.g., a pedestrian
walking near the road but not crossing from one approaching the road with the intention of
crossing). However, this feature does not provide a clear improvement in the performance
of our model.

Table 4. Results obtained using different pre-processing strategies for bounding box coordinates. h
refers to bounding box height; x′, y′, h′ refers to speed of x, y coordinates and height, respectively;
subscripts tl, br, c refers to top-left, bottom-right and center coordinates of the bounding box.

Mode F1 P R AUC

Only image 0.454± 0.040 0.532± 0.015 0.417± 0.055 0.636± 0.019

xtl , ytl , xbr, ybr 0.425± 0.023 0.550± 0.020 0.358± 0.035 0.620± 0.011

xc, yc, h 0.456± 0.031 0.587± 0.031 0.403± 0.052 0.639± 0.013

xc, yc, h, x′c, y′c, h′ 0.355± 0.067 0.462± 0.078 0.300± 0.066 0.600± 0.022

Sensors 2021, 21, 5694 14 of 22

5.1.3. Different Combinations of Input Features

In Table 5 we can see the results of training the model with different input features.
Although the combination of all input features proposed in the benchmark obtains good
results, we can find an improvement by leaving pose keypoints out of the input set. These
keypoints are precomputed by a pose estimation model instead of hand-labeled, which
leads to data with a high percentage of missing values which represent 80.9/78.5/84.4%
on the JAAD dataset and 44.5/31.0/23.6% on the PIE dataset (train, test, and validation,
respectively). Its negative effect reaches the maximum level when it is used alone, where
the network does not find any information in it during training. In contrast, bounding box
coordinates improves the results slightly from randomness.

Table 5. Different input combinations metrics. Abbr. I: Bounding boxes image crops, B: bounding
boxes coordinates, P: pose keypoints, S: ego-vehicle speed.

Input
F1 P R AUC

I B P S

X 0.160± 0.049 0.428± 0.115 0.108± 0.038 0.535± 0.011

X X 0.011± 0.007 0.204± 0.140 0.006± 0.004 0.502± 0.002

X X X 0.737± 0.004 0.660± 0.011 0.837± 0.013 0.833± 0.003

X X 0.746± 0.003 0.698± 0.017 0.806± 0.016 0.833± 0.002

X 0.454± 0.040 0.532± 0.015 0.417± 0.055 0.636± 0.019

X X 0.456± 0.031 0.587± 0.031 0.403± 0.052 0.639± 0.013

X X X 0.454± 0.030 0.533± 0.020 0.403± 0.039 0.633± 0.015

X X X X 0.716± 0.010 0.695± 0.016 0.748± 0.032 0.808± 0.010

X X X 0.726± 0.007 0.665± 0.014 0.803± 0.017 0.821± 0.006

X X 0.468± 0.022 0.542± 0.013 0.420± 0.034 0.640± 0.011

X X X 0.726± 0.009 0.701± 0.012 0.759± 0.028 0.815± 0.009

X X 0.701± 0.013 0.685± 0.017 0.731± 0.040 0.798± 0.013

X 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.500± 0.000

X X 0.734± 0.002 0.644± 0.004 0.854± 0.004 0.834± 0.001

X 0.743± 0.003 0.680± 0.010 0.819± 0.011 0.834± 0.002

Ego-vehicle speed is the feature with more weight in the results. Every combination
where it is included, F1 increases by more than 25%. In PIE dataset, the ego-vehicle speed
is obtained using an OBD sensor installed in the vehicle. Only pedestrians who can interact
with the driver have behavioral annotations. This is a major drawback as it is shown in
the histogram in Figure 4a. Most of the crossing cases correspond to a low speed near zero
because the ego-vehicle lowers the speed or even stops when a pedestrian crosses unless it
is far away on the ego-lane, which is not usual. In the non-crossing scenario (Figure 4b), the
ego-vehicle speed has a more uniform distribution. Both figures represent the histogram at
the first sample in the benchmark time interval (init = TTE− 60) and in the last sample
(end = TTE− 30), including the minimum and maximum values in that interval.

This differentiation between both classes converts this input feature into the most
valuable one, outperforming alone even the combination proposed in the benchmark. A
model trained with this feature ends learning the behavior of the ego-vehicle driver instead
of learning to anticipate the behavior of pedestrians.

