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A hybrid vision-map system is presented to solve the road detection problem in urban scenarios. The standardized use of machine
learning techniques in classification problems has been merged with digital navigation map information to increase system
robustness.The objective of this paper is to create a new environment perceptionmethod to detect the road in urban environments,
fusing stereo vision with digital maps by detecting road appearance and road limits such as lane markings or curbs. Deep learning
approaches make the system hard-coupled to the training set. Even though our approach is based on machine learning techniques,
the features are calculated from different sources (GPS, map, curbs, etc.), making our system less dependent on the training set.

1. Introduction

Autonomous vehicles require a precise and robust perception
of the environment.This is a crucial point in the development
of autonomous vehicles because the perception layer is the
base of higher level systems, such as control algorithms or
path planning. One of the main issues is road detection,
which corresponds to the drivable surface of the road. It
has traditionally been an exhaustive topic of research in the
fields of Advanced Driver Assistance System (ADAS) and
autonomous driving. On the one hand, ADAS have mainly
focused on increasing the safety of drivers and road users by
means of driver warnings and assisted interventions. On the
other hand, it is undebatable that autonomous driving has
become a high priority issue on the research and commercial
agendas of major car makers over recent years, with these
makers intending to produce fully autonomous vehicles by
2020. The deployment of autonomous cars will bring a num-
ber of clear benefits in terms of increased traffic efficiency
and reduced accident toll, resulting in unquestionably higher
energy efficiency and enhanced road safety.

The Grand Challenge organized by DARPA in 2005 was
the first championship of autonomous vehicles. Participants
relied on precise and expensive differential GPS and IMU
sensors to follow a set of waypoints along a planned route.

Dynamic obstacle detection was solved thanks to a multi-
beam LIDAR.This approach demonstrated its ability to drive
safely in highways and urban environments [1, 2]. However
a high definition map is required. Drawbacks to this type of
maps are their size (∼2GB/km), the complex process required
to integrate all measurements, and how to update the map.
The price of the LIDAR (∼75K) and the GPS + IMU (∼25K)
is not affordable for the car industry. Therefore, our proposal
is based on a low cost GPS sensor and a pair of stereo cameras
(∼2K). The goal is to create a method that uses relatively
low cost sensors and that detects the road even in the most
challenging scenarios. Our system aims to be part of a local
navigation system with a global route planner. It attempts to
imitate the human way of driving: a user wants to drive from
A to B and a global route planner uses a low cost GPS sensor
to locate the vehicle and plan the route. When the route is
ready, local navigation is required to detect the drivable area
and to make the corresponding decisions.

2. Related Work

How can we reach level 5 of autonomous driving? The three
pillars of autonomous driving are sensing, mapping, and
driving policy (path planning). Sensing interprets the scene
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Figure 1: Classification of different road detection approaches depending on the sensor and the methodology.

with 360∘ awareness and produces an environmental model.
The environmentalmodel includes the location of themoving
obstacles, road limits, curbs, and barriers. The sensing is
based on cameras, RADAR, and LIDAR sensors. Cameras
provide rich information of the scene with high frequency;
however they are affected by illumination and weather con-
ditions. RADARs aremore resistant to dust and otherweather
conditions; however they cannot sense texture. Mapping,
either as a part of sensing or a layer redundant to sensing,
requires some sort of connectivity for the purpose of updates.
There are twomain types ofmaps; the first is navigationmaps,
which provide information about the steps required to reach
our destination. The second is high definition maps, which
provide 3D information of the environment with centimeter
precision. The last pillar is driving policy, which includes
the set of rules to merge in the traffic and manage driving
behaviors. The driving policy needs to learn human driving
behaviors in order to drive properly inmixed traffic of human
and autonomous driving.

2.1. Sensing. The sensing interprets the scene with 360∘
awareness and produces an environmental model. It can
be achieved using different types of sensors. These may be
active or passive sensors. On the one hand, active sensors
work at long distances and under poor weather conditions.
Some examples are LIDAR and RADAR, which are able to
detect obstacles at distances of over 100meters. On the other
hand, passive sensors have the main advantage of their low
cost. Furthermore, visual information can be very important
in some applications such as traffic sign recognition or
object identification. Figure 1 shows a general classification
of different approaches for road detection depending on the
sensor and the methodology.

LIDAR technology has been widely used to detect curbs,
road surfaces, and different types of obstacles. They can be
classified into two types: single beam (2D) and multibeam
(3D). 2D LIDARs are usually mounted on the front of the
vehicle parallel to the ground plane for obstacle detection.
When the goal is road surface or curb detection, the sensor
is mounted on the top of the vehicle facing downwards.
This configuration is useful for detecting height variation of

the road shape; however, the shape is only detected in a fixed
distance. Therefore, it is important to integrate the measure-
ments along the time, compensating for the vehicle’s ego-
motion.Thanks to measurements integration, the confidence
of the scene interpretation is increased and road shape may
be modeled using clothoids, splines, or other model types.
This configuration is also valid for road marking detection
since LIDARs provide distance information and also surface
reflectivity intensity. Furthermore, there are LIDARs having
4, 6, 16, 32, and 64 layers. The resulting point cloud is sparse
compared to a single beam LIDARs with temporal integra-
tion; however, they create a new scenario of possibilities since
they provide 360∘ precise 3D information of the environment
from a vertical field of view of 26∘, generating a point cloud
of the entire scene. They have been used for many tasks,
including roadmarking and road, curb, and vehicle detection.
Different methodologies exist for road detection. Some of
them are based on road appearance learning, where the
main features are texture and color information. The second
approach focuses on road limits detection, assuming that the
space between limits is the road surface. Finally, modeling
attempts to extract compact, high level representation of the
road. In order to clarify the classification, Table 1 summarizes
different methodologies of road detection.

