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Abstract—This paper presents the results of a set of extensive
experiments carried out under both daytime and nighttime real
traffic conditions. The data were captured using an enhanced or
extended Floating Car Data system (xFCD) that includes a stereo
vision sensor for detecting the local traffic ahead. The collected
information is then used to propose a novel approach to the
level-of-service (LOS) calculation. This calculation uses informa-
tion from both the xFCD and the magnetic loops deployed in
the infrastructure to construct a speed/occupancy hybrid plane
that characterizes the traffic state of a continuous route. In the
xFCD system, the detection component implies the use of pre-
viously developed monocular approaches in combination with
new stereo vision algorithms that add robustness to the detection
and increase the accuracy of the measurements corresponding
to relative distance and speed. In addition to the stereo pair of
cameras, the vehicle is equipped with a low-cost Global Positioning
System (GPS) and an electronic device for controller-area-net-
work bus interfacing. The xXFCD system has been tested in a
198-min sequence recorded in real traffic scenarios under different
weather and illumination conditions. The results are promising
and demonstrate that the xXFCD system is ready for being used
as a source of traffic status information. As an indicative example
of the developed xFCD system, we construct a novel route LOS
calculation that combines hybrid information about speed and
occupancy from both the xFCD system and the magnetic loops in
the infrastructure.

Index Terms—Controller are network (CAN) bus, extended
floating car data (FCD), Global Positioning System (GPS), level
of service, stereo vision.

I. INTRODUCTION

VER the past few decades, the European economic
O growth has steadily increased the demand for energy
and mobility, where transport accounts for 30% of the total
energy consumption in the European Union. This increasing
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demand for mobility across Europe requires urgent innovations
in technology and policy that allow sustainable (green, safe, and
efficient) transport [1]. The promotion of intelligent transporta-
tion systems is one of the key instruments to achieve this goal.
In particular, accurate traffic monitoring plays a significant role
in the construction of novel solutions for traffic management to
reduce the levels of congestion and, consequently, consumption
and emissions.

The so-called floating car data (FCD) refer to technology
that collects traffic state information from a set of individual
vehicles that float in the current traffic. Each vehicle can be
seen as a moving sensor operating in a distributed network. It is
equipped with global positioning and communication systems,
transmitting its global location, speed, and direction to a central
control unit that integrates the information provided by each
one of the vehicles. FCD systems are being increasingly used
in a variety of important applications since they overcome the
limitations of fixed traffic monitoring technologies [2]. If this
system achieves a sufficient penetration rate (1.5% as described
in [3]), the service quality in urban traffic would be sufficient.
The most representative FCD projects in Japan, Europe, and the
U.S. before 2005 are described in [4].

The basic data provided by FCD systems can be extended
(xFCD) using new specific devices and sensors endowed in
modern vehicles [5], [6]. Such data can be exploited to extend
the information horizon including traffic, weather, road man-
agement, and safety applications [4]. A second generation of
xFCD has been recently proposed by including vision-based
sensors to estimate the local traffic conditions. For example, in
[7], a stereo vision-based detection module is used as a vehicle-
ahead checker (excluding lateral road lanes) to confirm or
cancel the traffic alarms generated by the traffic level analyzer.
In addition, they detect temporary danger warning signs. There
are many cases where the use of vision may provide more
accurate speed measurements, compared with standard FCD
systems. Consider the case of congested traffic, where the host
vehicle is stopped, whereas the vehicles located on the left or
right lanes are moving at speeds greater than 0 km/h (i.e., the
traffic jam only affects to the host lane). In addition, if FCD
systems are installed onboard a fleet of public transport vehicles
such as buses, they can provide misleading speed measurements
due to the use of dedicated bus lanes. (Adjacent lanes may be
jammed, whereas the bus lane is free.)