5.1.4. Data Augmentation

We applied data augmentation with two different probabilities: an aggressive one
of 50% and a milder one with 25%. Aggressive policy results are shown in Table 6. In
the case of using only the video backbone, rotation is the most valuable augmentation,
increasing F1 by nearly a 5% and AUC a 2%. However, with the inclusion of bounding
box coordinates, the performance using rotation drops. Bounding box coordinates are not
modified because the center of rotation is performed using the center of the bounding
box coordinates. The height is also rotation invariant. However, this drop in performance
can be caused by showing during training different sources of images with the same

Sensors 2021, 21, 5694 15 of 22

bounding box coordinates sequences. However, this hypothesis is rejected in the case of the
horizontal flip, where, even applying a flip transformation to bounding box coordinates,
the performance still drops in comparison to the case of using only video as input. On the
other hand, color jittering has the opposite effect: improves results using both inputs and
performance decays when only uses the image.

0 10 20 30 40
1

2

5

10

2

5

100

2

0 10 20 30 40
1

2

5

10

2

5

100

2

0 10 20 30 40
1

2

5

10

2

5

100

2

0 10 20 30 40
1

2

5

10

2

5

100

2 init
end
min
max

(a) Crossing cases

0 20 40
1

2

5

10

2

5

100

2

0 20 40
1

2

5

10

2

5

100

2

0 20 40
1

2

5

10

2

5

100

2

0 20 40
1

2

5

10

2

5

100

2 init
end
min
max

(b) Non-crossing cases
Figure 4. Histogram showing the number of pedestrian tracks for each range of ego-vehicle speed in
the benchmark data (TTE from 30 to 60 frames).

Table 6. Results of different data augmentation strategies. Abbr. C: Color jittering, F: horizontal flip
(left to right), R: 2D rotation (roll angle), I: image bounding box crop, B: bounding box coordinates.

Augm. Input F1 P R AUC

− I 0.454± 0.040 0.532± 0.015 0.417± 0.055 0.636± 0.019

I+B 0.456± 0.031 0.587± 0.031 0.403± 0.052 0.639± 0.013

C I 0.446± 0.032 0.572± 0.020 0.385± 0.050 0.634± 0.016

I+B 0.473± 0.016 0.544± 0.011 0.422± 0.022 0.641± 0.008

F I 0.475± 0.011 0.585± 0.019 0.405± 0.020 0.644± 0.005

I+B 0.443± 0.029 0.557± 0.026 0.390± 0.049 0.630± 0.014

F+R+C I 0.469± 0.015 0.600± 0.015 0.390± 0.024 0.643± 0.007

I+B 0.513± 0.025 0.562± 0.019 0.484± 0.044 0.667± 0.015

R I 0.504± 0.012 0.567± 0.017 0.458± 0.018 0.659± 0.007

I+B 0.434± 0.048 0.572± 0.027 0.383± 0.063 0.631± 0.021

Individually, all transformations behave differently, but applying all three improves
the results in all combinations of input data, showing that the best possible strategy is
the combination.

Finally, the mild strategy of 25% is not enough to improve the results concerning the
non-augmented version. For this reason, we did not include another table with its results.

5.2. Combined Datasets Training

Although the PIE dataset is quite diverse in pedestrian behaviors, as it is shown in
Table 7, training only with PIE does not generalize to the JAAD dataset. This could be
caused by the more variety in weather and light since PIE is continuously recorded on the
same day and same city under clear weather.

Table 7. Combined dataset training experiment. Abbr. P: PIE, J: JAAD. Train and Test columns refer
to the dataset used for training and testing, respectively.

Train Test F1 P R AUC

P+J P 0.427± 0.035 0.478± 0.023 0.419± 0.055 0.615± 0.015

J 0.566± 0.020 0.540± 0.026 0.635± 0.055 0.756± 0.018

P P 0.454± 0.040 0.532± 0.015 0.416± 0.068 0.636± 0.019

J 0.207± 0.021 0.171± 0.012 0.275± 0.043 0.500± 0.013

Only by combining training sets of both datasets, the model seems to generalize to
both of them, achieving slightly worse results in PIE and a major improvement in JAAD.