2.1.1. Road Appearance. Road appearance is the feature that
makes vision sensors truly relevant. Texture and appearance
can be modeled by fitting road pixel histograms with a
Gaussian Mixture Model (GMM) [3]. However, shadows
cause the system to fail and may classify shadowed areas as
nonroads. To solve this problem, [4] a flexible number of
color models are used in a modified hue that is invariant
to brightness. Another strategy is to remove shadows from
the images [5] by converting the original RGB image into an
illuminant invariant image. Texture analysis is used to obtain
a descriptor of the surface. On the one hand, Gabor fil-
ters and Histograms of Oriented Gradients (HOG) provide
information regarding the orientation. The strength of the
texture anisotropy describes the homogeneity in a region
of interest [6]. Additional information on road appear-
ance is extracted from a filter bank, which is an array of
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Table 1: Classification of different road detection methodologies.

Methodology Sensor Feature Examples Refs

Road appearance Vision
Color Illuminant invariant, GMM [3–5]
Texture HOG, anisotropy, filter bank, LBP [6, 7]

Automatic CNN [8, 9]

Road limits Vision LIDAR
Road markings Reflectivity intensity, adaptive threshold [10–12]

Road curbs Digital Elevation Maps, difference of
heights, curvatures [13–20]

Geometrical
modeling

Map + GPS
RADAR Vision

LIDAR

Parametric models Parabolic curves, clothoids, B-splines,
snakes [21–25]

Nonparametric
models Ant Colony Optimization, Dijkstra, 𝐴∗ [26, 27]

band-pass filters that usually have different scales and ori-
entations. Finally, another common descriptor is the Local
Binary Pattern (LBP), which describes the relationship
between the evaluated point and its surrounding values.
Those features per se are not robust for a road detec-
tion method; however they are usually included into a
larger feature vector for a machine learning strategy. Some
machine learning techniques will be explained in Section 2.3.
Moreover, the computer vision features may be combined
with other sensors, such as LIDAR, to detect the road and
attain improved results [7].

2.1.2. Road Limits. This section presents an opposing ap-
proach as compared to the road appearance approach. The
goal is to detect the features that describe road limits. In most
of the cases, the road is limited by curbs, roadmarkings, areas
of vegetation, or parked cars.These featuresmay be estimated
using computer vision, RADAR, LIDAR, or a combination of
all of them.

(i) Road markings: current ADAS have integrated road
marking detection in highways since this is the most
important feature to maintain the vehicle in its lane.
Due to the contrast between the road and the lane
markings, the problem is addressed by searching
for gradients in the image [10]. Road markings are
painted with reflective materials so that they are
highly visible during the night. That property makes
them detectable with a LIDAR sensor since they
detect surface reflectivity intensity [11]. In addition to
road marking detection, the correct interpretation of
arrows and other symbols can be taken into account
in higher level modules to ensure proper navigation
[12].

(ii) Curbs: roadmarkings are present inmost roads; how-
ever in some rural roads and residential areas they
may not be found. In these sites, road curbs are also a
discriminant descriptor to delimit the drivable area,
especially in urban environments. Depending on
the city, curbs may vary significantly in size, from 3
to 12 cm or even more. Stereo cameras depend on
image pair matching methods to obtain depth infor-
mation. Although 2D LIDARs can directly return this

information, only select curb points can be detected
using this sensor [13]. 3D LIDAR provides a dense
point cloud and thus makes it possible to detect a
larger extent of the curb [14]. LIDARs provide precise
measurements, which is a very important feature to
detect small curbs. Detection range using LIDAR is
up to 50 meters [15]. On the other hand, it is not
possible to achieve this rate with a pair of stereo
cameras, which have a detection range of approxi-
mately 20 meters. The most common approach used
to detect curbs, according to the literature, is the use
of a Digital Elevation Map (DEM) to integrate the
3D measurements and a posterior analysis of height
variation [16]. Some of them attempt to model the
curb shape with cubic polynomials or a cubic spline
[17]; however, the diverse type of shapes present in
urban scenarios makes these methods fail in certain
scenarios. A combined detection using computer
vision and LIDAR sensors is presented in [18] having
accurate results thanks to the complementary features
of each sensor.Themain parameters for the algorithm
evaluation are curb height and lateral distance with
respect to the ground truth. On one side, in [19] the
minimum curb height detected is 5 cm with an error
of 3 cm at 20 meters. On the other side, in [16] the
lateral distance is evaluated up to 20 meters with an
error of 20 cm. Our novel method based on curvature
values is presented in [20], where the system is
evaluated on point clouds from stereovision and 3D
LIDAR.Themethod obtains a lateral error of 14 cm at
20meters distance and can detect curbs of 3 cmheight
up to 20 meters when the curb is connected to the
curvature image.

2.2. Geometrical Modeling

2.2.1. Parametric Models. Road and lane detection tend to
be guided in a top-down manner by fitting a geometric
model to the visual features extracted from the image. The
simplest geometricmodel used for road boundaries is straight
lines [21]. Roads are not always straight. Thus, parabolic
curves [22], clothoids [23], B-splines [24], or active contours
(snakes) [25] are more complex models adapted to curved
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road. These parametric models improve noisy bottom-up
detection due to their width and curvature constraints, but
urban environments are more difficult to model given the
presence of parked cars that do not fit some of the width
restrictions.

2.2.2. NonparametricModels. Nonparametricmodels are less
common since they only require that the line be continuous.
Thus, the model may be less robust than parametric models
but more flexible to adapt to the irregular shapes present in
urban environments [26] or rural paths [27]. One example of
a nonparametric model is Ant Colony Optimization (ACO)
for finding optimal trajectories on the image plane. Further-
more, the image can be formulated as a graph, and traditional
graph algorithms such as the shortest path, Dijkstra, or 𝐴∗
can be applied to obtain the continuous road boundary.

