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ABSTRACT Significant progress on human and vehicle pose estimation has been achieved in recent years.
The performance of these methods has evolved from poor to remarkable in just a couple of years. This
improvement has been obtained from increasingly complex architectures. In this paper, we explore the
applicability of simple baseline methods by adding a few deconvolutional layers on a backbone network
to estimate heat maps that correspond to the vehicle keypoints. This approach has been proven to be very
effective for human pose estimation. The results are analyzed on the PASCAL3D+ dataset, achieving
state-of-the-art results. In addition, a set of experiments has been conducted to study current shortcomings
in vehicle keypoints labelling, which adversely affect performance. A new strategy for defining vehicle
keypoints is presented and validated with our customized dataset with extended keypoints.

INDEX TERMS Vehicle pose estimation, vehicle keypoints detection, CNNs, heat maps, human pose
estimation, experimental validation.

I. INTRODUCTION
Deep learning and the huge evolution that Convolutional
Neural Networks (CNNs) have undergone in recent years
have completely changed computer vision. Many tasks, such
as image classification, segmentation, or object detection,
have been solved or greatly advanced. Among them, pose
estimation is a hot topic with increased attention in recent
years, being human pose estimation the one that has monop-
olised the vast majority of efforts and advances. Pose esti-
mation is a complex and challenging task, especially human
pose, due to the different possible poses and body’s flexibility.
But in spite of this, as Xiao et al. presented in [1], the existing
human pose benchmarks have become saturated (MPII [2]),
or huge advances have been made (COCO [3]). Along
with the improvement in the accuracy of the models, their
complexity has also increased. The comparison of models
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obtaining similar results but with very different approaches
is virtually impossible. Because of this, Xiao et al. [1] raised
the question of how good a simple method could be and
presented a baseline model that achieved the state-of-the-art
at COCO.

Under the shadow of human pose estimation, vehicle pose
estimation has also drawn some attention. First of all, wewant
to clarify that, traditionally, when talking about human pose
estimation, the ‘‘pose’’ is characterized by the 2D keypoints
detected on the image plane. The reason for this is that
the human body has a flexible and variable structure and
can adopt different ‘‘poses’’. However, when talking about
vehicles, there is no consensus, and it can relate to both
the 2D or 3D pose as vehicles are rigid structures.We want to
clarify that in this article, when we use vehicle pose, we refer
to the 2D pose, the same as in humans.

Vehicle pose is an important task, with a huge variety
of applications in multiple domains like surveillance or
autonomous vehicles. Multiple works address the problem of
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FIGURE 1. Illustration of the simple baseline network architecture proposed for vehicle keypoint estimation.

vehicle pose estimation. Among these works, we can distin-
guish two groups. On the one hand, those who make use of
keypoints [4]–[7], either because they estimate the 2D pose
or because they use them as an intermediate step to obtain
the 3D pose. On the other hand, those who do not rely on
keypoints. Of the latter, we can highlight works such as that of
Zia et al. [8], in which they proposed a viewpoint-invariant
method for 3D reconstruction using shape and occlusion
modelling and a common scene geometry (ground plane) to
fit these shapes. In [9]. Juránek et al. presented an object
detector coupled with pose estimation using shared image
features. Following this approach, Wang et al. [10] modified
Faster R-CNN [11] to regress 3D pose parameters using
only the 2D appearance. Going back to the first group, the
one that uses keypoints, at first glance, vehicle keypoint
estimation should be easier when compared to human as
the rigid structure of vehicles limits the possible poses, and
occlusion and overlapping on vehicles is less complex than
on humans. However, there are other specific difficulties. For
example, the impact of the camera perspective is stronger on
cars than on people, and the intra-class variability is much
higher due to the large number of different car makes, models,
sizes, and types. Thus, the relative 3D position between key-
points, and their corresponding 2D positions projected on the
image plane, can considerably vary depending on the vehicle.
Another important difficulty is the definition of the most
representative keypoints. Whereas the human’s body shape,
almost directly, suggests what the location of the keypoints
should be, in the case of vehicles, the best location of the
keypoints remains unsolved. As an example, we can see the
current lack of consensus when labelling vehicle keypoints
in the available datasets [4], [12]–[15]. This makes it very
difficult to compare methods that use different datasets and,
thus, different keypoints. Additionally, as we just said, unlike
with humans, the best location for the keypoints is not obvi-
ous, and, to the best of our knowledge, there are no studies
analysing the consistency of the labelling process and the
suitability of each keypoint.