Based on our previous works related with vision-based vehi-
cle detection in the context of intelligent vehicles applications
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[10]-[12], we have proposed to use the information provided
by the cameras to supply xFCD systems with a more repre-
sentative measurement of the traffic conditions [13], [14]. A
set of monocular vision-based modules (forward-rear and side-
looking) was used, obtaining a nearly 360° field of view. Instead
of excluding lateral lanes [7], the relative distance and speeds
of the vehicles detected in adjacent lanes were incorporated to
the xFDC structure, providing variables such as the local traffic
load (number of vehicles, road capacity, etc.) and the average
road speed (not only the floating vehicle speed) of the specific
local area. Thus, a more detailed description (less discretized)
of the traffic status can be obtained.

These xFCD systems allow for extended capabilities in traffic
management that can solve some current problems. Among
others, we will use the xXFCD to improve the determination
of levels of service (LOSs). LOS qualitatively describes the
operating conditions of a roadway based on a set of factors
that consider physical variables such as speed or travel time,
together with others such as maneuverability or safety [8]. Up
to six LOSs (A to F) are defined, where the higher LOS (A
to C) describe different levels of free flow, LOS D describes
a situation that is approaching unstable flow, LOS E describes
unstable flow, and LOS F describes forced or breakdown flow.
There is no common or standardized method for calculating
the LOS in a specific road. Some can be found in [8] or [9],
where the calculations are mainly based on a combination of
speed and occupancy (defined as the number of vehicles per
kilometer and lane in the road). The actual implementation of
these calculations relies on collected data from fixed magnetic
loops. Consequently, the calculations can only be performed in
a discrete number of points in the road, with no information in
between. In addition, magnetic loop performance significantly
drops in congested scenarios, where it is difficult to discrimi-
nate between consecutive vehicles.

In this paper, we describe an improved approach of the
vision-based vehicle detection systems described in [13] and
[14] by means of the use of stereo vision. Stereo information
improves both the detection performance and the accuracy
of the measurements (host-to-vehicle (H2V) relative distance
and speed). Previous results [14] were obtained in sequences
of a few seconds (800 frames). Here, we provide extensive
results in sequences of a total duration of 198 min (428 400
frames, with 36 frame/s) recorded in real traffic scenarios
under different weather (rainy/cloudy) and lighting conditions
(nighttime/daytime) and different levels of congestion. These
improved data are then used to propose a novel method for
calculating LOS based on information from both the vehicle
and the magnetic loops. This LOS calculation is more precise
and can be applied to a whole route, instead of discrete points
in the road.

The remainder of this paper is organized as follows:
Section II describes a global overview of the system. The
description of the stereo vision-based vehicle detection sys-
tem is provided in Section III. Section IV describes the ex-
perimental results, including sensor accuracy analysis. These
results are applied to the calculation of route LOS in
Section V. Finally, conclusions and future works are discussed
in Section VL.

Fig. 1. (Top left) Low-cost stereo vision sensor. (Top right) RTK-DGPS.
(Bottom) Experimental vehicle (modified Citroen C4).

II. SYSTEM OVERVIEW

The experimental vehicle used in this work is a carlike robot
(a modified Citroen C4), which can be seen in Fig. 1. It has an
onboard computer housing the image processing system, i.e., an
RTK-DGPS, which is connected via an RS232 serial port; a pair
of synchronized (hardware triggering) low-cost digital cameras
connected via FireWire ports; a specific electronic device for
controller area network (CAN) bus interfacing; and a cellular
communication system. The differential Global Positioning
System (DGPS) is a 5-Hz RTK Maxor-GGDT system of Javad
Navigation Systems. Based on our previous work [18], this
system provides accurate global positioning with maximum
deviations in x- and y-axes of 5 and 5.6 mm, respectively.
(The standard deviations in the x- and y-axes were 0.0036 and
0.0041 mm, respectively.) The stereo vision sensor uses 320 x
240 pixel gray-scale images with a baseline of approximately
300 mm and a focal length of § mm.

The global architecture of the system can be seen in Fig. 2.
The results obtained by the stereo vision module are combined
with the DGPS measurements and the data provided by the
CAN bus to have globally referenced traffic status information.
The measurements provided by the DGPS are linearly interpo-
lated due to its low sample frequency (5 Hz).

