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ABSTRACT Fine-grained vehicle classification from images, also known as Vehicle Make and Model
Recognition (VMMR), has become an important research topic in the last years, with a growing number
of scientific contributions in multiple application areas, such as autonomous vehicles, surveillance systems,
traffic monitoring and management, among others. Recent techniques based on deep learning have proven
to be very effective in addressing this problem. So effective that, based on the state-of-the-art results (above
95% accuracy), it would seem that the problem is practically solved. However, our main hypothesis is that
the existing datasets to date have limited variability, which precludes good and unbiased generalisation of the
models trained with them. In particular, it is observed that the test datasets are very similar in nature to those
used for training and validation which makes these benchmarks prone to dataset bias and to overfitting.
When these systems are tested with more challenging data or data from different datasets performance
degrades considerably. In this paper, on the one hand, we evaluate state-of-the-art deep learning models
to perform fine-grained vehicle classification and explore multiple training techniques, such as curriculum
learning or weighted losses, to mitigate the bias between different makes and models and to assess the limits
of current approaches. On the other hand, we analyse the existing datasets, present an additional dataset
from a challenging scenario, and merge all the data into a cross-dataset that includes common samples and
classes from the existing datasets. In this way, we can evaluate geographical, make and model biases, and
performance and generalisation capabilities from a more realistic perspective. The obtained results suggest
that we are still far from accurate and unbiased vehicle make and model recognition in realistic traffic and
driving scenarios.

INDEX TERMS Fine-grained classification, vehicle make and model, dataset bias, curriculum learning,
weighted loss, cross-datasets.

I. INTRODUCTION

F INE-GRAINED vehicle classification consists in the
classification of vehicles according to make and model

and even differentiating between different versions of a par-
ticular model (ultra-fine-grained classification). This task is
especially useful when used in combination with other appli-
cations such as license plate recognition systems to detect if
a vehicle is driving with a fake number plate, or in a public
car park to detect an attempted theft. In conjunction with

keypoint detection methods [1], it is also possible to project
3D structures of a known model obtaining distance, size and
perspective information in 2D images. Regarding number
plate recognition systems, this information can be used to ob-
tain vehicle data and solve the vehicle classification task, but
this approach is vulnerable to recognition errors, license plate
swap, and license plate information is not always available.
For this reason, a robust system that is able to classify make
and model efficiently could be extremely useful.
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FIGURE 1. Fine-grained vehicle classification from images has achieved
above 95% accuracy on validation. Those same models experience a drop in
performance when faced with different datasets making them not suitable for
real world applications.

There are three main problems when working with fine-
grained classification. First, multiplicity, i.e., the same model
has different shapes and/or appearance depending on the year
of manufacture (different versions of the model). Second,
ambiguity, i.e., two models from different or the same man-
ufacturers have similar appearance. Third, bias, i.e., distribu-
tion of makes and models is not representative of the actual
study population. These issues make the problem of fine-
grained vehicle classification a major challenge in which a
correctly constructed dataset is of vital importance.

There are a considerable number of existing datasets to
deal with the task of fine-grained vehicle classification,
which can be divided into two categories. First, specific
datasets, created to solve a particular task or limited to a
given scenario, such as surveillance [2]–[4]. They tend to
be smaller, offering little flexibility and little generalisation
potential. Second, general purpose datasets, that aim to ad-
vance the state-of-the-art of classification and are intended
to be multipurpose, as for example [5]–[8]. The difficulty
of constructing a general dataset that accurately represents
the reality usually makes them biased, with poor variety of
viewpoints, lighting or scenarios, making them less suitable
for real world applications.

Most work focuses on solving a specific problem or obtain-
ing raw results, either on previous datasets or on a new gen-
eral dataset. This leads to the current situation of performance
saturation, with datasets such as CompCars [6] saturating at
around 98% performance in validation, which suggest that
the problem of fine-grained classification is mostly solved.
However, when we use these models in more challenging
scenarios or analyse performance by each individual class,
the results are not entirely satisfactory.

Dataset bias is not usually taken into account, yet it clearly
materialises as a class imbalance problem. In datasets with

hundreds of classes, one can report 95% average accuracy,
even if multiple classes report very low performance. This is
because the number of samples for these classes is so low
that it barely affects the overall results. We have empirically
observed this behaviour when trying to use one of our mod-
els, that achieves state-of-the-art results in CompCars [9], in
a more realistic scenario (see Fig 1).

In line with the above statements, the aim of this paper is
not to present a new method and compare it with previous
approaches. The difference in performance between current
methods in current datasets is practically negligible. Instead,
we focus on the empirical assessment of current limitations
and problems, proposing several solutions to address them.
In particular, the main contributions of our work can be
summarised as follows:

• We study the applicability of curriculum learning tech-
niques to fine-grained vehicle classification problem and
evaluate its performance.

• We analyse the effect of bias on the per-class perfor-
mance of fine-grained models and explore techniques,
such as weighted loss, to mitigate its effects and improve
performance and generalisation capabilities.

• We propose a test set built from the PREVENTION
dataset [10] to externally evaluate performance and
generalisation capabilities in realistic scenarios both for
makers and models.

• We present a cross-dataset to mitigate biases, and assess
the complexity and generalisation capabilities of exist-
ing datasets. This cross-dataset is publicly available1.

The remainder of the paper is organised as follows. Sec-
tion II briefly summarises the state-of-the-art and the most
relevant datasets. The methodology and data augmentation
techniques are presented in Section III. An extensive experi-
mental evaluation is provided in Section IV. Conclusions and
future work are finally discussed in Section V.

II. RELATED WORK
A. EXISTING DATASETS
Despite the existence of a significant amount of vehicle
make and model classification research, most of the existing
datasets are small or medium in size, with only a few of large
datasets being publicly accessible. This has led researchers
to work with their own datasets which, as we have said, are
small in size given the high cost of acquiring and labelling
thousands of images. Because of this, it is extremely difficult
to compare the different approaches as each use a different
dataset.

Many previous works perform and extensive analysis of
the different datasets [7], [8]. In this paper, we are going
to focus exclusively on the most extensive and/or important
ones. Among them, we can find Cars-196 [5], CompCars [6],
BoxCars [3], [11], VMMR-db [7] or Frontal-103 [8].

Cars-196 dataset is the first large-scale fine-grained vehicle
classification dataset. It contains 16,185 images from multi-

1https://github.com/ninte/fusion-cross-dataset
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ple viewpoints of 196 classes of cars with labels for make,
model and year. Being the first one with a relevant size, many
later works make use of it, but even so, it still has a limited
number of images, these images have professional quality,
making them far from real world application and a large
number of vehicles are from the same year (2012), which
implies poor diversity.

CompCars dataset is probably one of the most relevant
vehicle datasets, proposing three different tasks: fine-grained
classification, attribute prediction and car verification. It con-
tains data from 2 scenarios, one of web-nature and other
of surveillance-nature. The web-nature data was collected
from internet forums, websites and search engines with a
total of 136,727 images from 163 makers and 1,716 models
with different viewpoints. The surveillance-nature data was
collected from road surveillance cameras with a total of
44,481 images, all of them from the frontal view. Focusing
on the fine-grained classification task, they propose the use
of a web-nature subset composed of 52,083 images of 431
different car models. Overall, the CompCars dataset is of
reasonable quality. However, there is a considerable geo-
graphical bias since most of the vehicle makes and models
are specific to the China region, which can be a problem for
applications in other regions. The images have professional
quality, with even some renders, making them far from a real
world situation. The multiplicity problem has been ignored,
grouping all versions from a model in one class, even though
they have different appearances.