The high intra-class variability of vehicles can be alle-
viated by means of fine-grained vehicle classification, that
is classifying car make [16], model, and year [17]. This is
a considerably complex task, as the system has to learn to
distinguish the subtle differences between the different but
still very similar car models. As suggested in [18], in a kind of
virtuous circle, the use of vehicle keypoints to obtain enriched

information as pose, type of vehicle or the location of themost
relevant parts, could help in this complex and challenging
task, and, at the same time, the availability of car type, make,
model and year, could improve the performance of the vehicle
pose estimation task.

The use of keypoints has been widely explored and
accepted for both human and vehicle pose estimation. In the
human case, applications beyond pose estimation like gen-
der classification [19], violence recognition [20] or more
specific ‘‘sub-pose’’ like hand [21] or face [22] have been
explored. In the vehicle case, the importance of obtaining the
keypoints to represent its pose has gained attention due to
the increasing number of potential applications. Besides the
aforementioned structural support to improve fine-grained
classification, they can be used to enhance instance segmen-
tation like in [23]. Vehicle keypoints can also be used as
anchors to retrieve 3D keypoints and structure through the use
of CAD models and camera parameters as in [4]–[7]. They
can help to improve traffic surveillance applications [24],
including vehicle re-identification [25], when a vehicle has
to be identified on multiple images from different cameras,
and license plate recognition is not possible (usually because
the camera resolution is very poor or the license plate is
not visible). For example, Wang et al. [25] proposed the use
of keypoints to localize relevant parts of the vehicles and
use them as an attention mechanism, obtaining state-of-the-
art results. Another interesting application that could benefit
from the use of keypoints is vision-based accurate vehicle
speed detection [26]. These systems are usually based on
detecting and tracking the license plates, of which the actual
size is known. Vehicle keypoints estimation methods can be
easily adapted to accurately detect the four corners of the
license plate [27].

The main contributions of this work can be summarized as
follows:
• We study the applicability of a simple baseline approach
to deal with vehicle pose estimation, and evaluate its per-
formance compare with the state-of-the-art, following
on the ideas proposed by [1] for human pose (see Fig. 1).

• Extensive experimental validation is carried out using
one of the most advanced datasets so far, PASCAL3D+,
including data augmentation techniques, and improving
state-of-the-art results.

• The most important shortcomings of the current datasets
related to the definition of the vehicle keypoints are
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discussed and experimentally verified and, a new cus-
tomized dataset with corrected keypoints is proposed
and evaluated.

The remainder of the paper is organized as follows.
Section II briefly summarizes the state-of-the-art. The
description of the metrics used for evaluation, the datasets,
the data augmentation techniques, and the proposed architec-
ture are presented in Section III. The extensive experimental
evaluation is provided in Section IV. Conclusions and future
works are finally discussed in Section V.

II. RELATED WORK
Keypoint prediction methods can be divided in two different
approaches:

• Top-down methods. Top-down methods [1], [13],
[28]–[32] first detect all instances in the given image
with an external object detector like Faster R-CNN [11],
Feature Pyramid Networks (FPNs) [33] or YOLO [34]
and then predict keypoints for each one of them.
This approach benefits from the advances in instance
detectors.

• Bottom-up methods. Bottom-up methods [35]–[39]
detect all the present keypoints in a given image and
then reconstruct each instance associating the different
keypoints. This approach has been mainly studied for
human pose obtaining very good results.

These two approaches have their pros and cons. Top-down
methods are easier to train and more reliable as each instance
in the image is processed individually but, while the through-
put of bottom-up methods is more or less invariable with the
number of instances in the image, top-down methods suffer
with crowded scenes in terms of speed and struggle when
the bounding boxes overlap. Bottom-upmethods have proven
that their performance is far better than the one achieved with
top-down methods in highly crowded scenarios, with a high
amount of occluded or overlapped instances.

Even though most of the methods have been developed for
human pose estimation, generic object pose estimation and
vehicle pose estimation have also received some attention.
One of the first approaches to use convolutional layers is
the one from Long et al. [40]. In it, they used five convo-
lutional layers to extract features and feed them to a linear
Support Vector Machine (SVM) for each keypoint. After
them, the first approach to use a full CNN is the one from
Tulsiani and Malik [28]. They calculated a likelihood map
for each keypoint by combining response maps from two
different scales and a viewpoint prior. In [5], Murthy et al.
proposed a fully convolutional CNN regressor to predict the
keypoints and, after that, refine them with a set of finetun-
ing networks. Another interesting approach is the one from
Li et al. in [12], [13]. They used intermediate shape concepts
like viewpoint, keypoint visibility, and keypoints to supervise
the training process.