2.2.3. Map-Based Models. High definition maps are a robust
way to navigate [1, 2]. They are usually created by integrating
several measurements of a multibeam LIDAR [28, 29] or
multiple single beamLIDARs [30] and their size is∼2GB/km,
which is difficult to manage during a long trip or in a city. A
higher resolution map can be updated beyond sensing.
Instead of high resolution maps (∼GB/km), sparse 3D maps
can be created using landmarks andmay be stored (∼KB/km).
These maps can be shared and the map can be updated using
crowd sourcing.The other point of view regardingmapmod-
els is digital navigation maps. An example of this type of map
is the Open Street Maps (OSM), a collaborative project
created and updated by a large global community. All of the
information stored in the map is editable and it is freely
accessible. The map consists of a listing of streets called ways.
Every way is made up of a list of nodes with a location and
its relationship with the other nodes and ways. Thanks to the
location and relationship between nodes, the shape of the
current road and the surrounding streets may be estimated
[31].

2.3. Features Integration. All of the features described in
previous sections are relatively weak on their own. However,
when they work together they complement each other,
obtaining a strong road descriptor. The fusion of the fea-
tures requires some type of optimization process to give
relative weights to each feature. Machine learning methods
are commonly used for this task. Some examples of those
techniques are the Support Vector Machine (SVM) [32],
Neural Networks (NN) [33], Bayes Classifier, decision trees
(DT), Random Trees (RT), Extremely Randomized Trees
(ERT), and boosting [34, 35]. They receive a feature vector
and the corresponding label for each pixel in the image. After
the training stage, the classifier has learned the weight of
every feature in the final response. The use of Convolutional
Neural Networks (CNN or ConvNet) [8, 9] requires high
computational requirements and its complexity should run
in a Graphical Processing Unit (GPU) for the training stage.
One of the most relevant features of this new technique is
that instead of receiving a feature vector it can calculate its
own feature vector during the training with the image as the
unique input. Furthermore, its performance is significantly

better than that of othermachine learning techniques [36, 37].
CNNs always have the problem of overfitting due to many
connections in the full connection layer and they require
a large training set with high variability of scenarios in
order to learn all of them. The objective of this paper is to
create a new environment perception method to detect the
road in urban environments fusing stereo vision and digital
maps by detecting road appearance and road limits such
as lane markings or curbs. CNNs hard-couple the system
to the training set. Even though our approach is based on
machine learning (ML) techniques and could be affected
by the overfitting problem, the features are calculated from
different sources (GPS, map, curbs, etc.) and they make our
system less prone to overfitting.

3. System Description

Autonomous vehicles need to detect the road as an important
part of autonomous navigation. This challenging problem is
addressed in this paper with a new method that is based on
computer vision and digital maps.The computer visionmod-
ule extracts features based on road texture, color, and geom-
etry information. Road detection is tackled as a binary clas-
sification problem with the following labels: road/nonroad;
therefore, boosting classifiers fit well since they are designed
for this type of classification. Figure 2 shows a feature classi-
fication depending on the sensor. Greyscale cameras are used
to detect road markings, calculate the vanishing point, and
extract certain types of texture information such as LBP and
HOG. Color cameras are necessary to distinguish vegetation
areas that delimit the drivable space in many cases. They
are also useful for obtaining an illuminant invariant image
which is robust to shadows. A pair of grayscale cameras is
used as a stereo vision system to estimate 3D information. 3D
features are used to detect heights with respect to the
ground plane. Furthermore, large obstacles such as vehicles,
buildings, or trees are detected using normal vectors and cur-
vatures. Finally, the curvature feature is the base of the curb
detection module. All of the features mentioned above have
been extracted from stereo or monocular cameras. Further-
more, prior knowledge of the road shape estimated from
the navigation map is included. This new feature makes the
classifier more robust in situations in which camera sensors
fail. In Figure 2, the featuresmarked in blue provide high level
context information and those marked in red are included
in a boosting classifier to detect free space. Road features
are divided into three distinct types. The first type includes
features that sense road appearance. The second type groups
together geometry-based features and the last uses a high
level set of features since they provide context information.

3.1. Appearance-Based Features. Appearance-based features
enclose information related to textures and colors. The first
ones are analyzed using LBP and HOG and the second ones
with HSV, an illuminant invariant image, and a shadow
detector. Given that LBP,HOG, andHSVare used extensively,
only the illuminant invariant image is described in this
section.
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Figure 2: Features classification based on the sensor and general architecture of the proposed algorithm.

Road detection using computer vision is a challenging
task, especially when the road is affected by shadows. The
basis of many computer vision approaches is to consider that
roads have some constant features such as color or texture
that may be grouped together. Sometimes road texture and
color are not homogeneous since the asphalt may have an
irregular degradation or may have been partially renewed.
Even in homogeneously textured roads, the road is strongly
affected by shadows, creating a challenging new scenario for
computer vision algorithms. Some approaches attempt to
attenuate the shadow influence with an illuminant invariant
space to detect the road [38, 39]. As explained in [5, 40],
adopting certain assumptions regarding lights and cameras,
color images can be represented in a shadow free grayscale
image. The resulting illuminant invariant image is shown in
Figure 3(b). During the process, the illumination of the scene
is calculated, which is a very good feature to obtain the
shadows of the scene; see Figure 3(c). When the shadows of
the scene are detected, a wide range of possible applications
appear: it may be a new feature for a classification method, it
may be used as a mask for a special image processing method
on shadowed areas, or it may also be used to obtain a new
shadow free image.

3.2. Geometry-Based Features. Object shapes are an impor-
tant characteristic for classification. The road is an almost

horizontal flat surface and vertical obstacles are clearly
separable using geometry descriptors. In the field of computer
vision, a pair of stereo cameras is able to create a 3D represen-
tation of the scene.The factors influencing the reconstruction
are focal length and the distance between the cameras. Our
system is configured with a pair of cameras separated by 0.54
meters at 1.73 meters with respect to the road surface and
equipped with 8mm focal length optics. After rectification,
the image size is 1242-pixel width and 375-pixels height. Using
the semiglobal block matching (SGM) algorithm to estimate
the disparity map, the system generates a dense 3D point
cloud.