BoxCars is a vehicle dataset focused on surveillance ap-
plications. The images were taken from surveillance cameras
and, for each vehicle correctly detected, there are 3 images
from different viewpoints. The dataset contains 21,250 dif-
ferent vehicles with a total of 63,750 images, 27 makes
and 126 models. They also provide make, model, submodel
and model year classes annotations and 3D bounding box
information. This is a robust dataset, with real-world quality
and diversity of views, but low image size and quality. It
also suffers from geographical bias as all the images were
recorded in the city of Brno in the Czech Republic.

The VMMR-db is probably the most ambitious vehicle
classification dataset ever created. It contains a total of
291,752 images of 9,170 different classes. These images
were taken by different users and cameras, ensuring a great
variety of views, lighting and quality making it realistic.
To build the dataset the images were gathered from online
vehicle selling web pages and automatically annotated using
the title and description provided by the sellers. They provide
a subset of 51 classes overlapping with CompCars and a
subset of 3,036 classes containing all of those with more
than 20 images. Unfortunately, although the dataset does not
suffer from the multiplicity problem, having used automatic
annotation, for the same model of vehicle there are several
classes for different years, even if in those years the specific
model was the same. In addition, although with less impact,
it also suffers from a certain geographic bias.

Frontal-103 dataset is, to our knowledge, the most re-

cently published vehicle dataset. It is comprised of a total
of 65,433 frontal view web-nature images from 103 makers
and 1,759 models tackling the multiplicity problem with a
different class for each version of a model. Although Frontal-
103 is promising, some shortcomings can be found. As
in CompCars, the images have professional quality with a
non despicable amount of renders. Many of the images are
very similar (almost repeated in some cases). A significant
number of vehicles have been found to be mislabelled. No
training/validation/test split is provided. This is important, as
many of the images are very similar or repeated, so many of
the images seen in training can also appear in validation and
testing. In spite of all this, they face the problem of multiplic-
ity in a competent and effective manner. Finally, as it happens
in all other cases, there is a considerable geographical bias.
Most of the car manufacturers are from China, which makes
a model trained on this data not applicable in other regions in
the absence of such vehicles.

To perform an independent evaluation of the different
models and assess their generalisation capabilities, we have
created a test set based on the PREVENTION dataset [10],
which is designed for vehicle intention prediction and con-
tains images from real driving scenarios. The viewpoint and
nature of the images is very different from those found in
most fine-grained datasets, which is suitable for assessing
generalisation capabilities. The PREVENTION dataset has
a total of 356 minutes of records for a distance of 540km.
Images were obtained from two cameras (front and rear
view). We manually selected a total of 2,685 vehicles, 1,452
are front facing images and 1,233 from the back. A total of
33 different makers have been labelled. From these 2,685
vehicles, a total of 1,113 have been labelled at model level,
618 front facing and 515 from the back. A total of 87 different
models have been obtained. The reasons why not all vehicles
have a model label are the impossibility of obtaining the
model reliably or the lack of consensus among annotators.

A summary of all the datasets can be found in Table 1.
Fig. 2 depicts four examples of four classes for each dataset
(CompCars, VMMR-db, Frontal-103 and PREVENTION).

B. FINE-GRAINED VEHICLE CLASSIFICATION
Fine-grained vehicle classification is a widely explored task.
Before CNNs became the standard, classification tasks laid
on hand-crafted features. Some of the most remarkable works
of the pre-CNN era focused on the inherent characteristics
of the vehicles by modelling their geometry and appearance.
This approach was used in [12]–[14]. Santos et al. [14] pro-
posed an automatic car recognition system composed of two
recognition methods, both relying on the external features of
the car. One makes use of the rear view shape, dimension
and edges, while the other makes use of features of the back
lights. Llorca et al. [13] also used rear view images. They
applied a license plate recognition module and a previously
developed vehicle make recognition system [15] based on
the logo to predict the car make and, after that, learn the
geometry and appearance of rear car emblems to predict the
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TABLE 1. Summary of the most relevant fine-grained classification datasets.

Dataset Viewpoint Nature # Samples # Classes Problems

Cars-196 [5] Mixed Web 16,185 196 models Geographical bias, # images, far from real world, poor diversity
CompCars [6] Mixed Web 52,083 431 models Geographical bias, far from real world, multiplicity problem ignored
BoxCars [3], [11] Mixed/3D Surveillance 63,750 126 models Geographical bias, images size and resolution
VMMR-db [7] Mixed Real 291,752 9,170 models Geographical bias, multiple labels for the same class
Frontal-103 [8] Front Web 65,433 1,759 models Geographical bias, far from real world, labelling issues

Makers Test Set Front/Back Driving 2,685 33 Makers Geographical bias, # images and classes
Models Test Set Front/Back Driving 1,113 87 Models Geographical bias, # images and classes

FIGURE 2. Example of images from the three main datasets (CompCars (green). VMMR-db (blue) and Frontal-103 (orange)) and the PREVENTION test set
(purple). The images are arranged per-class in groups of four. We have Audi A3 (top left), Toyota RAV4 (Top righ), BMW 3 Series (bottom left) and Volkswagen Golf
(bottom right).

model. In [12], Gu et al. proposed a method to deal with
severe pose variation. They presented a mirror morphing
scheme exploiting the symmetry of cars to normalise any
orientation image into a typical view.

Looking deeper into the existing works of the CNNs era,
different approaches have been taken to tackle the fine-
grained vehicle classification problem, such as focusing on
location, appearance and/or parts, working in 3D space or
using different networks, modules or training techniques,
among others.

In the first group we have those that focus on location,
appearance and/or parts [16]–[24]. In [16], Lin et al. pro-
posed a novel end-to-end trained CNN architecture for fine-
grained visual recognition called Bilinear CNNs. The idea is
to have two networks that extract location and appearance
related features and then, combine them as a pooled outer
product, obtaining localised feature interactions invariant to
translations. They also proved that these bilinear features
are highly redundant and that can be reduced an order of
magnitude keeping performance practically unaltered. They
report results on Cars-196, and although they do not surpass
the state-of-the-art, they are close to it. In [17], Krause et
al. proposed a method that, instead of using part annotations
(like in their previous work [5]), generates parts using co-
segmentation and alignment in combination with R-CNN.
They show that this approach achieves state-of-the-art results
in their dataset (Cars-196), outperforming methods that use
part annotations during training. One interesting approach is
the taken by Fang et al. [18], in which they tackle the fine-
grained vehicle recognition problem by locating discrimi-
native parts where the differences are more evident. To do
so, they propose a coarse-to-fine method that makes use of

CNNs to extract feature maps and locate these discriminative
regions. The feature maps are then used to detect refined
regions and extract their features until there are no regions
left. Then, all the features (global and local) are used together
on a one-versus-all SVM classifier obtaining state-of-the-art
results in CompCars surveillance subset. Following the dis-
criminative region approach, Fu et al. [19] presented a novel
framework that uses a recurrent attention CNN to recursively
learn discriminative region attention and region-based feature
representation at multiple scales obtaining similar results to
[17] in Cars-196, but without human defined bounding boxes.
In [20], Zhao et al. proposed a Diversified Visual Attention
Network (DVAN) that is able to gather discriminative in-
formation using multiple attention canvases from which it
extracts convolutional features. An LSTM recurrent unit is
then used to learn the attentiveness and discrimination of
these canvases. In [21], Tian et al. followed an approach
similar to the one taken by Fang et al. obtaining local and
global features too. They proposed an iterative discrimination
CNN based on selective multi-convolutional region feature
extraction. Two types of features are extracted (local and
global), and then used to iteratively localise deep pivotal
features and feed them to a fully-connected fusion layer.
They report near state-of-the-art results in Cars-196 and in
CompCars. In [22], Elkerdawy et al. proposed the use of a
co-occurrence layer to discover parts in a unsupervised way,
avoiding the use of parts or 3D bounding boxes annotations.
They report state of-the-art results in BoxCars and competent
results in CompCars. In [23], Du et al. proposed a novel
method that adds new layers in each training step exploiting
information of the last step and a jigsaw puzzle generator to
enhance network input by forming images that contain infor-
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mation from different granularity levels. They report results
on several fine-grained classification datasets obtaining state-
of-of-the-art results on Cars-196. Recently, Ding et al. [24]
outperformed these results using enhanced feature represen-
tations and discriminative regions. To do so they presented
the Attention Pyramid Convolutional Neural Network (AP-
CNN), consisting of two feature and attention pathways used
to learn high-level semantic features and low-level detailed
features. Following this, they use a ROI-guided strategy that
refines features and eliminates background noise.