Of particular interest are the stacked hourglass
networks [29]. These networks are made up of residual

convolutional modules packed in blocks with symmetric
bottom-up/top-down capacity (from high to low resolutions
and from low to high resolutions again) that seek to capture
information at every scale. To do so, they use a single
pipeline with skip layers that connect each branching with
their symmetrical at the other end of the module. These
modules are then stacked, and an intermediate supervision
loss is applied at the end of each one. Multiple authors have
used these networks, mainly for human pose estimation.
In [41], Wang et al. proposed the use of a densely connected
convolutional module instead of the residual one obtaining
comparable performance on MPII while reducing the num-
ber of parameters and complexity of the network. In [42],
Radwan et al. proposed the use of a Generative Adversarial
Network (GAN) [43] scheme alongwith a keypoint hierarchy.
Both generator and discriminator are hourglass based, and
their results suggest comparable performance with other
state-of-the-art methods. In [44],Wang et al. also used a GAN
scheme. They used hourglass networks as backbone in both
generator and discriminator and self-attention mechanism
outperforming state-of-the-art methods on MPII.

Although the stacked hourglass was initially proposed for
human pose estimation, multiple works like [6], [45], [46] and
[30] have employed them for vehicle pose estimation. One of
the first authors, if not the first, to consider adapting stacked
hourglass to other problems was Pavlakos et al. [45], using
a two hourglasses network with intermediate supervision for
keypoint localisation. In [46], Murthy et al. proposed a
Conditional Random Field (CRF)-Style loss function at the
end of each hourglass unit to not only precisely localise
each keypoint, but also enforce inter-keypoint distances con-
straints. In [6], Ding et al. built a four-layer modified hour-
glass network and also used intermediate supervision. In [30],
Reddy et al. used a stacked hourglass network as initial visible
keypoint detector. After this, they used an encoder-decoder
scheme to predict the occluded keypoints exploiting multiple
views of the object.

In the same way as with stacked hourglass networks, other
human pose estimation methods have been used to localise
vehicle keypoints. In [7] Song et al. used Convolutional
Pose Machines (CPMs) [47] as its vehicle keypoint detector.
Another interesting approach is the one from Nibali et al.
in [48]. They proposed the use of a Differentiable Spatial
to Numeric Transform (DSNT) along with dilated convolu-
tions [49] to adapt fully convolutional networks to coordi-
nate regression obtaining promising results on MPII. Later,
in [27], Llorca et al. used this approach to detect license plate
corners in an accurate and efficient way.

III. EXPERIMENTAL SETUP
As previously said, keypoint prediction is a widely explored
task. The most common approach is to first detect each
object in a given image and then get their keypoints individ-
ually. Nonetheless, various authors evaluated a more global
approach that detects all the keypoints in a given image and
then groups them with great results [35]–[39]. In our case,
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we are going to use the top-down method approach proposed
by Xiao et al. [1] as its easier to train, simpler, and has proven
to have state-of-the-art performance.

A. METRICS
In order to evaluate the models the metrics proposed by [50]
have been used:

• Percentage of Correct Keypoints (PCK). PCK mea-
sures the number of labelled keypoints that are correctly
predicted. A predicted keypoint is correct if its distance
to the given ground-truth keypoint is equal to or less than
α ∗ L, with L = max(h,w) (L is the bigger side of the
object bounding box) and 0 < α < 1. We use α = 0.1.

• Average Precision of Keypoints (APK). As in PCK,
a predicted keypoint is correct if its distance to the
given ground-truth keypoint is equal to or less than
α ∗ L. Each predicted keypoint has associated confi-
dence and a threshold is used to calculate the area under
the precision-recall curve. This evaluation penalises
missed-detections and false positives. The way to com-
pute APK can be seen in equation 1, being Pn and Rn the
precision and recall at the nth confidence threshold.

APK =
∑
n

(Rn − Rn−1) ∗ Pn (1)

B. DATASETS
In the case of human pose estimation, there is a wide variety
of datasets to choose from, being MPII and COCO, the most
popular in recent years. Once again, in the case of vehicles,
it is more complicated to find datasets suitable for the key-
point prediction task.