Sensors 2021, 21, 5694 16 of 22

5.3. Different Encoder Strategies

Looking at the results shown in Table 8, performing the mean operation over the
temporal domain seems to be the best strategy. Using flattening we obtain worse results
than in the only-image case (first row). Vanilla transformer with predefined positional
encoding performs better than ViT transformer in this case, where this encoding is learned
during training. It is especially important the difference in recall metric due to the criticality
of obtaining false negatives in the crossing class on the road scenario.

However, since this experiment is part of a data ablation study, we are confident in
using the mean as the best strategy, but not in the best encoder type, since both encoders
have the same hyperparameters and we cannot assure that those are equally beneficial for
both architectures.

Table 8. Different transformer encoder configurations experiment. Abbr. mean: output average
strategy, flat: output flattening strategy.

F1 P R AUC

− − 0.454± 0.040 0.532± 0.015 0.417± 0.055 0.636± 0.019

ViT [34] mean 0.456± 0.031 0.587± 0.031 0.403± 0.052 0.639± 0.013

flat 0.415± 0.042 0.532± 0.029 0.352± 0.048 0.617± 0.020

Vanilla [7] mean 0.519± 0.014 0.557± 0.019 0.500± 0.034 0.669± 0.008

flat 0.431± 0.039 0.571± 0.018 0.367± 0.052 0.628± 0.017

5.4. Benchmark

In Table 9 we gathered the results obtained with our best performing models. In the
case of TimeSformer, we attained slightly better results with concatenation fusion. Models
were trained using 112× 112 images and half of the input video sequence (N/2 = 8). In
addition, we did not include pose information while training, which makes it unnecessary
to include a pose estimation model in the prediction pipeline.

The main problem of TimeSformer is its considerable size (a total ≈123 million pa-
rameters for the whole CAPformer). As a lighter alternative, we performed experiments
with the RubiksNet tiny version, which in combination with the rest of the model, contains
only 3.5 and 4 million parameters in the modality attention and concatenation variants,
respectively. RubiksNet case is also lighter than C3D backbone, which depending on the
number of input kinematic features, englobes a total amount of ≈31 million parameters.
This dependence is due to the use of one recurrent encoder for each input kinematic feature.

To see if the transformer encoder for kinematics features was indeed the reason for
these good results, we included this encoder in the PCPA model, substituting recurrent
ones. We trained these models with only bounding boxes image crops and coordinates,
obtaining comparable results to the ones obtained with TimeSformer and RubiksNet, and
also with some of the PCPA variants. For a fair comparison, we trained two PCPA variants
with the same random seed used in our model. The first case uses the best-performing
model in the benchmark and the same training procedure. We can see that there is a
big difference between the final results (F1 = 0.770 vs. F1 = 0.735) in PIE. It is quite
noticeable the big difference obtained in the JAADall dataset. In JAADbeh dataset, C3D,
I3D, and MultiRNN obtain better F1 score than our method. However, looking at the AUC,
they are closer to 0.5, meaning that its behavior is more random than in our method. In
summary, looking at the results obtained, our method performs better than PCPA model,
validating our proposed encoder based on self-attention mechanism rather than recurrent
sequential ones.

Sensors 2021, 21, 5694 17 of 22

Table 9. Comparison of our proposed model and the best-performing models in benchmark [8]. Abbr. M is modality
attention; C is concatenation; T is temporal attention; I refers to bounding box image crops; B refers to bounding box
coordinates; S refers to ego-vehicle speed and P refers to pose keypoints. Rows with darker background correspond to
PCPA models trained by us.