Among those that work in 3D space we have [3], [5],
[25], [26]. One of the limitations of 2D recognition models
is that their ability to generalise across different viewpoints
is limited. In [5], Krause et al. upgrade two 2D methods to
3D, outperforming its 2D counterparts. To do so they first
estimate the 3D geometry of the object and then represent the
appearance of local features and their locations in 3D space.
In [25], Ramnath et al. proposed a method to recognise make
and model from an arbitrary view. They first create a 3D hull
from the image an then project 3D space curves and refine
them using three-view curve matching. These 3D curves
are then matched to 2D image curves using an alignment
technique. Lin et al. [26] proposed to optimise 3D model
fitting and fine-grained classification jointly. First, they use
Deformable Part Models (DPM) to extract initial part lo-
cations. Second, they use regression techniques to estimate
landmark locations. Then, they fit the 3D model landmarks
of a deformable model to the predicted 2D landmarks. With
this information they extract part-based features and use
them on a SVM classifier. Finally they use the prediction to
refine the landmark fitting. In [3], Sochor et al. proposed an
enhanced input to a CNN. Instead of using the plain image,
they obtain a 3D bounding box used to "unpack" the vehicle
image, the shape and orientation, boosting performance both
for classification and recognition. The main problems with
3D methods are their high complexity and the need for
much denser labeling. If 3D information is not relevant, 2D
methods are more efficient and provide, in general, better
results.

Finally, there is a plethora of existing work that
makes use of different networks, modules or training
techniques [9], [27]–[32]. In [27], Anderson et al. used a
modular approach combining pretrained networks with new
untrained ones. In this way, they get new modules to learn
complementary features to those of the pretrained ones. They
used Cars-196 to prove their approach. Instead of a new net-
work or training technique, Hu et al. [28] proposed the use of
a Spatially Weighted Pooling (SWP) layer to improve the ro-
bustness and effectiveness of CNNs feature representations.
This novel pooling layer contains a predefined number of
spatially weighted masks that are learnt to pool the extracted
features in a discriminative way. They obtain state-of-the-art
results in both Cars-196 and CompCars. Other approaches
focus on the loss function instead of the CNN structure, as
in [31], where Li et al. proposed a new regularisation term to
cross-entropy loss. The resulting loss function, Dual Cross-

Entropy Loss, can help alleviate the vanishing gradient prob-
lem and demonstrates good performance with small datasets.
They use Cars-196 to prove their approach and obtain state-
of-the-art results. In [9], Corrales et al. presented an end-to-
end training methodology for fine-grained vehicle classifica-
tion. By applying diverse techniques like data augmentation,
learning rate policies and fine-tuning strategies they achieved
state-of-the-art results in CompCars. In [32], Buzzelli et al.
revisited CompCars, defining a new more challenging and
realistic train/test split and propagated the existing type-
level annotations to the whole dataset. They also designed
and implemented three different methods: one that directly
predicts make-model-year, a two-step approach that first pre-
dicts vehicle type and then make-model-year and a multilabel
approach that predicts both type and make-model-year. They
show interesting results, with a new baseline that goes down
from ~ 90% to 61% accuracy and achieving 70% accuracy
with the two-step method.

As we have seen, there are multiple datasets and ap-
proaches to address fine-grained vehicle classification. How-
ever, there is a clear tendency to increase the complexity
of the models to improve the overall results, neglecting
other key aspects such as class imbalance and generalisation
capability.

A summary of the CNNs era fine-grained vehicle classifi-
cation approaches can be found in Table 2.

C. IMBALANCED CLASSES
One of the key problems when working with large classifi-
cation datasets with a large number of classes is class imbal-
ance. In our experience, we have empirically found that mod-
els that perform well on average can have poor generalisation
capabilities, reporting very poor results for underrepresented
classes. Typically, there are two re-balancing approaches to
address this problem, one is re-sampling the data (over-
sampling under-represented classes or under-sampling over-
represented ones) and the other is to use weights to balance
the training. In the case of re-sampling, over-sampling seeks
to artificially increase the number of samples of under-
represented classes (dataset bias problem). The initial way to
solve it was to add repeated samples, at the cost of increasing
the risk of overfitting. To prevent it new samples can be
either interpolated from existing samples [33], [34] or syn-
thesised [35]–[37]. But, although these new samples prevent
overfitting, they could also be noisy, negatively conditioning
model performance. The other re-sampling technique, under-
sampling, has the risk of leaving behind relevant data, which
still seems preferable to over-sampling [38]–[40].

Regarding weight-based methods, a common approach is
to use the inverse frequency of each class [41]–[43]. Other
approach is to focus on the difficulty measured by the loss of
each class [44], use cost-sensitive weighting [45], [46] or use
a meta-learning algorithm that learns to assign weights based
on the gradients like the one used by Ren et al. [47].

A technique that has recently gained special attention is
Focal Loss [44]. They proposed a modification of standard
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Authors Year Dataset Approach Model

Krause et al. [5] 2013 Cars-196 3D space SVM
Ramnath et al. [25] 2014 Custom 3D space Three-view curve matching
Lin et al. [26] 2014 FG3DCar 3D space DPM+SVM
Lin et al. [16] 2015 Cars-196 Location, appearance, parts Bilinear CNNs
Krause et al. [17] 2015 Cars-196 Location, appearance, parts R-CNN: co-segmentation and alignment
Anderson et al. [27] 2016 Cars-196 Other CNN: complementary features
Sochor et al. in [3] 2016 BoxCars 3D space CNN
Fang et al. [18] 2017 CompCars Location, appearance, parts CNN+SVM
Fu et al. [19] 2017 Cars-196 Location, appearance, parts Recurrent attention CNN
Hu et al. [28] 2017 Cars-196 and CompCars Other CNN: SWP layer
Zhao et al. [20] 2017 Cars-196 Location, appearance, parts DVAN+LSTM
Tian et al. [21] 2018 Cars196 and CompCars Location, appearance, parts CNN: fully-connected fusion layer
Elkerdawy et al. [22] 2018 BoxCars and CompCars Location, appearance, parts CNN: co-ocurrence layer
Li et al. [31] 2019 CompCars Other CNN: dual cross-entropy loss
Corrales et al. [9] 2020 CompCars Other CNN: fine tuning strategies
Du et al. [23] 2020 Cars-196 Location, appearance, parts CNN: incremental # of layers
Ding et al. [24] 2021 Cars-196 Location, appearance, parts AP-CNN
Buzzelli et al. [32] 2021 CompCars Other CNN: hierarchical approaches

TABLE 2. CNNs era fine-grained vehicle classification approaches summary.

cross entropy loss by adding a new term that reduces the
relative loss of well-classified data and focuses on the harder
misclassified ones.

Recently, Cui et al. [48] presented a novel framework to
measure data overlapping and compute the effective number
of samples for each class. After that, they use a re-weighting
scheme to apply the effective number of samples previously
computed and re-balance the loss obtaining significant in-
creases in performance on long tailed datasets.

III. METHODOLOGY
In order to tackle the fine-grained vehicle classification
problem and evaluate generalisation capabilities, multiple
experiments will be carried out. For this purpose, a variety
of strategies and methods have been adopted. This section
describes the different architectures used, data augmentation
techniques, learning rate policies, curriculum learning meth-
ods and different loss weighting strategies.