One of the most famous is the PASCAL3D+ dataset.
Created by Xiang et al. [4], it has the 12 rigid categories of
PASCAL VOC 2012 [51]. Focusing on cars, there are a total
of 6,704 images (1,229 from PASCAL and 5,475 from Ima-
geNet) and 7,791 instances (2,161 from PASCAL and 5,630
from ImageNet) with CAD models and a set of 12 keypoints:
the four wheels, windshield’s and rear window’s upper cor-
ners, headlights, and left/right side of the trunk. The train/val
split is approximately 50% with 621/608 images (1091/1070
instances) for the PASCAL subset and 2763/2712 images
(2850/2780 instances) for the ImageNet subset.

Other interesting datasets are the ones created by
Li et al. [12], [13]. Firstly, we have the Rendered Images
(Car) dataset, a vast synthetic dataset of 600K car images.
They picked a subset of car CADmodels from ShapeNet [14]
and annotated 36 3D keypoints. After this, they rendered each
CAD model using random parameters for camera viewpoint,
light source, and surface reflection. These rendered images
are then overlayed over real backgrounds to prevent over-
fitting. Secondly, we can find the KITTI-3D dataset. This
dataset consists of 2,040 images from KITTI [15], labelled
with 2D keypoints that they use to test themodels trained with
the synthetic dataset.

Unfortunately, we have not been able to obtain access to
the synthetic dataset, so our experiments take place only with
PASCAL3D+. A sample of the images from PASCAL3D+
can be seen in Fig. 2, being the top row images from PASCAL
and the bottom row from ImageNet.

C. DATA AUGMENTATION
An important part of any CNN training is data augmentation.
Three different data augmentation approaches will be tested:
• No data augmentation at all.
• Mild data augmentation: 50% chance of horizontal flip,
random rotation of up to ±30◦/40◦/50◦, and random
scaling of up to ±30%.

• Hard data augmentation: mild data augmentation and
a randomly selected operation between salt-and-pepper
noise, poisson noise, speckle noise, blurring, colour cast-
ing, and colour jittering.

D. ARCHITECTURE
As previously said, the architecture that we are going to
use is the one proposed by Xiao et al. [1]. This architec-
ture consists of an ImageNet pre-trained ResNet [52] back-
bone with three deconvolutional layers added to the end
and a 1 × 1 convolutional layer to generate the output
heatmaps. Each deconvolutional layer has 256 filters with
a 4 × 4 kernel. The ground truth vehicle bounding boxes
have a fixed aspect ratio of width:height = 4:3 obtained by
extending the original box. This is then cropped and resized.
Two input sizes (256× 192 and 384× 288) and all three
main ResNets (50, 101, and 152) are going to be tested.
Adam is used as optimiser, MSE (Mean Squared Error)
as the loss between predicted and target heatmaps, trained
for 140 epochs, 0.9 momentum, initial learning rate of 0.001,
and a reduction of 0.1 at epochs 90 and 120. The network
structure is illustrated in Fig. 1. As the model proposed by [1]
is called Simple Baselines for Human Pose Estimationwewill
refer to our adaptation as Simple Baseline for Vehicle Pose
Estimation (SBVPE).

IV. RESULTS
A. DATA AUGMENTATION
As previously said, we have tried three different data aug-
mentation approaches. In order to perform these experiments,
we used the ResNet50 backbone with 256 × 192 input size
and the 1229 images from PASCAL. The different results
obtained can be seen in Table 1.
As expected, the use of data augmentation is a consid-

erable improvement, practically getting the same PCK and
APK results with the mild approach (±40◦/50◦) and the hard
approach. Seeing that mild and hard approaches get the same
results, we can conclude that only the operations that change
the geometry of the images appear to have a positive effect on
the training, making the extra operations of the hard approach
ineffective. At this point, we discarded the use of the hard
approach, as it has a higher computational cost, but it does
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FIGURE 2. Examples of images from PASCAL3D+. In green the bounding boxes and in red the keypoints. The top row are images from PASCAL and the
bottom row from ImageNet.

TABLE 1. PCK and APK with α = 0.1 for different data augmentation
strategies using the PASCAL images of PASCAL3D+.

TABLE 2. PCK and APK with α = 0.1 for different backbones and Input
sizes using the PASCAL images of PASCAL3D+.

not bring any improvement. From now on, all runs have been
made with the ±40◦ mild approach.

B. BACKBONE AND INPUT SIZE
Continuing with the experiments, we wanted to check the
impact of using deeper ResNet backbones and increasing the
input resolution from 256× 198 to 384× 288. The different
configurations and their results can be seen in Table 2.