Model Backbone Fusion Input
PIE JAADbeh JAADall

F1 AUC F1 AUC F1 AUC

Ours

TimeSformer M

I,B,S

0.761 0.844 0.763 0.545 0.557 0.728
C 0.779 0.853 0.743 0.552 0.514 0.701

RubiksNet M 0.749 0.839 0.752 0.589 0.630 0.782
C 0.738 0.828 0.691 0.549 0.618 0.778

C3D M,T I,B 0.750 0.851 0.615 0.577 0.614 0.802

C3D – I 0.520 0.670 0.750 0.510 0.650 0.810

MultiRNN GRU – B, S * 0.710 0.800 0.740 0.500 0.580 0.790

I3D – O 0.720 0.830 0.750 0.510 0.630 0.800

PCPA C3D

C

I,B,S,P

0.730 0.830 0.630 0.480 0.580 0.800
M 0.750 0.840 0.680 0.490 0.620 0.830
T 0.770 0.860 0.710 0.480 0.620 0.790

M,T
0.770 0.860 0.710 0.500 0.680 0.860
0.735 0.834 0.630 0.484 0.530 0.779

I,B 0.723 0.820 0.613 0.486 0.522 0.780
* We are not sure of the data used by this network. We indicated bounding boxes coordinates and ego-vehicle speed since this is the data
used in the original work.

Finally, as it is shown by the results, there is a big dependency on the randomness of
the data. With a different random seed to the one used in the results in Table 9, we obtained
F1 = 0.807 and AUC = 0.922 with the same RubiksNet tiny backbone. Additionally,
by training the PCPA model, we obtained without fixing the random seed a model with
F1 = 0.794 and AUC = 0.875, which means that randomness considerably affects the
performance of the network. This could be caused by data scarcity. Even though JAAD and
PIE are two complete datasets with high-quality annotations, the variety in them could not
be enough for a model using video as input to generalize. Another possible reason could
be the complexity of the task since samples from both classes have similar image features
in the prediction interval proposed by the benchmark.

5.5. Qualitative Results

In addition to the quantitative results shown in the previous section, qualitative results
can help to better understand the behavior of the system by analyzing correct (Figure 5)
and incorrect (Figure 6) predictions obtained from RubiksNet trained model. Each case is
represented by three images inside the sequence (first, middle, and last). Among correct
cases, we can observe that the network can predict crossing cases with 2 s of anticipation
with strong occlusion from cars (middle-right) and cyclists (bottom-right). In the top-
right case, the network is able to predict a difficult case, where the pedestrian remains
stationary for most of the time. The network helps with the positional knowledge and
possibly with the looking state of the pedestrian. Non-crossing cases are also correctly
classified even with the occlusion of bushes (top-left). In the middle-left case, the pedestrian
approaches the road perpendicularly, however it is correctly classified since he slows down
his walking pace to a near standstill. A similar case is shown in the bottom-left, showing
that the network can generalize to different pedestrians and scenes and is able to focus on
motion information.

Sensors 2021, 21, 5694 18 of 22

Figure 5. Correct predictions in different test cases obtained from RubiksNet trained model. Green
and red borders represent crossing and not crossing behavior, respectively.

Figure 6. Incorrect predictions in different test cases obtained from RubiksNet trained model. Green
and red borders represent crossing and not crossing behavior, respectively.

Among failure cases (Figure 6) there are also interesting situations. The top-right
crossing case is wrongly predicted at the beginning of the track with a similar probability
for both classes. However, the correct class is predicted with a 1 s anticipation (last sample).
The middle-left case is wrongly detected as crossing, probably because the information
obtained from input data can indicate the pedestrian’s intention to cross. Difficult cases
are shown also in middle-right and bottom-right cases, where the situation is difficult to
interpret even for a driver. The network obtains a similar probability for both classes. In
the first case, this similarity between both classes disappears after two sequences, when the
correct class is predicted by the network. Nevertheless, in the second case, the uncertainty
remains for all samples of the target pedestrian. Finally, we have found different cases
which are included by error (cyclist on bottom-left) or incorrectly labeled (pedestrian
walking through cars labeled as not crossing) on the top-left. These inconsistencies are
detrimental to network learning if they are present in the training set and to the performance
evaluated in tests.

Sensors 2021, 21, 5694 19 of 22

6. Discussion

Pedestrian crossing action prediction is a complex task even for humans. The results
obtained in the benchmark show that there is a big dependency on randomness, possibly
due to data scarcity and complexity of the data, which includes small and occluded
pedestrians. Relying on image data as the primary source of information exacerbates the
problem of data scarcity. Deep learning techniques usually improve their generalization and
avoid over-fitting if more data and more variety are used for training. Training with both
datasets shows a generalization to both test sets. More varied data from different countries,
with different weather and light conditions, could be the main option for improving
the results, rather than focusing on the optimization of hyperparameters in the models
available. Although we reach good results in the benchmark, we are using ground truth
information, assuming ideal object detection and tracking. Incorporating the noise of these
modules could highlight problems in current architectures.