A. ARCHITECTURES
Many years have passed since AlexNet [49]. During this
time, CNNs have evolved and today there are countless
different models. From VGG [50], the direct evolution
of AlexNet, through Inception [51], [52], ResNet [53] or
ResNext [54], to Google’s EfficientNets [55]. In [56], Bianco
et al. presented an in depth analysis of the main Deep Neu-
ral Networks (DNNs) used for image recognition reporting
multiple performance indices. In this paper, we propose to
use the ResNet50 and InceptionV3 models due to two main
reasons. First, these two models have a good balance between
performance and complexity ratio, with a very efficient use of
their parameters [56]. Second, these two models are perfectly
capable of addressing the fine-grained vehicle classification
problem allowing us not only to obtain a good overall perfor-

mance, but also enabling the study of the impact of different
learning techniques on per-class performance and generalisa-
tion, as well as to analyse the quality of the datasets.

B. DATA AUGMENTATION
It is widely accepted by the community that data augmenta-
tion is essential to improve model performance and prevent
overfitting [57]. In our previous paper [9] we empirically
proved the benefits of using data augmentation and tested
various techniques:

• Horizontal Flip: an horizontal flip (over y axis) with a
probability of 50% is performed over the image.

• Salt and Pepper: each pixel of the image is set to 0 or
255 with a probability of 2%.

• Poisson noise.
• Speckle noise.
• Blurring: gaussian blur operation is performed over the

image with a random kernel size between 3 and 11 and
standard deviation of 6.

• Color Casting.
• Color Jittering: the image is converted to HSV color

space and saturation and value are independently ran-
domly modified.

Our data augmentation strategy is applied in each epoch
to the training data and performed as follows. First, we
randomly apply the flipping operation to each image. Second,
we randomly select one of the other six data augmentation
operations and apply it to the resulting image. Finally, we
apply ImageNet [58] normalisation.

C. LEARNING RATE POLICIES
As with data augmentation, multiple learning rate policies are
extensively used by the community. After several experimen-
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tal validation we selected the following: to keep the learning
rate constant (constant lr), and to reduce it by an order of
magnitude every n epochs in a stepped pattern (step-n). The
initial learning rates that we use are 0.01 and 0.001 along with
Stochastic Gradient Descent (SGD), with 0.9 momentum and
0.0001 weight-decay.

D. CURRICULUM LEARNING
The fact that learning processes can be much more efficient
when information is presented in an organised way, pro-
gressively expanding the different concepts and difficulty,
rather than presented randomly, is an intuitive and reasonable
approach that has not yet been sufficiently applied to the
domain of deep learning. This is particularly interesting for
the fine-grained vehicle classification problem due to the
hierarchical structure of the data (makes → models). This
idea was first proposed in 1993 by Elman et al. [59] and
subsequently explored in 2009 by Bengio et al. [60], showing
solid improvements in performance for multiple tasks. In this
paper, we conduct a series of experiments to assess the fea-
sibility and impact on per-class performance of two different
curriculum learning techniques. The first consists in training
an easier, more general problem and then retraining for the
desired task. In our case, it seems reasonable to first train the
network to classify vehicle makers (general task) and, after
that, refine the network to classify models (desired task). In
our experiments we refer to this approach as incremental-
learning. The second technique is to start training an easier
problem and, at each epoch, gradually increase the difficulty.
For example, in a multi-class classification problem one starts
with the easier classes and gradually adds the most difficult
ones. We start with the fully connected layer initialised for
all classes and show to the model only a subset of the dataset
(the classes with the best performance) to gradually add the
rest of the classes. We apply two slightly different versions
of this technique by adding 5 and 10 new classes every epoch
respectively until all the classes are in use. After this, we
continue the training for a few more epochs to ensure that
the last classes added to the model are trained for more than
1 epoch. We refer to these techniques as progressive5 and
progressive10 in our experiments.

E. WEIGHTED LOSS FOR CLASS IMBALANCE
The class imbalance problem occurs when one or more of
the classes present in the dataset have a weight (number
of samples) several orders of magnitude below the rest of
the classes. This often means that, in the training process,
these classes are irrelevant during back-propagation, so that,
although the overall performance of the model is apparently
good, these particular classes perform well below average.
When these classes appear in real world conditions, we have
a bias problem in the dataset. This effect can be mitigated
by using loss weights to favour under-represented classes or
penalise over-represented ones.

We evaluate up to three different sets of weights. The first
one, which we refer as standard, is defined in Eq. 1:

W 1
i = 1−

(
num_samplesi/

∑
(num_samples)

)
(1)

where i represents the specific class. This way, all weights
are less than 1. However, when no weights are used (all equal
to 1), the sum of the weights is the number of classes. We
can therefore maintain the proportions by normalising the
weights so that adding them together gives the number of
classes. This is how the second set of weights is defined, as a
modification of the standard technique in which weights are
normalised so that they add up to the number of classes. We
refer to this set as standard normalised. For the third and last
of the sets we modify the weights with a non-linear function,
as defined in Eq. 2. First, we calculate the percentage of
representation in the dataset of each class and, after that, we
use the non-linear function−log(x). Additionally, we use the
number of classes normalised version as in the second set. We
refer to this set as log.

w2
i = num_samplesi/

∑
(num_samples)

W 2
i = −log(w2

i )
(2)

where i represents the class. We also use focal loss and
evaluate various values for α and γ. The definition of focal
loss is given by Eq. 3:

FL(pt) = −αt(1− pt)γ log(pt) (3)

where pt is given by the following equation:

pt =

{
p if y = 1

1− p otherwise
(4)

where y = 1 means that the class has been correctly classi-
fied, and p is the predicted class probability.

IV. RESULTS
A. CURRICULUM LEARNING
First, we aim to study the applicability of curriculum learning
techniques to the fine-grained vehicle classification problem
and evaluate its performance. All the experiments have been
made using the fine-grained classification subset of Comp-
Cars, with 431 classes and 52,083 images. We have chosen
CompCars, a widely used and well known dataset, because
of its large number of classes and images.

1) Incremental Learning
In Table 3 we compare the performance of a standard trained
ResNet50 and InceptionV3 with its counterparts trained us-
ing incremental-learn (first we train an easier problem -
makers- and then retrain it for models). All these models have
been trained for 50 epochs using a learning rate of 0.001 and
constant policy.

We can observe consistent performance obtaining a slight
improvement with the incremental-learn technique. This in-
dicates that the incremental-learn technique is working and,
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TABLE 3. Comparison of the accuracy on validation of the first curriculum
learning method (from general to specific) with standard training. The times for
the incremental-learn method models (marked with *) are roughly double their
standard counterparts because we are counting the time required for training
the maker and model networks.

Model Method top1/5 acc (%) Train Time

ResNet50 standard 95.28 / 99.26 3h5m
ResNet50 incremental-learn 95.55 / 99.42 6h3m*

InceptionV3 standard 95.02 / 99.10 4h25m
InceptionV3 incremental-learn 95.39 / 99.29 8h53m*

although the training time practically doubles, it can be useful
to enhance generalisation. Given that the results obtained for
InceptionV3 and ResNet50 are very similar, for the remain-
ing of this section we will only show the results for ResNet50.

These tests alone do not allow us to properly interpret the
results. As we have said, we first trained makers and after
that models. How has incremental-learn method affected the
performance? A comparison of ResNet50 models per-class
performance can be seen in Fig. 3. In order to visualise the
data more clearly, we decided to subtract the original per-
class performance, thus obtaining results centred on zero
(same performance), above zero (standard model performs
better) and below zero (incremental-learn performs better).
We also applied a color coding with a threshold of 2.5%
difference in performance to divide the classes in three
groups. The group below -2.5% in green (incremental-learn).
The group above 2.5% (standard model). And the group in
between (similar performance with both models). We can
see that most of the values are at 0 or very close with some
outlayers going to differences of more than 10%. Analysing
the data, both trainings are balanced having practically the
same number of improvements and losses in performance
so we wondered if these variations could be caused by the
number of samples in the classes.