In urban scenarios, roads tend to be limited by curbs, road
markings, or pavements of a different texture. Depending on
the city, curbs may have a wide range of heights. Therefore,
an adaptive method is necessary to detect curbs, regardless of
curb height. Our approach focuses on the curvature feature.
This feature describes a local surface variation and was
applied to 3D semantic perception in [41]. After normaliza-
tion, the curvature values vary between 0 and 1, with low
values corresponding to flat surfaces. The result is a vector
𝛾 similar to normal surface vectors. Moreover, curvature
vectors are more stable and robust. The objective is to detect
variations in road surface; thus we only take into account the
component 𝛾𝑧, which is orthogonal to the road plane in our
reference system (see Figure 4).
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(a) Original image of the scene (b) Illuminant invariant image

(c) Illumination of the scene (d) Shadow detection

Figure 3: Partial results during the shadow detection. The process generates an illuminant invariant image and also an image with the
illumination of the scene. The use of both images makes the system able to detect the shadows of the scene.
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Figure 4: Reference system of the ego vehicle.

Figure 5: Curvatures of an artificial 3D point cloud with curbs of different heights: 3, 5, 7, 10, 12, and 15 cm, respectively. Curvature values are
represented in a color scale where cold colors correspond to low curvature values and warm colors correspond to high values.

Curvature variation is computed on an artificial point
cloud to reveal the responsiveness of the algorithm.The point
cloud has several curbs of distinct heights, beginning with
3 cm in steps of 2 cm up to 15 cm. As shown in Figure 5, the
feature provides sufficient information to detect variations of
the curvature even for a curb of 3 cm height.

Real scenarios differ from the ideal curvature estimation
shown in Figure 5. In Figure 6, a set of real scenarios is
presented in which mismatching errors during the stereo
computation provoke invalid curvature values (see discontin-
uous red areas). Because the system relies on stereo vision,
curvatures are robust to illumination changes (Figure 6(b)).
Residential areas are a challenging scenario for detecting
road limits since curbs are small and their detection is very
important to safe driving. Curvature variations are visible
even for small curbs. Figures 6(c) and 6(d) demonstrate that
this feature is able to distinguish curbs of 3 cm even at far
distances.

The road shape can be approximated to a plane in some
cases. Given that vertical obstacles have large distances with
respect to the ground, the smaller the distance to the plane
is, the most probable it belongs to the road. For that reason,

height with respect to the ground plane is also included in the
feature set.

3.3. Context-Based Features. Some features produce higher
level information than others. The ones detailed in this
section are not relevant to the road description. However,
they offer information regarding the context of the scene,
which is very useful to our understanding of how the road
is distributed.

3.3.1. Road Markings. Road marking detection is a basic task
for autonomous navigation. In a multilane scenario the free
space must be split in lanes and for this road markings are
crucial. As explained in [42], a median filter is applied to
the input image. The window size should be adjusted due to
perspective. In order to maintain the window size constant, a
zenithal projection of the scene (also known as bird eye view:
BEV) is reconstructed. Lane markings appear parallel in the
new view since they are not distorted by the perspective.

3.3.2. Vegetation. Despite the fact that the road surface has a
wide range of textures and color values, green areas usually
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(a) Big curbs on urban road (b) Robustness to shadows

(c) Residential scene (d) Small and regular curbs on residential scenes

Figure 6: Curvature values on different urban scenes.

correspond to vegetation in most scenarios. Therefore, the
free space detection system considers these areas to be
nondrivable. Variations in the green color are detected by
selecting a range of HSV values.

3.3.3. Curbs. As explained previously, the curvature variation
is a good feature for the detection of curbs; nevertheless, in a
real scenario, curvature values do not have homogeneous val-
ues given themismatching errors occurring during the stereo
disparity map computation. Depending on the curb height,
curvature values differ in each scene. The challenge is to
detect all of the curbs using the same algorithm regardless of
curb height.The details of the algorithm are explained in [20]
but a brief description is also included for consistency. A close
relationship exists between curb height and curvature value,
obtaining the values seen in Table 2. The thresholds selection
is calculated offline, classifying curvatures in 5 groups. The
resulting clusters are filtered independently using morpho-
logical operations and contour analysis since the image has
several noisy measurements. The filtered clusters are merged
back and the new clusters are considered as road curbs. This
approach provides flexibility because the algorithm works
on a wide range of scenes and for every type of obsta-
cles, detecting in every case the most dominant curvature
value. Those of 3 cm height are detected as well as others
having larger heights.The use of fixed or empirical thresholds
is avoided, given that the proposed function is automatically
adapted to different scenes depending on the predominant
curvature value.

3.3.4. Obstacles. Free space is usually limited by curbs, road
markings, vegetation areas, or other obstacles, such as build-
ings, parked cars, post lamps, traffic lights, or traffic signs.
These types of obstacles are detected using 3D information
from the stereo cameras. The 3D points are processed to
estimate normal and curvature vectors. Points having com-
ponents 𝑛𝑥 ≥ 0.5 or 𝑛𝑦 ≥ 0.5 or 𝛾𝑧 ≥ 0.5 are considered to be
large obstacles. Some pixels have noisy or unrealistic vector
values. Therefore, every component is filtered independently

Table 2: Curb curvature values.

Description Curvature Color
Flat surface 0 ≤ 𝛾𝑧 < 𝛼0 Not painted
Very small curbs (∼3 cm) 𝛼0 ≤ 𝛾𝑧 < 𝛼1 Yellow
Small curbs (∼5 cm) 𝛼1 ≤ 𝛾𝑧 < 𝛼2 Orange
Regular curbs (∼10 cm) 𝛼2 ≤ 𝛾𝑧 < 𝛼3 Red
Big obstacles 𝛼3 ≤ 𝛾𝑧 ≤ 1 Purple

by area. Afterwards, they are merged together to obtain the
final result. Mismatching errors produce small holes in the
detected obstacles. In order to get more robust results,
columns having an obstacle are considered to be occupied
from the bottom row of the obstacle until the first row of the
image.The resulting image has obstacles without holes inside,
obtaining a more realistic representation of the scene.