As expected, the use of a deeper backbonemodel has a pos-
itive impact on performance. A small increase in performance
can be observed when switching from ResNet-50 to 101 and
152, passing from a PCK of 75.52% to 75.76% and 76.54%,
respectively. The input image size has shown to have a critical
impact, making it possible for the ResNet-50 backbone with

TABLE 3. PCK and APK with α = 0.1 for the different subsets of
PASCAL3D+. All runs with ResNet-152 backbone and input size of
384× 288.

the increased input size to outperform the ResNet-152 with
standard input size with similar computational costs. Again,
the best performance is for the deeper model, going from
a PCK of 82.18% for the ResNet-50 model to 82.75% and
83.17% for the ResNet-101 and ResNet-152 models.

Taking into account the training times (all models trained
on a 1080Ti NVIDIAGPU), and therefore, the computational
cost, we can see that, as expected, the use of deeper models
comes with a higher computational cost. However, it is the
increased input size that has the greatest impact. While going
from ResNet-50 to ResNet-101 costs 30% more, and another
30% more to go to ResNet-152, the change in input size
has a cost of 80% more for ResNet-50 and 93% more for
ResNet-101 and ResNet-152. From now on, all experiments
will use the ResNet-152 backbone with a 384 × 288 input
size.

C. PASCAL3D+: PASCAL AND ImageNet IMAGES
So far, the experiments have only been trained with the 1,229
PASCAL images from PASCAL3D+. Here we compare the
impact of using the 5,475 ImageNet images and both subsets
at the same time. The results can be seen in Table 3.

A considerable increase in performance, both in terms of
PCK and APK, can be observed when using ImageNet and
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FIGURE 3. Instances area distribution for each subset of PASCAL3D+
without the outliers.

PASCAL+ImageNet subsets. This huge leap in performance
(from 83.17% to 98.98% PCK) makes us wonder why. If we
take a look at the subsets, we can see that while in PASCAL,
there are 2,161 instances in 1,229 images, in ImageNet, there
are 5,630 instances for 5,475 images. This makes us suspect
that in PASCAL, the occlusions and overlaps are much more
common than in ImageNet, making the PASCAL subset more
complex.

Furthermore, if we take a look at the size of the objects,
it can be seen how in ImageNet they have a considerably
larger area than in PASCAL, accentuating, even more, the
difference in complexity between these two subsets. A com-
parison of the objects area between subsets can be seen in
Fig. 3.

These results made us strongly consider the possibility
of overlearning. Therefore, we decided to test the PASCAL
validation set with the models trained with ImageNet and
PASCAL+ImageNet subsets. In the case of training with
ImageNet, we can see, as expected, a drop in performance,
which is almost certainly due to the difference in complexity
between the two sets. On the other hand, in the case of training
with the full PASCAL3D+ dataset, we can see a considerable
improvement over training with PASCAL alone, with PCK
rising from 83.17% to 88.49% and APK from 50.69% to
55.09%. This indicates that the use of ImageNet, together
with PASCAL, has a positive effect and has improved the
model’s generalization capabilities improving the results.

In Table 4 we compare SBVPE results with previous
approaches like [13], [28], [40], [46]. In these publications,
it is not clear exactly which dataset is used. We believe that
only the PASCAL subset is used. Nevertheless, we report
results using the different subsets of PASCAL3D+.

If we compare SBVPE with previous approaches, we can
see that we outperform them regardless of the subset used
excepting themethod introduced byMurphy et al. [46], which
is only outperformed when using the full PASCAL3D+
dataset. In any case, assuming that they have only used the
PASCAL subset, SBVPE reports consistent results with a
PCK that falls near the best case and an exceptional APK.

TABLE 4. PCK and APK with α = 0.1 of different methods. SBVPE trained
and validated with PASCAL, PASCAL3D+/PASCAL and PASCAL3D+
respectively. All 3 methods are the ResNet-152 backbone.

TABLE 5. Median and mean instance area in square pixel for PASCAL3D+
dataset and its subsets.

This makes us think that SBVPE is robust enough and also,
being trained with larger input size, better prepared to work
with high-resolution images.

D. INSTANCES SIZE AND ITS IMPACT
As we previously said, PASCAL and ImageNet subsets from
PASCAL3D+ have considerable differences in complexity.
While the PASCAL subset has 1.76 instances per image, the
ImageNet subset only has 1.03. Focusing on instance size,
the differences are even greater. By taking a look at Fig. 3
and Table 5 the huge difference in area between PASCAL
and ImageNet subsets can be appreciated, with a median and
mean areas more than 15 and 4 times greater respectively for
ImageNet subset.