Another possible way to improve the performance of the model could be the usage of
lower-dimensional data. Instead of including raw image data in the equation, semantic
information could lead to better results as is the case of [30]. Including 3D information
could be another valuable source. However, currently, this option is not available in the
available pedestrian behavior datasets. With the release of PePScenes [27], these features
will become available.

Pose information degrades the performance of our models. This finding reinforces the
fact that one of the main strategies to be followed to attain better results is the improvement
of data quality.

It is important to notice the change in results when ego-vehicle speed is used as input
in the estimation of the crossing behavior. This variable can distort the results, preventing
a generalization towards cases where speed has less differentiated values, such as cases
of risk of collision due to jaywalking. It is a rare situation where a pedestrian decides
to cross if the vehicle has not started braking or is stationary. Even with the amount of
work in the labeling of both datasets, JAAD and PIE do not contain enough of these edge
cases and even in a predefined environment, it would be dangerous to perform this group
of experiments. One possible solution is the use of simulators, such as CARLA [47], in
combination with virtual reality systems to include real behaviors in autonomous driving
simulators, which would allow the generation of multiple critical and edge cases without
safety concerns.

7. Conclusions and Future Work

In this work, we have proposed an alternative to recurrent approaches for pedestrian
crossing action anticipation. We focused on the pre-processing of the data, performing
several experiments during which we found problems with ego-vehicle speed and pose
keypoints, not highlighted in the benchmark. In the last part of our analysis, we performed
an evaluation of different variants of our model in the benchmark proposed in [8] reaching
comparable or better results using fewer input data. These findings validate our new
approach and also rise to a reformulation of some benchmark conditions, mainly related
to pre-processing. From a practical point of view, good results in this task can lead to an
improvement in the autonomous vehicle perception pipeline, where only pedestrians who
are willing to cross will be considered. This filtering step helps to reduce the computational
cost of the scene perception and allows the vehicle to focus better on critical situations. Even
without a computational improvement, since it does not require prior mapping, this system
could be implemented to improve pedestrian detection systems through anticipation,
which drastically reduces the probability of serious injury or death in urban collisions.

In the future, some possible lines of work are detailed below:

• Evaluate our model in additional datasets, such as STIP [25] or TITAN [24];
• Train and test models in a combination of different available behavior datasets and

analyze it in an unrelated scenario to see its generalization capabilities;

Sensors 2021, 21, 5694 20 of 22

• Research deeper in the usage of data augmentation techniques in the training of
multi-branch models;

• Consider the development of virtual scenarios to include more crossing cases and
fight data imbalance;

• Explore new features from datasets, such as labeled information from the environment
(e.g., the relative relationship between vehicles, crosswalk position, traffic signals).
These new features will be 2D or 3D, depending on the availability of datasets in
the literature;

• Experimentation with different data cleaning strategies in training time, applying a
maximum occlusion level, pedestrian minimum size, etc.;

• Simulate real case scenario to find new weaknesses and strengths in available models.

Supplementary Materials: Code and instructions for reproducing TensorFlow experiments on the
benchmark are available in https://github.com/javierlorenzod/CAPformer.

Author Contributions: All authors have contributed to the reported work. The contributions are
sorted into the following roles according to the CRediT taxonomy: Conceptualization, J.L., I.P.A.
and M.Á.S.; Data curation, J.L.; Formal analysis, J.L.; Funding acquisition, I.P.A., D.F.L. and M.Á.S.;
Investigation, J.L.; Methodology, J.L.; Project administration, M.Á.S.; Software, J.L.; Supervision,
I.P.A. and M.Á.S.; Writing—original draft, J.L. and I.P.A.; Writing—review and editing, J.L., I.P.A.,
R.I., A.L.B., Á.H.S., D.F.L. and M.Á.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by Universidad de Alcalá, via a predoctoral grant to the first author
(FPI-UAH) and Research Grants DPI2017-90035-R (Spanish Ministry of Science and Innovation) and
S2018/EMT-4362 SEGVAUTO 4.0-CM (Community Region of Madrid). The work of Augusto Luis
Ballardini has been funded by European Union H2020, under Grant Agreement Marie Skłodowska-
Curie n. 754382 Got Energy. The content of this publication does not reflect the official opinion of the
European Union. Responsibility for the information and views expressed herein lies entirely with
the author.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018.
2. Adminaité-Fodor, D.; Jost, G. Safer Roads, Safer Cities: How to Improve Urban Road Safety in The EU; Technical Report; European