3.3.5. Road Model. There are two main types of features: the
first type describes the road and can be included directly in
the classifier.The second type of features includes road limits,
such as road markings, curbs, vegetation areas, or obstacles.
These features provide important information regarding the
scene; however they should not be included directly in the
classifier (curbs and road markings) since the features do
not describe either the road or the nonroad area. Figure 7
shows some examples of curb detection combined with the
ground truth of the road (green).Thepixels in red correspond
to the curb points that lie on the road and the blue pixels
are those lying outside of the road. This is why, in [43], the
weights that correspond to those features were very small
in the final classification response. In order to increase the
weight of these features, the proposed method converts them
from limit features to a new feature that describes the road.

Some state-of-the-art approaches use virtual rays starting
from the bottom of the image to detect the road boundary.
Analyzing the feature values along the rays, the point that
satisfies certain conditions is established as the road limit
for that ray. The connection of all of these creates a closed
polygon that is considered free space. As demonstrated in
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Figure 7: The road curb is not good feature for a road/nonroad classifier because half of the measurements are positive values of road and
the others are not.

Figure 8: Example of free space detection using a set of rays starting from the bottom center of the image.

Figure 8, this point of view is sensitive to noisymeasurements.
In this paper, the proposed analysis relies on the vanishing
point as a starting point of the rays.This point of view is more
resilient to incorrect measurements and is more intuitive.
Regarding the pin hole camera model, straight parallel lines
converge in a vanishing point. Even in narrow roads, road
limits are, in most cases, parallel. For this reason, a set of rays
are estimated starting from the vanishing points. First, the
vanishing point has to be detected. Several papers have been
published on this topic. Since the goal in this paper is not the
development of a novel method to obtain vanishing points, a
public library was used for this purpose [44].

The general description of the method is explained in
Figure 9. The main goal of the algorithm is to find the radial
rays that may be the road limits. Firstly, a set of radial rays
from the vanishing point are analyzed along the image. The
sum of the features along the ray is displayed in Figure 10(a).
After smoothing, the first derivative is calculated. Curbs or
road marking features create two strong symmetric peaks
on the feature first derivative. The obstacles and vegetation
have a different distribution; they only create a single peak on
the feature first derivative since their values are not symmetric
with respect to the road limit. Vegetation areas are usually
large surfaces outside of the road. False positives for the veg-
etation detector are very low, given its robustness; instead of
establishing complex conditions to the feature first derivative,
a fixed threshold is applied directly to the feature. After the
creation of the rays vector, a second stage adds the lateral
distance of each ray to the camera origin in meters. This is
accomplished by converting the ray projection into a BEV.
The third step is a high level filter that assumes the following
assumptions:

(i) The ego vehicle is on the road.
(ii) If the road has limits from the vegetation detector,

further candidates are discarded.
(iii) If the ego vehicle is on the road, then candidates from

the obstacles detectorwhich are directly in front of the
ego vehicle should be removed since they are another
moving vehicle instead of a free space limit.

(iv) Some road marking candidates are arrows or other
road marking symbols distinct from the lines that are
useful to detect road limits. Dashed and solid lines
have a regular pattern along the ray; otherwise, the

symbols are isolated peaks in the ray analysis. Thus,
any road marking candidates that do not satisfy this
condition should also be removed.

(v) Some of the candidates are very close to each other.
For example, a roadmarking and a curb are frequently
close to each other. In order to reduce the number of
candidates, both aremerged into one single candidate
using the mean angle of both candidates.

All of the previous assumptions significantly reduce the
number of candidates. This is very important during the
fourth stage, when a recursive function finds all possible
adjacent lanes with a specific range of valid width. In addition
to the previous condition, lane widths must be similar to one
another.The algorithm is flexible and adapts to the lane range
depending on the road type, since it takes information from
a digital navigation map. Digital maps include the number
of lanes and the type of road. Some road types include
highways, primary, secondary, tertiary, or residential types.
The last two types correspond to roads that do not typically
contain road markings; for this reason lane width has less
restrictive conditions on these roads.

The unfiltered lane combinations are shown in Figure 11.
As in the previous step of the algorithm, the resulting road
models must satisfy some high level restrictions.

(1) The ego vehicle is on the road.
(2) The number of lanes should match the information

stored in the map.
(3) In residential streets having road markings, the ego

vehicle drives on the right lane.
(4) The model should have a small height difference

between lanes.

The first condition removes the combinations of Figures
11(a) and 11(c). The core of the algorithm is an iterative
loop that calls a recursive function with different sets of
parameters, beginning with hard, restrictive conditions and
relaxing these conditions at each iteration. If, at the end of
the loop, there is no valid combination of lanes, the number
of lanes is decreased and the loop is called again. For example,
a street with 2 lanes of 3 meters has no road markings and is
limited by curbs. At the first iteration, the restrictions for
that road anticipate 2 lanes of 3 meters each; however, there
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Figure 9: General description of the algorithm to convert a set of features that describe road limits into a new road model.
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Figure 10: Continued.



Journal of Advanced Transportation 11

First derivative×10
15

−5

−4

−3

−2

−1

0

1

2

3

4

Ac
cu

m
ul

at
iv

e r
ay

 v
al

ue
s

20 40 60 80 100 120 140 160 1800
Angles

(g) Obstacles derivative

20 40 60 80 100 120 140 160 1800
Angles

First derivative×10
15

−2

−1

0

1

2

3

Ac
cu

m
ul

at
iv

e r
ay

 v
al

ue
s

(h) Vegetation derivative

Figure 10: Graph analysis of the rays.