In Fig. 4 we can see the per-class difference in performance
between the two models depending on the number of samples
in each class. This gives us valuable information. There is a
clear tendency to obtain similar results the more samples a
class has with the greatest differences concentrated in some
of the classes with the least number of samples. We can see a
homogeneous distribution between improving and worsening
performance so we can say that the variations are related with
the number of samples, but, we think that the main reason for
this behaviour is the fact that the classes with fewer samples
are more exposed to the random variations of each training.

2) Progressive Learning

Continuing with the curriculum learning experiments, in
Table 4 we compare the performance of two standard trained
ResNet50 (one with constant 0.001 learning rate and the
other with step-10 policy and 0.01 as initial learning rate)
with a set of ResNet50 models trained using both progres-
sive variants. All these models have been trained for 50/80
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FIGURE 3. Per-class performance differences for the ResNet50 standard and
incremental-learn models. Difference threshold of 0.025 (2.5%). Differences
below -0.025 (green circles) mean better performance for the
incremental-learn method. Differences above 0.025 (red squares) mean better
performance for the standard model. Values in between (yellow triangles)
mean similar performance in both models.
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FIGURE 4. Per-class performance differences for the ResNet50 standard and
incremental-learn models depending on the number of training samples.
Difference threshold of 0.025 (2.5%). Differences below -0.025 (green circles)
mean better performance for the incremental-learn method. Differences above
0.025 (red squares) mean better performance for the standard model. Values
in between (yellow triangles) mean similar performance in both models.

epochs (progressive-10 or progressive-5) using learning rates
of 0.01/0.001, constant policy and none of theme use the 2-
step fine-tuning technique.

If we take a look at the results we can see several things.
First, we have consistent results with better performance
for all the progressive-10 models when compared with the
progressive-5 ones. When comparing the different runs of
ResNet50 we can see that the 0.01 learning rate seems to
work better. The progressive ResNet50 models match the
performance of the standard one with a slight improvement
for the 0.001 learning rate progressive-10 model. Talking
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TABLE 4. Comparison of the accuracy of ResNet50 models trained with
progressive learning technique with standard training.

Model Method lr top1/5 acc (%) Train Time

ResNet50 standard 0.001 95.28 / 99.26 3h5m
ResNet50 standard step-10 0.01 97.00 / 99.62 3h5m

ResNet50 prog10 0.001 95.43 / 99.34 2h44m
ResNet50 prog5 0.001 95.27 / 99.33 4h6m
ResNet50 prog10 0.01 97.02 / 99.53 2h44m
ResNet50 prog5 0.01 96.61 / 99.51 4h6m

about times, the progressive-10 ResNet50 models take less
time than the standard ones achieving similar results. With
these results, the progressive technique looks like a good
option, as it obtains equivalent performance in less time and
could be an useful resource to add new classes to an already
trained model instead of training it again.

As we have been adding classes from best to worst per-
formance is interesting to analyse the per-class performance.
In Fig. 5 we can see a comparison of per-class performance
and per-class performance depending on the number of train-
ing samples of the ResNet50 progressive10 trainings and
their standard counterparts. Once again, we have applied a
threshold of 2.5% difference in performance to divide the
classes into three groups. On top, we have the comparison
of the models with 0.001 learning rate and on the bottom
those with 0.01 learning rate. On the left side we have the
per-class performance and on the right side per-class perfor-
mance by number of training samples. Focusing on per-class
performance we can see that the 0.01 learning rate models
are more compact (fewer differences), which is consistent
with the results (the 0.01 lr models obtain practically the
same results while the 0.001 have a greater gap). Focusing
on the per-class performance by number of samples we have
the same behaviour and the expected pyramidal pattern, with
fewer differences the more samples a class has.

Seeing these results, with virtually identical performances
using the progressive methodology and the standard, we
wondered whether gradually increasing the difficulty of the
classes is really helping or not. To test this we have trained
2 additional ResNet50 models using 0.01 learning rate,
progressive-10 method, one with random class order and the
other with inverse (decreasing difficult) class order.

In Table 5 we can compare the progressive models trained
with alternative class order with the standard and the pro-
gressive with increasing difficult ones. As can be seen, all
the performances are practically the same which refutes the
theory that progressively increasing the difficulty improves
performance. These results are somewhat counter-intuitive,
as the data structure of the classification problem suggested a
potential for improvement. Even so, although no significant
performance gain is obtained, it has been shown that the mod-
els can be trained progressively, allowing new classes to be
added to already trained networks, and achieving equivalent
performance with less computational resources, i.e. less time
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FIGURE 5. Left images are the per-class performance differences of 0.001
and 0.01 learning rate standard ResNet50 and progressive-10 ResNet50
respectively. Right images are the per-class performance differences for the
0.001 and 0.01 learning rate trains depending on the number of training
samples. Difference threshold of 0.025 (2.5%). Differences below -0.025
(green circles) mean better performance for the progressive method.
Differences above 0.025 (red squares) mean better performance fort the
standard model. Values in between (yellow triangles) mean similar
performance in both models.

TABLE 5. Comparison of the accuracy of ResNet50 models trained with
progressive learning technique and alternative class order (random and
inverse) with standard training.

Model Method lr top1/5 acc (%) T. Time

ResNet50 standard step-10 0.01 97.00 / 99.62 3h5m

ResNet50 prog10 0.01 97.02 / 99.53 2h44m
ResNet50 prog10-random 0.01 97.03 / 99.51 2h44m
ResNet50 prog10-inv 0.01 97.01 / 99.50 2h44m

and energy spent on training processes.

B. FINE-GRAINED MODELS
In this section, we analyse the performance of fine-grained
classification models comparing them with the baseline re-
sults reported by their creators. It could be interesting to
compare them with other state-of-the-art methods, but since
our aim is not to obtain the best model, we have considered
that it does not provide relevant information. We will focus
on the results obtained with CompCars, VMMR-db and
Frontal-103 and their subsets.

For CompCars we have evaluated 2 subsets. One of makers
and other of models, with 73 and 431 classes. For VMMR-
db we have evaluated 3 subsets. One of makers and other of
models built with the data provided and other called 3,040
built in the same way as the authors built its 3,036 (all the
classes with more than 20 images). The number of classes
is 43, 472 and 3,040 respectively. For Frontal-103 we have
evaluated 3 subsets. One of makers, one of models built with
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the data provided and one of ultra-fine-grained models. The
number of classes is 103, 1,050 and 1,759 respectively.

For clarity, the Table 6 shows the different subsets with the
number of classes and the total number of images.

TABLE 6. Information of number of classes and images of each of the
subsets.

Subset # Classes # Images

CompCars Makers 73 52,083
CompCars Models 431 52,083

VMMR-db Makers 43 246,290
VMMR-db Models 472 246,290
VMMR-db 3,040 3,040 246,290

Frontal-103 Makers 103 65,433
Frontal-103 Models 1,050 65,433
Frontal-103 Ultra 1,759 65,433

All experiments were performed with a 70/30 train/val
split. We trained both ResNet50 and InceptionV3 models
with step-10 policy and 0.01 learning rate for 50 epochs.
As InceptionV3 was the best performing option we will only
report its results.

TABLE 7. Comparison of accuracy of the different datasets and subsets with
its baseline results.