Transport Safety Council: Brussels, Belgium, 2019.
3. European New Car Assessment Programme (Euro NCAP) Test Protocol-AEB VRU Systems; Technical Report; Euro NCAP: Leuven,

Belgium, 2020.
4. Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human motion trajectory prediction: A survey.

Int. J. Robot. Res. 2020, 39, 895–935. [CrossRef]
5. Rasouli, A.; Kotseruba, I.; Tsotsos, J.K. Pedestrian Action Anticipation Using Contextual Feature Fusion in Stacked RNNs. arXiv

2020, arXiv:2005.06582.
6. Zhu, Y.; Li, X.; Liu, C.; Zolfaghari, M.; Xiong, Y.; Wu, C.; Zhang, Z.; Tighe, J.; Manmatha, R.; Li, M. A Comprehensive Study of

Deep Video Action Recognition. arXiv 2020, arXiv:2012.06567.
7. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
8. Kotseruba, I.; Rasouli, A.; Tsotsos, J.K. Benchmark for Evaluating Pedestrian Action Prediction. In Proceedings of the IEEE

Winter Conference on Applications of Computer Vision (WACV), 5–9 January 2021; pp. 1258–1268
9. Rasouli, A.; Tsotsos, J.K. Joint Attention in Driver-Pedestrian Interaction: From Theory to Practice. arXiv 2018, arXiv:1802.02522.
10. Rasouli, A.; Kotseruba, I.; Tsotsos, J.K. Are They Going to Cross? A Benchmark Dataset and Baseline for Pedestrian Crosswalk

Behavior. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy,
22–29 October 2017; pp. 206–213. [CrossRef]

11. Fang, Z.; López, A.M. Is the Pedestrian going to Cross? Answering by 2D Pose Estimation. arXiv 2018, arXiv:1807.10580.

https://github.com/javierlorenzod/CAPformer
http://doi.org/10.1177/0278364920917446
http://dx.doi.org/10.1109/ICCVW.2017.33

Sensors 2021, 21, 5694 21 of 22

12. Gesnouin, J.; Pechberti, S.; Bresson, G.; Stanciulescu, B.; Moutarde, F. Predicting Intentions of Pedestrians from 2D Skeletal Pose
Sequences with a Representation-Focused Multi-Branch Deep Learning Network. Algorithms 2020, 13, 331. [CrossRef]

13. Cadena, P.R.G.; Yang, M.; Qian, Y.; Wang, C. Pedestrian Graph: Pedestrian Crossing Prediction Based on 2D Pose Estimation and
Graph Convolutional Networks. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference, ITSC, Auckland,
New Zealand, 27–30 October 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 2000–2005.
[CrossRef]

14. Ait Bouhsain, S.; Alahi, A. Pedestrian Intention Prediction: A Multi-Task Perspective. Technical Report. arXiv 2020,
arXiv:2010.10270v1.

15. Lorenzo, J.; Parra, I.; Wirth, F.; Stiller, C.; Llorca, D.F.; Sotelo, M.A. RNN-based Pedestrian Crossing Prediction using Activity
and Pose-related Features. In Proceedings of the IEEE Intelligent Vehicles Symposium, Proceedings, Las Vegas, NV, USA, 19
October–13 November 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 1801–1806.
[CrossRef]

16. Ghori, O.; MacKowiak, R.; Bautista, M.; Beuter, N.; Drumond, L.; DIego, F.; Ommer, B.B. Learning to Forecast Pedestrian Intention
from Pose Dynamics. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
pp. 1277–1284. [CrossRef]