(a) One lane on the left (b) One lane in the middle

(c) One lane on the right (d) Two lanes on the left. Combination selected by the
algorithm

(e) Two lanes on the right (f) Three lanes

Figure 11: All possible lane combinations without high level filtering.

is no combination that satisfies the restrictions. In the next
iteration, the algorithm finds a single lane of 6 meters width,
which fits the real scene. If lane markings are not correctly
detected, the possibility of finding a valid lane combination is
reduced, especially when the number of lanes is greater than
or equal to 3, since instead of finding 3 lanes of 3 meters
each, it finds one lane of 3 meters and another of 6 meters,
which does not satisfy the condition of similar width between
lanes. Figures 11(d) and 11(e) are from a one-way street,
however if it were a two-way street, the third condition would
remove Figure 11(e). In the fourth condition, the ego lane is
detected (Figure 11(b)) and a plane is fitted to its 3D points
using RANSAC. The combination having the smallest mean
distance from the plane to the other lanes is preserved and
the others are discarded.

This novel approach converts important features that are
not suitable for direct inclusion in the classifier into a road
model. It reads the number of lanes and the type of road from
digital navigation maps to adapt the filtering parameters for

optimal road segmentation. The detected road is estimated
only from features of the stereo cameras, the color camera,
and the digital navigationmap, making the system free of any
type of machine learning technique.

3.4. Road Shape Prior Obtained from Digital Maps. In this
section, a road prior is generated from the road width
estimated in Section 3.3.5 and the road shape provided by
the digital navigation map. This method creates a relation-
ship between the map and the road segmentation method
where both algorithms take information from each other. As
detailed in Figure 12, the road segmentation method covers
road type and the number of lanes from the map and also
sends the road width to the map in order to create the road
prior. It is a kind of symbiosis where both functions receive
benefits from the other.

Open Street Map is the digital navigation map used for
our approach. These collaborative maps have been created
by a large global community and all of the information
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Road segmentation based on context analysis

Road widthRoad type#Lanes

Figure 12:Themap prior requires a roadwidth, which is obtained from the roadmodel presented in Section 3.3.5. Furthermore, the generated
road model uses the number of lanes and the type of the road from the map. It is a kind of symbiosis where both functions take benefits from
the other.

(a) Open Street Map visualization using the standard
layer

(b) Simplified representation of the intersection

Figure 13: Standard layer map and line segment representation of an intersection. The orientation of the map is aligned with the vehicle
orientation and the road width is estimated using the method presented in Section 3.3.5.

stored in the map is editable and it is freely accessible; see
Figure 13(a). The map consists of a list of streets called ways.
Every way is composed of a list of nodes with a location and
its relationship with the other nodes and ways. As detailed in
Figure 13, thanks to the location and relation between the
nodes, the shape of the current street and its surroundings
can be estimated.

The creation of a valid road prior requires the transfor-
mation of the map orientation to the current heading of the
vehicle. The location and heading of the ego vehicle are read
from a GPS/IMU sensor. These are necessary to find the
current street in the map and to create a simplified map with
the current street and the others that are connected to it.

The result of the road prior is shown in Figure 14,
where different scenarios have been processed using the
estimated road width and the shape obtained from the map.
As demonstrated in Figures 14(a) and 14(b), the correct local-
ization of the vehicle creates a good prior of the road shape.
The map information is especially useful in the presence of
intersections where road detection is more complex (see
Figures 14(c) and 14(d)). The nodes of the way are referenced
to the center of the way. However, sometimes there is a drift
between the map and the real center of the street. This is the
case in Figures 14(e) and 14(f). Given that the map drift is
usually constant along the street, the model may be displaced
along the measurements to estimate the offset and future
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(a) Two lanes’ scene with correct localization (b) Road with multiple lanes

(c) Road exit modeled with map information (d) Incoming lane in a train crossing

(e) Road intersection with incorrect localization (f) Incorrect localization in a single lane street

Figure 14: Road models estimated from the road shape information extracted from the map.

(a) Road model of an adjacent street

(b) Road model of an intersection of three streets

Figure 15: Road prior obtained after modeling the uncertainty of the vehicle position and orientation.

models may be adjusted with the estimated offset. However,
as the maps are updated by many collaborators, the drift can
vary from one street to another, requiring the estimation of
the drift at every street. In order to mitigate this offset, the
final road prior is obtained by modeling the uncertainty of
the vehicle position and orientation with a variability of
±2 meters and ±10 degrees, respectively. Furthermore, road
width is also modeled with an uncertainty of ±1 meter.
Figure 15 shows the final road prior after modeling the
uncertainty of vehicle position and orientation.This model is
used for the probability of a pixel belonging to a road.

3.5. Boosting-Based Classifier. Boosting techniques are be-
coming very relevant in the road classification problem [45].
This technique combines the performance of many weak
classifiers to produce a strong classifier. The weak classifier is
computationally fast and is usually a decision tree. Instead of
using decision trees as weak classifiers, they may also be used
for classification, with each tree leaf beingmarkedwith a class
label and withmultiple leaves having the same label. Random
trees are a collection of decision trees and are therefore also
known as a random forest. Every decision tree takes the input
feature vector and classifies it and the forest output is the class
label that receives the most votes. During the training stage,
at each tree node, a random subset of features are used to
find the best split value. On the other hand, Extremely
Randomized Trees choose the feature index and the split
value randomly.

In order to find the best classifier for the road detection
problem in urban scenarios, the following classifiers are
compared: Discrete Adaboost (BoostD), Gentle Adaboost
(BoostG), Extremely Randomized Trees (ERT), Random
Trees (RT), and decision trees (DT). In Table 3, different tree
based classifiers are compared depending on the split value
and feature selection.

The approach exploited in this paper is the robust collec-
tion of certain features, descriptors, or properties from the
sensors and certain a priori information from digital naviga-
tionmaps and the subsequent use of classification techniques
for the final decision, regardless of whether or not there
is road in each part of the captured images. Particularly,
the features described in this chapter embrace appearance-
based features to describe the texture and color of the road,
geometry-based features to obtain the shape of the road, and
the geometry of the obstacles present on the road. Further-
more, features related to context information are analyzed in
a high level interpretation of the scene.