Because of these variations in size, we wanted to anal-
yse the impact of instances sizes on the model. To do so,
we divided the validation data following the setup described
in [28]. A comparison of different methods can be seen
in Table 6, with ’full’ being the complete validation set,
’occluded’ the objects marked as truncated or occluded
(739 instances in PASCAL, in the case of ImageNet we do
not have this information), ’big’ the bigger third of instances
(357 instances in PASCAL and 932 in Imagenet), and ’small’
the smaller third (357 instances in PASCAL and 932 in
ImageNet). We can observe that SBVPE outperforms the
previous approaches in all categories.

Focusing on occlusion, our approach is a major leap with
an increase of more than 21%, reaching 84.07% PCK. This
indicates that SBVPE is robust to occlusions/truncations hav-
ing even better performance than with low-resolution images.

On low-resolution objects, we obtain an improvement over
previous models of 9.55%, achieving 83.85% PCK. If we
think of real scenarios in which distant objects are small,
and occlusions happen constantly, the ability of a model to
perform well with this type of objects is critical.
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TABLE 6. PCK with α = 0.1 of different methods. SBVPE trained and
validated with PASCAL3D+/PASCAL and PASCAL3D+ respectively. Both
methods are the ResNet-152 backbone.

FIGURE 4. Number of each keypoint on PASCAL3D+ dataset and its
subsets.

If we take a look at the results obtained by SBVPE-
PASCAL3D+, in which we used the full PASCAL3D+,
we can see a better performance than with SBVPE-
ExtPASCAL, in which we used only PASCAL data for the
validation. It is important to keep in mind that there are
far more images from ImageNet in PASCAL3D+ than from
PASCAL, and that the higher resolution of ImageNet images
contributes to dilute the metrics, especially the small one.

E. KEYPOINT DISTRIBUTION STUDY
Once themodel’s general performance has been analysed, it is
interesting to carry out a more detailed analysis at a keypoint
level. The distribution of keypoints in each subset (PASCAL
and ImageNet) and in the full dataset can be seen in Fig. 4.
Taking a look at the dataset, as previously stated, we have

12 keypoints. These keypoints are the following: left front
wheel, left rear wheel, right front wheel, right rear wheel,
upper left windshield, upper right windshield, upper left rear
window, upper right rear window, left front light, right front
light, left rear trunk, and right rear trunk. In order to perform
this analysis, it is essential to know the keypoint distribution.

By taking a look at the keypoint distribution, we can obtain
relevant information. We can see that the amount of key-
points is quite homogeneous regardless of the subset, having
practically the same amount of images for both sides of the
vehicles (same amount of wheel keypoints) and a certain

FIGURE 5. Per keypoint PCK with α = 0.1 for PASCAL and PASCAL3D+.

FIGURE 6. Per keypoint APK with α = 0.1 for PASCAL and PASCAL3D+.

predominance of the front view of the vehicles (windshield
and front lights compared with rear window and trunk).

After analysing the keypoints distribution, we have to eval-
uate the system performance for each one of them. In Fig. 5
and Fig. 6 we have the per keypoint PCK and APK with
α = 0.1 for PASCAL and PASCAL3D+. Focusing on
PCK, we can extract some interesting information. In both
cases, the wheels have the best performance even though they
are the least represented keypoints, while for the remaining
keypoints, the higher the number of samples, the higher the
performance.

Only when we take a look at the APK, we notice a curious
phenomenon. The wheels, which were the keypoints with the
best results in PCK, get the worst results in APK. Before
thinking about what this means, it is interesting to meditate
on the difference between these two metrics. While PCK is
telling us that the model accurately finds the wheels, APK
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FIGURE 7. Output heatmaps for SBVPE trained with PASCAL3D+ and
validated on PASCAL. Examples of the keypoint confusion phenomenon
for the wheels (first and second row) and the windshield/rearwindow
(third and fourth rows).

is telling us that the model is finding wheels where there are
none, or rather, confusing one wheel with another. So, the
only feasible explanation is that themodel is perfectly capable
of finding a wheel, but it has problems differentiating if it
is a front or rear wheel or its side. In order to verify this
theory, we performed some tests and empirically observed
that, indeed, themodel is not only having trouble with the side
but also with the front/rear position, which explains the APK
results. Taking a look at the rest of keypoints, we can appreci-
ate a correspondence between APK and PCK/amount of each
keypoint. In any case, we have empirically observed that the
phenomenon that occurs with the wheels also occurs with the
corners of the windshield and the rear window, although with
less impact. Some examples of this phenomenon can be seen
in Fig. 7.