17. Ranga, A.; Giruzzi, F.; Bhanushali, J.; Wirbel, E.; Pérez, P.; Vu, T.H.; Perrotton, X. VRUNet: Multi-Task Learning Model for Intent
Prediction of Vulnerable Road Users. IS T Int. Symp. Electron. Imaging Sci. Technol. 2020, 2020. [CrossRef]

18. Pop, D.O.; Rogozan, A.; Chatelain, C.; Nashashibi, F.; Bensrhair, A. Multi-Task Deep Learning for Pedestrian Detection, Action
Recognition and Time to Cross Prediction. IEEE Access 2019, 7, 149318–149327. [CrossRef]

19. Saleh, K.; Hossny, M.; Nahavandi, S. Real-time Intent Prediction of Pedestrians for Autonomous Ground Vehicles via Spatio-
Temporal DenseNet. arXiv 2019, arXiv:1904.09862.

20. Yang, B.; Zhan, W.; Wang, P.; Chan, C.; Cai, Y.; Wang, N. Crossing or Not? Context-Based Recognition of Pedestrian Crossing
Intention in the Urban Environment. IEEE Trans. Intell. Transp. Syst. 2021, 1–12. [CrossRef]

21. Piccoli, F.; Balakrishnan, R.; Perez, M.J.; Sachdeo, M.; Nunez, C.; Tang, M.; Andreasson, K.; Bjurek, K.; Raj, R.D.; Davidsson, E.;
et al. FuSSI-Net: Fusion of Spatio-temporal Skeletons for Intention Prediction Network. arXiv 2020, arXiv:2005.07796.

22. Gujjar, P.; Vaughan, R. Classifying pedestrian actions in advance using predicted video of urban driving scenes. In Proceedings
of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; Institute of Electrical
and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 2097–2103. [CrossRef]

23. Chaabane, M.; Trabelsi, A.; Blanchard, N.; Beveridge, R. Looking ahead: Anticipating pedestrians crossing with future frames
prediction. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, WACV Snowmass, CO,
USA, 1–5 March 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 2286–2295. [CrossRef]

24. Malla, S.; Dariush, B.; Choi, C. TITAN: Future Forecast using Action Priors. In Proceedings of the 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 14–19 June 2020; pp. 11183–11193

25. Liu, B.; Adeli, E.; Cao, Z.; Lee, K.H.; Shenoi, A.; Gaidon, A.; Niebles, J.C. Spatiotemporal Relationship Reasoning for Pedestrian
Intent Prediction. IEEE Robot. Autom. Lett. 2020, 5, 3485–3492. [CrossRef]

26. Rasouli, A.; Kotseruba, I.; Kunic, T.; Tsotsos, J.K. PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and
Trajectory Prediction. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
27 October–2 November 2019, pp. 6261–6270

27. Rasouli, A.; Yau, T.; Lakner, P.; Malekmohammadi, S.; Rohani, M.; Luo, J. PePScenes: A Novel Dataset and Baseline for Pedestrian
Action Prediction in 3D. arXiv 2020, arXiv:2012.07773.

28. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
Multimodal Dataset for Autonomous Driving. arXiv 2019, arXiv:1903.11027.

29. Yau, T.; Malekmohammadi, S.; Rasouli, A.; Lakner, P.; Rohani, M.; Luo, J. Graph-SIM: A Graph-based Spatiotemporal Interaction
Modelling for Pedestrian Action Prediction. arXiv 2020, arXiv:2012.02148.

30. Yang, D.; Zhang, H.; Yurtsever, E.; Redmill, K.; Ümit Özgüner. Predicting Pedestrian Crossing Intention with Feature Fusion and
Spatio-Temporal Attention. arXiv 2021, arXiv:2104.05485.

31. Fan, L.; Buch, S.; Wang, G.; Cao, R.; Zhu, Y.; Niebles, J.C.; Fei-Fei, L. RubiksNet: Learnable 3D-Shift for Efficient Video Action
Recognition. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020.

32. Bertasius, G.; Wang, H.; Torresani, L. Is Space-Time Attention All You Need for Video Understanding? In Proceedings of the
International Conference on Machine Learning (ICML), 18–24 July 202 .

33. Khan, S.; Naseer, M.; Hayat, M.; Waqas Zamir, S.; Shahbaz Khan, F.; Shah, M. Transformers in Vision: A Survey. arXiv 2021,
arXiv:2101.01169.

34. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

35. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical attention networks for document classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL HLT), San Diego CA, USA, 12–17 June 2016; pp. 1480–1489.

36. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2019, arXiv:cs.LG/1711.05101.

http://dx.doi.org/10.3390/a13120331
http://dx.doi.org/10.1109/ITSC.2019.8917118
http://dx.doi.org/10.1109/IV47402.2020.9304652
http://dx.doi.org/10.1109/IVS.2018.8500657
http://dx.doi.org/10.2352/ISSN.2470-1173.2020.16.AVM-109
http://dx.doi.org/10.1109/ACCESS.2019.2944792
http://dx.doi.org/10.1109/TITS.2021.3053031
http://dx.doi.org/10.1109/ICRA.2019.8794278
http://dx.doi.org/10.1109/WACV45572.2020.9093426
http://dx.doi.org/10.1109/LRA.2020.2976305

Sensors 2021, 21, 5694 22 of 22

37. Falcon, WA, e.a. PyTorch Lightning. GitHub. 2019. Available online: https://github.com/PyTorchLightning/pytorch-lightning
(accessed on 15 August 2021).

38. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32 (NeurIPS);
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Vancouver, BC,
Canada, 2019; pp. 8024–8035.

39. Biewald, L. Experiment Tracking with Weights and Biases, 2020. Available online: wandb.com (accessed on 15 August 2021).
40. Goyal, R.; Kahou, S.E.; Michalski, V.; Materzyńska, J.; Westphal, S.; Kim, H.; Haenel, V.; Fruend, I.; Yianilos, P.; Mueller-Freitag,

M.; et al. The “Something Something” Video Database for Learning and Evaluating Visual Common Sense. arXiv 2017,
arXiv:cs.CV/1706.04261.

41. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. arXiv 2018,
arXiv:cs.CV/1705.07750.

42. Miech, A.; Zhukov, D.; Alayrac, J.B.; Tapaswi, M.; Laptev, I.; Sivic, J. HowTo100M: Learning a Text-Video Embedding by Watching
Hundred Million Narrated Video Clips. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 2630–2640. [CrossRef]

43. Carreira, J.; Noland, E.; Banki-Horvath, A.; Hillier, C.; Zisserman, A. A Short Note about Kinetics-600. arXiv 2018,
arXiv:cs.CV/1808.01340.

44. Bhattacharyya, A.; Fritz, M.; Schiele, B. Long-Term On-Board Prediction of People in Traffic Scenes under Uncertainty. arXiv
2018, arXiv:cs.CV/1711.09026.

45. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 4489–4497. [CrossRef]

46. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

47. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning (CoRL), Mountain View CA, USA, 13–15 November 2017; pp. 1–16.

https://github.com/PyTorchLightning/pytorch-lightning
wandb.com
http://dx.doi.org/10.1109/ICCV.2019.00272
http://dx.doi.org/10.1109/ICCV.2015.510

	Introduction
	Context
	Motivation

	Related Work
	JAAD
	TITAN and STIP
	PIE
	PePScenes
	Benchmark

	Proposed Approach
	Problem Formulation
	System Description
	Video Encoder Branch
	Kinematics Encoder Branch
	Feature Fusion Block

	Training
	Datasets
	Loss
	Optimizer
	Hardware and Software Details

	Experimental Setup
	Data Ablation Study
	Bounding Boxes Image Cropping Strategies
	Bounding Box Coordinates Preprocessing
	Pose Keypoints Missing Data
	Ego-Vehicle Speed Controversy
	Input Features Combinations
	Data Augmentation Applied
	Combined Datasets Training

	Model Ablation Study
	[id=jld]Pre-TrainedPretrained Backbones
	Different Transformer Encoders

	Benchmark
	Model Hyperparameters
	Metrics

	Results
	Preprocessing
	Image Input Nature and Size
	Bounding Box Coordinates Preprocessing
	Different Combinations of Input Features
	Data Augmentation

	Combined Datasets Training
	Different Encoder Strategies
	Benchmark
	Qualitative Results

	Discussion
	Conclusions and Future Work
	References