4. Results

Since this paper focuses on urban environments, the system is
evaluated using the public dataset KITTI Vision Benchmark
Suite [46]. The dataset provides images and information of
urban scenarios from different types of sensors, such as
monochrome and color cameras, multilayer LIDAR, GPS,
and IMU.The evaluation method used to measure the quan-
titative results is the 𝐹1-score since this score is used in the
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Table 3: Comparison of tree based classifiers depending on the split value and the feature selection. The max depth is the maximum depth
of each weak classifier.

Classifier Feature Split value Max depth
DT Best Best 1
RT Random Best 𝑁

ERT Random Random 𝑁

Boosting Best Best 𝑁

Table 4: Basic feature selection for the classifier parameters adjustment.

Feature Length Selected
Normals 3 ✓

Curvatures 5 ✓

Big obstacles 1 ✓

Vegetation 1 ✓

Heights 1 ✓

HOG 36 ✓

HSV 3 ✓

Illuminant invariant 1 ✓

LBP 1 ✓

Pixel location 2 ✓

𝑋𝑌𝑍 3 ✓

Shadows 1
From limits to road 1
Map prior 1
Total 60 57

KITTI dataset [47]. The dataset consists of 289 images and is
divided into three types of scenes: the first is urban marked
(UM) roads, the second is Urban Multiple Marked (UMM)
lanes, and the third is Urban Unmarked (UU) roads.

𝐹1-score =
2 ⋅ precision ⋅ recall
precision + recall

. (1)

The 𝐹1-score has been used in two different images. The
first is the image plane, which evaluates the performance in
a pixel level. This is the most common approach found in
the literature. However, in a vehicle scenario, its control stage
usually occurs in a zenithal view, which is also known as
a 2D bird eye view (BEV). The KITTI benchmark has a
ranking sorted by 𝐹1-score calculated on the BEV images.
In order to compare our system with other algorithms of an
international level, the same evaluationmethod is adopted. In
the image plane, every pixel carries the same weight in the
global statistics.Therefore, a false positive (FP) at 7meters has
the same effect as the one at 40 meters. Nevertheless, when a
pixel in image plane is converted to the BEV, the further pixels
receive more importance in the global score.

Our proposal may not be evaluated in the test images
of the KITTI benchmark since the GPS information is not
available for the test images. Thus, performance statistics are
computed on the training dataset dividing 50% of the images
for training and 50% for testing.

4.1. Classifier Selection. As mentioned previously, the fol-
lowing classifiers have been compared: Discrete Adaboost
(BoostD), Gentle Adaboost (BoostG), Extremely Random-
ized Trees (ERT), Random Trees (RT), and decision trees
(DT). According to the basic feature vector detailed in
Table 4, an analysis of how the classifier parameters affect
performance is explained in this section.

The most important parameters to be adjusted are as
follows:

(i) Type of classifier: the chosen classifiers are decision
trees (DT), Random Trees (RT), Extremely Random-
ized Trees (ERT), Discrete AdaBoost (BoostD), and
Gentle AdaBoost (BoostG).

(ii) Number of weak classifiers: the analyzed values for this
parameter are 50, 100, 250, and 500.

(iii) Maximum depth: the maximum depth of each weak
classifier: the analyzed values for this parameter are 5,
10, and 25.

The classifiers have been trained with the same number
of samples (∼4.5M) and features (57). The most important
aspects to consider when choosing the best classifier are
memory requirements and performance.The selection of the
best classifier is decided in three steps: The first step eval-
uates performance. Given Figure 16(a), the classifiers with
the best performance are Gentle Adaboost and Discrete
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Table 5: Performance comparison of unary potentials trained with different combination of features.

Feature set Image plane Bird eye view
UM UMM UU All UM UMM UU All

Basic 91.25 89.20 85.92 88.73 86.35 85.88 77.07 82.99
Basic + shadow 91.43 89.32 86.19 88.92 86.83 86.40 77.17 83.35
Basic + context 92.76 90.44 88.25 90.43 89.02 86.03 79.09 84.60
Basic + map 91.49 92.03 88.42 90.61 87.76 89.30 80.49 85.76
Full set 92.59 93.17 89.69 91.78 88.94 89.86 81.36 86.63
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Figure 16: Selection of the best classifier.

Adaboost, regardless of the selected tree depth. The second
step evaluatesmemory usage. Figure 16(b) shows thememory
requirements for all classifiers. It is observed that boosting
classifiers with depths exceeding 5 require high amounts of
memory. In our system we assume a maximum of ∼1 GB for
the road classifier, which discards classifiers havingmore than
250 trees and depths exceeding 5. The tradeoff between per-
formance and memory requirements is represented in Fig-
ure 16(c), where the classifier Gentle Adaboost with 250 trees
and a depth of 5 is the one having the best balance between
memory usage and performance.The results discussed in the
rest of the document have been obtained using this classifier.

4.2. Comparative Features. The classifier has been trained
with 50% of the available training data and the other 50% is
used for testing. Inmost of the images, the number of samples

per image is ∼465K pixels. The amount of samples for the
150 images is intractable (∼69M); therefore a subsampling
technique is applied to reduce the number of samples by up
to ∼30K per image. The first step is to remove samples above
row 155, which is over the horizon line. The second is to take
1/3 of the pixels in the horizontal and vertical dimensions.
Finally, the amount of samples used in the training stage is
reduced to (∼4.5M).

Given the basic feature set described in Table 4, three
more features have been tested to evaluate their influence
on the final response. Table 5 shows the quantitative results
of each feature combination in the image plane and BEV
perspective on UM, UMM, and UU scenes.