F. CUSTOM KEYPOINTS
As we have seen while analysing the per keypoint perfor-
mance, the system has a good PCK, but APK revealed some
problems in the keypoints. This has led us to ask ourselves
why these 12 keypoints? Also, analysing the PASCAL3D+
labels, we have noticed some flaws in it, especially in the
front lights and trunk keypoints. In the case of the lights,
in really old models with a single headlight, it is easy to label
the centre of the headlight but, in more recent models with
multiple and complex systems, where should the keypoint be
placed? On the other hand, in the case of the trunk, we have
detected inconsistencies in the labelling, which is not very
homogeneous and has high variability. Additionally, if we
think about the wheels, we will never be able to see all four
at the same time, so we could only use two keypoints, one for
the front wheel and another for the rear wheel, obtaining the
lateral information by context from the rest of the keypoints.

For all of the above, we decided to re-label part of the
images fromPASCAL3D+ focusing on the images from Ima-
geNet, as they are of higher quality facilitating the labelling
process and build our own custom dataset with these Ima-
geNet images along with images from CompCars [53] and
images extracted from our recordings in real driving scenarios
for the PREVENTION Dataset [54].

FIGURE 8. Visual comparison of PASCAL3D+ keypoints and ours. Top
row/green PASCAL3D+, bottom row/yellow ours.

TABLE 7. PCK and APK with α = 0.1. Comparison of performance
between PASCAL3D+ keypoints and our keypoints. All 3 methods are the
ResNet-152 backbone.

We decided to label 19 keypoints, being these the follow-
ing: front and rear wheels, the four corners of the windshield,
the four corners of the rear window, left and right foglight,
left and right rear mirror, the four corners of the license
plate, and the logo. These keypoints were chosen because
we believe that they provide a greater amount of structural
information about the vehicles and are less susceptible to
crossed confusion. As we have said, we have chosen to
eliminate the side of the wheels, keeping only two wheels
(front/rear). The four corners of the windshield and the rear
window serve to characterise the upper structure of the vehi-
cle. Instead of using the front lights, which, as we have said,
are complex and of varied shapes, we have chosen the fog
lights, as they are much more homogeneous and are usually
placed in the same area. We also considered it appropriate to
add the rear-view mirrors, as they are easily distinguishable
elements and provide information about the limits of the
vehicle. And finally, the four corners of the license plate and
logo (as with the wheels, regardless of their location at the
front or rear of the vehicle), as we believe that having these
elements located can be very helpful for other applications
such asmaker andmodel recognition or surveillance. A visual
comparison of PASCAL3D+ keypoints and our keypoints
can be seen in Fig. 8.

The total amount of labelled images is 4,042 with 4,080
instances (2,801 from the PASCAL3D+ ImageNet sub-
set, 898 from CompCars and 381 from the PREVENTION
Dataset) and we opted for a train/val split of 70/30, making a
total of 2,857 instances for training and 1,223 for validation
(equally distributed among the three groups).

In Table 7, we can see a comparison of perfor-
mance between using the 12 PASCAL3D+ keypoints and
our 19 custom keypoints.
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FIGURE 9. Number of each keypoint on PASCAL3D+ dataset and our
custom dataset.

On PCK, we obtain a 98.83%, an improvement of
10.34% and 1.71% with respect to validation with PASCAL
and PASCAL3D+. Focusing on APK, we obtain a huge
improvement from 55.09% and 72.38% for PASCAL and
PASCAL3D+ to 81.92% when using our set of custom
keypoints.

These results support our keypoint proposal, and although
the scenarios are not directly comparable and the PASCAL
subset is still more complex, our proposal has a similar com-
plexity and resolution to the ImageNet subset and serves to
contrast its suitability, which, in the absence of the keypoint
analysis, seems to be an improvement over the 12 keypoints
used in PASCAL3D+.

As with PASCAL3D+, it is interesting to know the key-
point distribution. In Fig. 9 we can see the amount of each
keypoint in our custom dataset compared with the corre-
sponding keypoints in PASCAL3D+.

The matching keypoints are the wheels (we grouped the
four keypoints from PASCAL3D+ for the comparison), the
top corners of the windshield and rear window, and the lights
(we compared the headlights from PASCAL3D+ with our
foglights).

As expected, the amount of keypoints in PASCAL3D+
is higher (more instances), and the keypoint distribution is
proportional.