Model Subset top1/5 acc(%)

InceptionV3 CompCars Makers 98.84 / 99.68
InceptionV3 CompCars Models 97.29 / 99.57
CompCars [6] CompCars Models 91.20 / 98.10

InceptionV3 VMMR-db Makers 97.34 / 99.64
InceptionV3 VMMR-db Models 94.46 / 99.15
InceptionV3 VMMR-db 3,040 42.16 / 91.58
VMMR-db [7] VMMR-db 3,036 51.76 / 92.90

InceptionV3 Frontal-103 Makers 99.30 / 99.87
InceptionV3 Frontal-103 Models 96.88 / 99.65
InceptionV3 Frontal-103 Ultra 95.62 / 99.48
Frontal-103 [8] Frontal-103 Ultra 91.28 / -

Table 7 shows the results of the InceptionV3 models
for each of the subsets and compares them with the ones
reported by their creators. As expected, the best results are
obtained in the simplest task, classifying makers, followed
by fine-grained models and finally ultra fine-grained models.
Analysing the makers results we can see that the best perfor-
mance is achieved with Frontal-103 as is the easiest one hav-
ing only images from the front of the vehicles, followed by
CompCars and finally VMMR-db as its the most complicated
and extensive of the datasets. Focusing on the performance
of fine-grained classification, it can be seen that this time
the best performance is achieved by CompCars, as it has
the least amount of classes, followed by Frontal-103, which,
although it has more classes than VMMR-db, is, as we have
said, easier having a single view-point. Finally, in the case of
ultra fine-grained classification, we can see a big difference

between the results obtained by VMMR-db and Frontal-103.
While Frontal-103 still achieves a good performance with
95.62% of top1 accuracy, VMMR-db drops to 42.16%. As
we have previously said, one of the key problems of VMMR-
db dataset is that the labelling contains a class for each year
of the same model. Therefore, the actual number of classes
is much lower. If we take a look to the top5 accuracy we can
see an important leap to 91.58%. In [7] the authors explain
this drop in performance by the increased difficulty of going
deeper in the hierarchy. However, this statement does not
sufficiently hold. As we have seen with Frontal-103, although
the ultra classification does indeed have a higher level of
difficulty it still has a good performance. This shows that the
year-based labelling for models in VMMR-db is not the most
appropriate.

C. WEIGHTED LOSSES
As we have said in the introduction, most articles focus on
reporting global results, trying to improve accuracy, without
analyzing per-class performance. It is of little use to have
spectacular accuracy if a non-negligible number of classes
have been somewhat ignored. In this section, we analyse
the per-class performance of maker and model classification
and explore techniques such as weighted loss to improve its
performance and generalisation capabilities. We are going
to use VMMR-db Makers and VMMR-db Models for the
training and the PREVENTION dataset to externally eval-
uate performance and generalisation capabilities in realistic
scenarios.

1) Why raw precision is not enough?
Fig. 6 shows an histogram of the per-class precision of
VMMR-db Maker subset. We can see that even though the
top1 accuracy is 97.34% we still have one class performing
below 10%. If we look at the results of VMMR-db Models in
Fig. 7, we can see that this problem is considerably greater
and, even though the top1 accuracy is 94.46%, there is a
considerable number of classes with poor performance.

To address the performance problem in particular classes,
we first checked the relationship of per-class performance
to the number of samples of each class and found that the
classes with this problem are among those with the fewest
samples. Having verified that there is indeed a problem
with under-represented classes, we have employed various
weighted losses techniques and focal loss to try to mitigate
this problem. To evaluate generalisation capability of the
different solutions, in addition to the training performance
in VMMR-db Makers and Models, we will use the two test
sets (Makers and Models) created from the PREVENTION
dataset with rear and front view images in real traffic situa-
tions. Of the 33 makers present in the Makers test set, 25 are
present in VMMR-db with a total of 1,523 images. And from
the 87 models present in the Models test set, 50 are present
in VMMR-db with a total of 780 images.

As defined in section III-E, we are going to test three
different weighting schemes and the focal loss.
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FIGURE 6. Number of classes with a given precision (VALIDATION) for
InceptionV3 model trained with VMMR-db Makers subset.
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FIGURE 7. Number of classes with a given precision (VALIDATION) for
InceptionV3 model trained with VMMR-db Models subset.

2) Weighted losses for maker classification
Table 8 shows the accuracy for the non-weighted, the
weighted and the focal loss models trained with VMMR-db
Makers and tested on the PREVENTION Makers dataset.

TABLE 8. Comparison of the accuracy of InceptionV3 models trained with
VMMR-db Makers with and without weights and test on the PREVENTION
Makers dataset. Standard 43 and Log 43 are the normalised version of the
weights. The results of focal loss are the ones obtained using α = 1, γ = 2.

Method top1/5 acc (%) test top1 acc(%)
front / rear / all

Without weights 97.34 / 99.64 81.45 / 69.84 / 76.17

Standard weights 97.22 / 99.64 79,16 / 70,85 / 75,38
Standard 43 weights 97.31 / 99.64 83.37 / 73.02 / 78.66
Log 43 weights 97.23 / 99.66 81.81 / 69.55 / 76.23
Focal Loss 96.94 / 99.66 82.65 / 70.71 / 77.22

Looking at these results, we can see that, in terms of accu-
racy in the training phase, the best performance is obtained by
the model without weights, but closely followed by the other
approaches, with the standard normalised weights (standard
43) being the best performing of the weighted models. If
we look at the test results, we can see that the normalised
weights and focal loss outperform the weightless model with
the standard 43 being the best again followed by focal loss.

3) Weighted losses for model classification
Focusing on VMMR-db Models, we can see the accuracy
comparison between using and not using weights and focal
loss in Table 9. Looking at these results, we have a similar be-
haviour as with VMMR-db Maker. The best performance in
the training phase is again achieved by the weightless model
and the weighted models follow closely behind. However,
this time the best performing model is the one trained with
focal loss, even though is the worst performing in validation.
In the test results we can see that all the weighted models
outperform the weightless one. It is worth noting the large
drop in test performance compared to makers. This is most
likely due, on the one hand, to the increased difficulty and,
on the other hand, to the smaller number of samples in the
Models test set, which makes it more biased.

TABLE 9. Comparison of the accuracy of InceptionV3 models trained with
VMMR-db Models with and without weights and test on the PREVENTION
Models dataset. Standard 472 and Log 472 are the normalised version of the
weights. The results of focal loss are the ones obtained using α = 1, γ = 2.

Method top1/5 acc (%) test top1 acc(%)
front / rear / all

Without weights 94.46 / 99.15 51.27 / 57.93 / 54.23

Standard weights 94.30 / 99.16 51.96 / 58.21 / 54.74
Standard 472 weights 94.41 / 99.22 53.12 / 59.37 / 55.90
Log 472 weights 94.40 / 99.22 53.81 / 58.50 / 55.90
Focal Loss 93.92 / 99.25 53.12 / 59.65 / 56.03

4) Per-class performance analysis (makers)
But again, we are focusing only on raw performance. It is
particularly interesting to look at per-class performance. Fig.
8 shows a comparison of per-class performance for each of
the previous models trained with VMMR-db Makers. We
can appreciate the effect of the weighted models, with all
of them having solved the poor performing class problem
of the weightless model. Apart from that, the results are
pretty much the same, with standard 43 being the best of
the weighted models. Fig. 9 shows a comparison of per-class
test performance for each of the previous models trained
with VMMR-db Makers and tested on the PREVENTION
Makers test set. It can be seen that none of the models
have classes below 10% precision and a fairly homogeneous
performance, with standard 43 being the best one with a solid
performance when compared with the rest of the models,
and, even though it has one more class with performance
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FIGURE 8. Comparison of per-class performance (VALIDATION) in VMMR-db
Makers for the different weights sets and focal loss.

below 20%, it also has a noticeable improvement in the
range 20-60% when compared with the weightless model.
For all of this, it achieves an improvement of almost 2% for
front images, 3.18% for rear images and almost 2.5% on all
images.
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FIGURE 9. Comparison of per-class test performance (TEST) in the
PREVENTION Makers dataset for the different weights sets and focal loss
trained with VMMR-db Makers.