On average, the shadow detector increases the perfor-
mance by 0.36% as compared to the basic feature set. The
improvement is similar in all of the scenes. Despite this,
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(a) Lanes estimation based on road limit features and the vanishing point

(b) Prior knowledge of the road shape based on a digital navigation map

(c) Comparative result of the proposed method and the ground truth

Figure 17: Qualitative results of the proposed method in narrowed roads. The meaning of the colors is as follows: TP: green; FP: blue; and
FN: red.

the road segmentation based on context features increases
the score, especially in scenes having two lanes with road
markings (UM). The improvement of 2.67% and 2.02% in
UM and UU scenes, respectively, contrasts with the 0.15% of
the UMM scenarios. The road detector based on context
information adds the lateral distance for each limit and
attempts to find a combination of lanes that satisfies the
restrictions on number of lanes and similar lane width. In
scenarios such asUMM,most of the images have 2, 3, ormore
lanes. If roadmarkings are not correctly detected in each lane,
the function could generate an inaccurate road model. For
example, if the road has 3 lanes of 3-meter width and the
system detects one lane of 3 meters and another of 6 meters,
the lanes combination will be discarded due to the difference
between lane widths. That is the reason for the imperceptible
improvement in UMM scenes. The map prior obtained from
the digital navigation map offers important information of
road shape. This feature increases the performance by 3.42%
in UMM and UU scenarios and 1.41% in UM with respect
to the basic feature set. The combined feature set of basic +
shadow+ context +map prior obtains a score of 88.94% inUM
scenes, which is 0.08%below the basic + context combination.
Nevertheless, on average, the full set of features increases
performance by 3.64%.

The proposed method is not limited to straight roads
since the shape of the road is extracted from a digital
navigation map. In scenarios having very narrow curves,
the vanishing point detection could fail but the shape
extracted from the map, the geometric-based features, and
the appearance-based features mitigate the failure of the
vanishing point based feature (see Figure 17).

Some qualitative and quantitative results are shown in the
image plane and BEV in Figures 18, 19, and 20 on the UM,
UMM, and UU scenes, respectively. In Figure 18, the basic +
context combination fits very well the real shape of the road
in UM. Consequently, when the map prior is included in the
feature set, the classifier interprets some of the prior infor-
mation as noise or unreliable data in the final response. In
scenes with multiple marked lanes (see Figure 19) the map
prior is very important since at times the context feature

does not provide reliable information. Finally, in Figure 20
all of the feature combinations have good results. However,
the basic + context combination obtains fewer false positives,
especially at far distances, which is very important in the BEV
evaluation.

5. Conclusions

This paper presents a novel method to detect free space.
The main contributions have taken place in the field of new
features development. An original method for curb detection
that is based on curvature estimation improves other state-
of-the-art algorithms. Others detect curbs, ranging in height
from 5 cm to 10 meters; however, the proposed method does
not require any parameter adjustment and it is able to detect a
wide range of curbs. The minimum curb height required for
a precise detection is approximately 3 cm and the detection
distance is up to 20 meters when the curbs are connected
in the curvature image. Otherwise a small object of 3 cm at
20 meters distance will be filtered. A novel method is
presented to convert features that describe road limits into
a new feature that describes road areas. Instead of creating
a set of radial rays from the bottom of the image, as seen
in other methods in the literature, our method presents a
new approach that uses the vanishing point to create a set
of radial rays that fits the road limits. This new approach
improves road classifier performance, especially in urban
marked scenes. Another contribution of this paper is the
creation of a new way to update digital navigation maps. The
innovation aims to update information on road width. The
system takes the number of lanes and the road type from the
digital navigation map and returns the road width. The map
can be updated from several vehicles, creating a robust value
of the road width. The map with the road width is used to
generate a prior of the current road structure, which is very
useful in intersections and narrow streets.The use of a digital
navigation map together with a feature-based road detection
method makes the system more robust as compared to HD-
map approaches which rely only on maps.



Journal of Advanced Transportation 17

Feature set Basic Basic + context Basic + map Full set
BEV 73.01 94.36 77.01 91.40
Image plane 77.86 93.91 78.07 88.22

(a) Basic

(e) Basic

(b) Basic + context

(f) Basic + context

(c) Basic + map

(g) Basic + map

(d) Full feature set

(h) Full feature set

Figure 18: Results of unary terms in a specific UM image. The combination basic + context fits very well the real shape of the road in UM.
Consequently, when the map prior is included in the feature set, the classifier interprets part of the prior information as noise or unreliable
data in the final response.

6. Future Work

From our results and conclusions, several future lines for
each treated topic may arise. They correspond to aspects
that have yet to be solved or that require further analysis to
improve the system’s performance. In order to take advantage

of on board sensors, a sensor fusion should be implemented.
In multisensor approaches, redundancy is quite important.
The autonomous vehicle includes RADAR, LIDAR, GPS,
stereo vision, and color camera sensors. Each sensor is
strong in certain situations and weak in others; therefore, the
redundancy aims to obtain a robust system that can work in a
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Feature set Basic Basic + context Basic + map Full set
BEV 79.64 81.63 94.12 95.58
Image plane 81.21 85.52 97.06 96.87

(a) Basic

(e) Basic

(b) Basic + context

(f) Basic + context

(c) Basic + map

(g) Basic + map

(d) Full feature set

(h) Full feature set

Figure 19: Results of unary terms in a specific UMM image.Themap prior is very important because sometimes the context feature does not
provide reliable information.The use of themap prior in scenarios with multiple marked lanes improves significantly the performance of the
basic feature set.

variety of situations. Convolutional Neural Networks (CNN)
outperform the state of the art in semantic segmentation
problems. However, they should be trained with similar
scenes. Our system will be integrated with a CNN classifier
to increase its robustness in situations where the CNN has
not been trained. Context interpretation has demonstrated an

important role in the road detection problem. So, a special
effort will be devoted to the improvement of this high level
analysis. Due to the similarity between consecutive frames,
the previous frame will be integrated as another new feature
of the presented feature vector and the whole system shall be
evaluated with the new feature.
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Feature set Basic Basic + context Basic + map Full set
BEV 88.30 91.94 85.04 87.09
Image plane 88.62 93.84 92.61 94.15

(a) Basic

(e) Basic

(b) Basic + context

(f) Basic + context

(c) Basic + map

(g) Basic + map

(d) Full feature set

(h) Full feature set

Figure 20: Results of unary terms in a specific UU image. All the features combinations have good results. However, the combination basic
+ context obtains less false positives, especially at far distances, which is very important in the BEV evaluation.
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