Focusing again on the per keypoint performance, we have
Fig. 10 and 11 in which a comparison of PCK and APK
between PASCAL3D+ and our custom dataset can be seen.
As expected, we have a consistent, almost perfect PCK, but
the interesting info is in the APK. As with PASCAL3D+,
we can see a correlation between the number of keypoints
and APK. If we focus on the problems detected in the
PASCAL3D+ keypoints that we intended to solve, we have,
in the first place, the wheels. We proposed to move to a two
keypoint approach in which only front and rear wheels are
labelled ignoring the side. As we can see, our proposal is
solid, with an APK more than 40% greater. Taking a look at

FIGURE 10. Per keypoint PCK with α = 0.1 for PASCAL3D+ and our
custom dataset.

FIGURE 11. Per keypoint APK with α = 0.1 for PASCAL3D+ and our
custom dataset.

the windshield and rear window corners, we see a consistent
performance, with practically the same performance as with
PASCAL3D+ for the top corners and equivalent for the
bottom ones. It is interesting to point out that the rear window
points have lower APK, which we believe is mostly caused by
the lower amount of keypoints in the dataset.

Regarding the lights, we have a slightly lower performance
with our approach, but this can be caused by the vast differ-
ence in the amount of keypoints. We decided to switch to the
foglights because of the considerable variability of today’s
headlights, and even though our choice is not backed by an
increase in APK with regard PASCAL3D+, we believe that
this is due to the fact that the vast majority of PASCAL3D+
vehicles are old and do not yet have this variability in head-
lights.

Finally, analysing the rest of the new keypoints, we can
see a good APK for the rear mirrors, the license plate, and
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FIGURE 12. Examples of predictions from our custom dataset. Top and bottom row are good and bad predictions respectively.

the logo. We do not know for sure the reason for the ‘‘low’’
license plate APK, and we believe that the logo could be
influenced by the fact that practically all the makers put the
logos on the wheels. In any case, we place ourselves to a
future further study on the viability of each keypoint.

Some prediction examples from our custom dataset can be
seen in Fig. 12 being the top row correct predictions and the
bottom row wrong ones.

V. CONCLUSIONS AND FUTURE WORK
This paper presents an evaluation of different keypoint pre-
diction methods. We proposed the use of a human pose esti-
mation state-of-the-art method (Simple Baselines for Human
Pose Estimation and Tracking [1]) in order to predict vehicle
keypoints efficiently. We have used PCK and APK, widely
accepted metrics, to measure the performance of keypoint
prediction systems. In order to train and compare our adap-
tation SBVPE (Simple Baseline for Vehicle Pose Estima-
tion) with previous methods, we used the PASCAL3D+
dataset. We performed a series of experiments with which
we wanted to find the best data augmentation approach and
architecture, resulting in a data augmentation approach of
50% chance horizontal flip, random rotation of ±40◦ and
scaling of ±30% and the use of ResNet-152 backbone and
input size of 384× 288.

We conducted an exhaustive analysis of PASCAL3D+ and
its subsets PASCAL and ImageNet. In the first place, we used
various train/val configurations in order to find the best
option, finding out that the PASCAL validation set benefits
from joint training with Imagenet and achieves state-of-the-
art results both in PCK and APK only behind the method pro-
posed byMurthy et al. [46] in PCK (APK not reported). Next,
we continued analysing the impact of instances size, finding
out that the PASCAL subset is by far more complex than
ImageNet subset due to the higher resolution and instance
size of the last one and the number of instances per image,
with 1.76 in PASCAL and 1.03 in ImageNet.

After this, we analysed the keypoint distribution of
PASCAL3D+. The results show a consistent PCK and
an interesting APK, which, along the diverse experiments
carried out, show diverse issues with the PASCAL3D+

keypoints, specifically with the wheels, the trunk, and the
lights. To address these issues, we developed a custom dataset
composed of images from ImageNet, CompCars, and the
PREVENTION dataset with 19 keypoints. And even though
the results are not directly comparable due to the differences
in complexity, they show that SBVPE achieves a slightly bet-
ter mean PCK and far better mean APK, with a huge increase
in the performance of the wheels, comparable performance
for the previous keypoints, and solid performance for the new
ones.

As future work, we plan to continue expanding our dataset
and studying different keypoints, its viability, and the impact
they have on performance as well as explore other architec-
tures, especially those with a bottom-up approach. Addition-
ally, wewill go one step further andmake the jump from 2D to
3D pose to fully characterise the vehicle structure in a similar
way to the one used by [4]–[7], [55].
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