5) Per-class performance analysis (models)
Continuing with the fine-grained results, Fig. 10 shows a
comparison of per-class performance for each of the previous
models trained with VMMR-db Models. At first glance we
can see that the results are very similar, which makes sense as
the performance is almost identical. We can see that the per-
class precision distribution is pretty balanced, with all models
compensating better performance in one section with worse
performance in another.
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FIGURE 10. Comparison of per-class performance (VALIDATION) in
VMMR-db Models for the different weights sets and focal loss.

With these results, it may seem that the use of weights is
not justified, as almost identical results have been achieved
and there is no clear benefit in terms of the number of poorly
performing classes. However, if we look at the test results
we can see a considerable improvement, with an increase of
more than 2% for front images, almost 2% for rear images
and 1.8% on all images.

Fig. 11 shows a comparison of per-class test performance
for each of the previous models trained with VMMR-db
Models and tested on the PREVENTION Models test set. We
can see equivalent or better performance for all the weighted
models in terms of number of classes with precision greater
than 0.8. In the range of 0.2 to 0.8 the results are pretty
balanced, with the weightless model having more classes
above 0.7 but the focal loss one less in 0.2 to 0.4.

Regarding the poor performing classes, the number of
classes below 0.1 is worrying but is practically the same
regardless of the model. It is important to remember that
the number of images of the Models test set is half that
of the Makers test set, making the results more susceptible
to variability. However, the results are promising, with a
clear improvement in overall test performance, and results
that point to an improvement in the generalisation ability of
weighted models.

With these results the use of weights is justified, at least in
part. The weighted models achieve comparable results to the
weightless ones both for makers and models while improving
test performance. The claim that weighted models help to
reduce the amount of poor performing classes is eclipsed
by the worrying amount of them when testing for models.
However, results point to an improvement in the generalisa-
tion capabilities of the models, as test performance improves
by 2.49% and 1.8%. As previously stated, we believe that
models test results has a lot to do with the test dataset. It
is necessary to conduct further experimentation and build a
more extensive and adequate test dataset to properly evaluate
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TABLE 10. Fusion sets number of classes, images and distribution of the images between the three source datasets.

Dataset # Classes # Images # CompCars (%) # VMMR-db (%) # Frontal-103 (%)

Fusion-Makers 27 265,833 28,960 (10.89%) 198,644 (74.73%) 38,229 (14.38%)
Fusion-Models 75 101,335 13,211 (13.04%) 72,142 (71.19%) 15,982 (15.77%)

TABLE 11. Cross test performance comparison of Fusion-Makers dataset and its source makers datasets. The Test Set column corresponds to the results testing
with the PREVENTION Makers subset. From the 27 classes there are 23 common with the PREVENTION Makers test set.

Test top1/3 acc (%) Test Set top1 acc (%)
Train Fusion-Makers CompCars-Makers VMMR-db-Makers Frontal-103-Makers (front/rear/all)

InceptionV3 Fusion-Makers 98.47 / 99.60 99.33 / 99.77 98.09 / 99.59 99.81 / 99.95 89.81 / 81.82 / 86.19
InceptionV3 CompCars-Makers 47.39 / 58.43 99.17 / 99.77 30.92 / 44.88 93.73 / 97.52 75.26 / 65.07 / 70.64
InceptionV3 VMMR-db-Makers 94.96 / 97.75 79.70 / 88.92 98.04 / 99.47 90.49 / 95.54 82.80 / 73.52 / 78.60
InceptionV3 Frontal-103-Makers 33.32 / 46.18 41.34 / 58.13 19.38 / 34.11 99.78 / 99.92 78.44 / 27.43 / 55.31
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FIGURE 11. Comparison of per-class test performance (TEST) in the
PREVENTION Models dataset for the different weights sets and focal loss
trained with VMMR-db Models.

fine-grained performance.

D. COMPLEXITY AND GENERALISATION CAPABILITIES
To consider a dataset as a quality dataset, it must capture
the real world as reliably as possible, with as few deviations
and bias as possible. Therefore, a good dataset will result in
models with better generalisation capabilities. As previously
mentioned, most datasets are either designed to solve a
specific problem, so they are biased, or they are intended for
general use. A general-purpose dataset, should capture the
world in a reliable way, but when it comes down to it, most
of them tend to be conditioned.

Thus, we have decided to build a cross-dataset composed
of the common classes between CompCars, VMMR-db and
Frontal-103. In this way, we will be able to evaluate the com-
plexity and generalisation capabilities of the models trained
with each dataset by performing cross tests. Additionally, we
will also test the models with the test set extracted from the

PREVENTION dataset.
We have built two sets, one of makers and other of mod-

els. The Fusion-Makers set has 27 different manufacturers
and a total of 265,833 images, 28,960 from CompCars,
198,644 from VMMR-db and 38,229 from Frontal-103. The
Fusion-Models set has 75 different vehicle models and a
total of 101,335 images, 13,211 from CompCars, 72,142
from VMMR-db and 15,982 from Frontal-103. It may seem
curious, or even a mistake, that the number of images in the
set of models is much lower than in makers. The reason is
that the makers set is much less strict, allowing models from
the same manufacturer that are not present in the three source
datasets to be included. In contrast, in the case of models, the
requirement that a particular model has to be present in all
three datasets brings the total number of classes and images
down considerably. Additionally, we have had to group some
source classes into a single target class, e.g. different equip-
ment levels that were considered as different classes like
BMW 320 vs BMW 325 as BMW 3 Series. As mentioned in
the introduction, the correspondence between classes will be
publicly available2. A summary of the different Fusion sets
can be seen in Table 10.

To perform these experiments we used InceptionV3 archi-
tecture. First, we are going to analyse makers performance.
Table 11 shows the results of the cross-tests with the different
makers sets. We can see that the best performing model for
all the sets is the one trained with the full Fusion dataset
followed by the model trained on the tested set. This demon-
strates that the joint use of the datasets brings more variety,
resulting in better generalisation capabilities and mitigating
the impact of dataset bias. The only model, other than the
Fusion one, that is capable of obtaining reasonable results
on the other datasets is the one trained with VMMR-db.
It is important to notice that VMMR-db almost represents
75% of the Fusion dataset, which could partly justify the
good results when testing with Fusion, but not its good
performance in the rest of the subsets. When we look at

2https://github.com/ninte/fusion-cross-dataset
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FIGURE 12. Top3 predicted classes of InceptionV3 Fusion-Makers model for sample images from the PREVENTION Makers test set. The first row shows correctly
classified front view images. The middle row shows correctly classified rear view images. The bottom row shows misclassified images from both views.

TABLE 12. Cross test performance comparison of Fusion-Models dataset and its source models datasets. The Test Set column corresponds to the results testing
with the PREVENTION Models subset. From the 75 classes there are 34 present in the PREVENTION Models test set.

Test top1/3 acc (%) Test Set top1 acc (%)
Train Fusion-Models CompCars-Models VMMR-db-Models Frontal-103-Models (front/rear/all)

InceptionV3 Fusion-Models 98.51 / 99.58 99.32 / 99.75 98.11 / 99.47 99.62 / 99.64 80.23 / 75.67 / 78.47
InceptionV3 CompCars-Models 43.85 / 56.20 98.41 / 99.57 25.17 / 39.98 83.25 / 93.69 53.35 / 49.43 / 51.56
InceptionV3 VMMR-db-Models 86.28 / 93.19 63.30 / 80.15 97.90 / 99.32 52.67 / 76.24 62.62 / 68.44 / 65.28
InceptionV3 Frontal-103-Models 25.76 / 31.69 34.93 / 44.04 7.90 / 14.43 99.26 / 99.81 53.99 / 4.94 / 31.60

the other two, both CompCars and Frontal-103 obtain poor
performance when tested with Fusion. CompCars seems to
work well when tested with Frontal-103, outperforming the
VMMR-db model, which tells us that they are very similar.
Probably, Frontal-103 could get good results in CompCars
as well, but it is strongly conditioned by having only frontal
images, hence its poor performance. If we take a look to the
PREVENTION test results, we can see the same behaviour,
with Fusion being the best with 86.19% accuracy for all
test images followed by VMMR-db with 78.60%, CompCars
with 70.64% and Frontal-103 with 55.31%.

Fig. 12 shows some examples of top3 predicted classes
of InceptionV3 Fusion-Makers model in the PREVENTION
Makers test set. The first row shows correctly predicted front
view images. The middle row shows correctly predicted rear

view images. The bottom row shows misclassified images
from both views. We can see that the model has practically
total confidence in the correctly predicted makers (the mean
confidence for the correct predictions is 97.78%). This is not
the case for the misclassified ones, which have confidences
much lower with the exception of the Suzuki predicted as
Mitsubishi (the mean confidence for the wrong predictions is
68.05%).

Table 12 shows the results of the cross-tests with the
Fusion-Models dataset. Once again, the best performing
model is the one trained with Fusion. We have the same
differences for the rest of the tests but this time with per-
formances much lower than when using makers. This may
be due to the increase in the number of classes making the
problem more complex. Taking a look to the PREVENTION
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FIGURE 13. Top3 predicted classes of InceptionV3 Fusion-Models model for sample images from the PREVENTION Models test set. The first row shows correctly
classified front view images. The middle row shows correctly classified rear view images. The bottom row shows misclassified images from both views.

Models test results, we have the same order in performance
(Fusion, VMMR-db, CompCars and Frontal) with 78.47%
accuracy for the Fusion model. As expected, the perfor-
mances are lower than with makers, as it is a more complex
problem. However, it should be noted that in this case the
Fusion model has a larger performance gap compared to the
other models, which supports the importance of having a
good dataset that allows better generalisation. Lastly, it is
worth mentioning the very poor rear performance of Frontal-
103 model (4.94%).

Fig. 13 shows some examples of top3 predicted classes
of InceptionV3 Fusion-Models model in the PREVENTION
Models test set. The first row shows correctly predicted front
view images. The middle row shows correctly predicted rear
view images. The bottom row shows misclassified images
from both views. We can see that the model has practically
total confidence in the correctly predicted models (the mean
confidence for the correct predictions is 95.68%). This is not
the case for the misclassified ones, which have confidences
much lower (the mean confidence for the wrong predictions
is 69.91%). Compared to the makers results, the average
confidence has gone down for correct predictions (-2.1%) and
up a for incorrect ones (+1.86%). This is perfectly normal as
it is a more complex problem. In any case, the differences are
minimal.

With these results it is clear that of the three datasets, the
most complex and the one with the greatest generalisation
capabilities is VMMR-db. CompCars is the next, with a
significant step down in cross-performance, finally followed
by Frontal-103, which is the simplest of all, and is strongly
conditioned by having exclusively frontal images. It is also
clear that the joint use of the three datasets improves the
generalisation capabilities, obtaining reasonably good results
in the external test performed with the PREVENTION test
set both for makers and models.

The results obtained by making use of the existing datasets
suggest that the fine-grained classification can be addressed.
However, in cross-testing it is clear that with the exception
of VMMR-db, the rest of the datasets are highly biased, and
in the case of VMMR-db, although it performs better, it is
also biased. It is only when performing these cross-tests and
with an external test set that we realise that the problem is not
completely solved, and not only for a complex problem such
as fine-grained classification, but in a simpler problem such
as maker classification. It is necessary to create a sufficiently
large and varied dataset, with images of multiple origins,
qualities and viewpoints, to be able to tackle the classification
problem satisfactorily.
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V. CONCLUSIONS AND FUTURE WORK
This paper presents an empirical evaluation of different
training methods and approaches for fine-grained vehicle
classification as well as an analysis and comparison of the
most relevant datasets.

We have analysed the strengths and shortcomings of
datasets like CompCars [6], VMMR-db [7] and Frontal-103
[8] and used them in a series of experiments.

In the first place, we have explored different curriculum
learning techniques such as incremental-learn (training first
an easier problem (makers) and after that retrain for a harder
one (models)) or progressive-learn (start with the easiest
best performing classes and gradually add the hardest worst
performing) with CompCars dataset. The results show an
slight improvement in overall performance for incremental-
learn with similar gain/losses in per-class performances and
a clear relation between per-class performance and number
of samples. For progressive-learn we have a very similar
behaviour, with virtually the same performance and the same
per-class differences. The progressive-learn results made us
consider whether the technique was working as expected, so
we performed additional tests, one with decreasing difficulty
and other with random order, obtaining identical results. With
these results, curriculum learning techniques show a lack of
improvement in performance, making it difficult to justify
their use as a mechanism for improving learning. However,
progressive-learn has proven useful as a tool for adding
classes to already trained models without having to train from
scratch again.

After this, we evaluated the results obtained with differ-
ent subsets of CompCars (makers and models), VMMR-
db (makers, models and 3,040) and Frontal-103 (makers,
models and ultra-fine-grained). As expected, the best results
are obtained in the easiest task (makers) with Frontal-103 in
the first place (as it is the easiest only having frontal images),
followed by CompCars and finally VMMR-db (as is the most
difficult/extensive of the datasets). For the fine-grained prob-
lem (models) the best performance is achieved by CompCars
(less classes), followed by Frontal-103 which, although it has
more classes, is easier, and finally VMMR-db. Finally, the
ultra-fine-grained problem (models and generation) showed
a huge difference between Frontal-103 and VMMR-db, with
the first one still having a stunning performance and the
second one falling bellow 45% top1 accuracy while top5 is
still above 90%. This shows the poor class construction of
VMMR-db and confirms that even though ultra-fine-grained
classification is more challenging, it can still be tackled if the
dataset is properly constructed.

Continuing with the experiments we have evaluated the
impact of using weighted losses. To do so we have used
various weights and focal loss showing that the best re-
sults are obtained with the normalised standard weights,
with practically identical results to those obtained without
weights, but with a significant improvement when testing
on a new database. Our aim in this part of the article was
to analyse the results beyond the raw performance. For this

purpose, we have analysed per-class performance showing a
clear improvement over the weightless model when working
with makers. In the case of models the improvement was not
so evident, with more classes over 80% accuracy and similar
results in the range 20-80% but no conclusive results for the
poor performing ones. While the use of weights have proven
to improve generalisation capabilities, we cannot claim the
same for reducing the number of poor performing classes.
Further experiments and a more extensive adequate test set
are needed to properly evaluate fine-grained performance.

Finally, we wanted to analyse the complexity and general-
isation capabilities of the existing datasets. To evaluate these
characteristics we have built a cross-dataset (Fusion) com-
posed of the common classes between CompCars, VMMR-
db and Frontal-103 and performed a series of cross tests. The
results show that the best performing model is the one trained
with Fusion, both in makers and models, outperforming all
the other models in the cross-tests. Regarding the PREVEN-
TION external test set, the Fusion models achieve pretty good
results showing really good generalisation capabilities both
for makers and models. From the three datasets, VMMR-db
is the most complex, with CompCars and Frontal-103 being
very similar but Frontal-103 heavily penalised for having
exclusively frontal images. These results show that when
using the existing datasets by their own, one can think that the
fine-grained classification problem is solved. However, cross-
testing shows the shortages of the existing datasets, showing
a different reality. The problem does not seem to be solved,
not only for a complex task like fine-grained classification,
but for an easier one like maker classification. It is necessary
to create a sufficiently large and varied dataset, with images
of multiple origins, qualities and viewpoints, to be able to
tackle the classification and fine-grained classification prob-
lem satisfactorily.

As future work, we plan to create an extensive dataset, with
images of diverse nature, makes and models from different
geographical regions, different resolutions, image qualities
and viewpoints, with an adequate class hierarchy, enabling
the development of more general and unbiased systems
capable of performing fine-grained vehicle recognition in
multiple, realistic environments.
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