III. VISION-BASED VEHICLE DETECTION
A. System Description

The global scheme of the proposed vision-based vehicle
detection system is shown in Fig. 3. The first step consists of
reducing the searching space in the image plane by detecting the
road lane markings. The detected lanes are used as the guide-
lines that drive the vehicle-searching process. Lane markings
are detected using gradient information in combination with a
local thresholding method, which is adapted to the width of
the projected lane markings. Then, clothoid curves are fitted
to the detected markings [14]. In case no lane markings are
detected, the system automatically defines a fixed region, which
corresponds to a straight road. Then, several region of interest
(ROI) generation modules are triggered in parallel.
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Fig. 3. Global overview of the vision-based vehicle detection algorithm.
Monocular ROIs are selected by combining white top-hat and
canny features with different types of symmetries (gray-level,
vertical-edge, and horizontal-edge symmetries), as described
in [14]. Stereo processing results in a dense disparity map,
which allows the 3-D position and the relative speed of the
vehicles ahead to be accurately estimated. The camera pitch
angle is dynamically estimated by means of the so-called virtual
disparity map, from which regions corresponding to the ground
plane can easily be removed [15]. One thus obtains a more
precise specification of the areas of the ground where vehicles
are to be expected (see Fig. 4). Stereo ROIs are then computed
by counting the number of depth features corresponding to the
filtered dense disparity map of locations selected by means
of perspective constraints (flat-world assumption) and prior
knowledge of target objects (with tolerances). In particular,
the locations where the number of depth features exceeds a
certain fraction of the window area are passed on to subsequent

Fig. 4. (Left to right) Original image, dense disparity map, and filtered map
(without ground-plane points or points that are very high).

Fig. 5. (Left to right) Original image, individual clusters after adaptive
thresholding, and selected ROIs.

(-

Fig. 6. (Upper rows) Daytime positive and negative samples. (Lower rows)
Nighttime positive and negative samples. Note that the intensity of nighttime
images has been synthetically increased.

modules, thus ensuring that each candidate region corresponds
to a real 3-D object.

Nighttime ROI selection mechanism is first based on adap-
tive thresholding. Candidates are then obtained by searching
pair of clusters (which are usually rear lights) with similar verti-
cal location, using again the flat-world assumption, perspective
constraints, and prior knowledge of target objects. Although
this is a simple method, it is very effective in practice. It
provides a low number of false positives since the adaptive
thresholding mostly highlights the rear lights of the vehicles
(see Fig. 5).

The three ROI selection modules provide different candi-
dates, some of which overlapped, as they can refer to the same
vehicle. All these candidates are classified by means of linear
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support vector machine (SVM) classifiers [16] in combination
with histogram of oriented gradients (HOG) features [17].
Two specialized classifiers have been trained, depending on
the lighting conditions. Candidates selected by monocular and
stereo modules are classified using a daytime SVM classifier.
On the other hand, a nighttime SVM classifier is used for
nighttime ROIs (see Fig. 3). Fig. 6 shows some of the positive
and negative samples used for training. The number of samples
used for developing the training test differs depending on the
classifier. Daytime classifier was trained with 19031 negative
and 9248 positive samples. Nighttime classifier was obtained
using 2486 negative and 1847 positive samples. The number of
samples used in nighttime scenarios is lower because intraclass
variability is much lower than that under daytime conditions.

The use of three different ROI selection methods triggered at
the same time (one of them specifically designed for nighttime
conditions) avoids the need for different parameter settings,
depending on the lighting/weather conditions. However, the
three detection modules may generate candidates related with
the same vehicle. Accordingly, a kind of nonmaximum suppres-
sion technique is used to group multiple overlapped candidates,
trying to generate only one candidate per vehicle. In practice,
we have observed that good candidates (candidates that are
well fitted to the actual vehicle contour) usually provide SVM
results farther to the hyperplane that separates the vehicle and
nonvehicle classes, i.e., their classification result has higher
confidence. Thus, we use the distance to the hyperplane as the
main variable to select the best candidate of a set of overlapped
candidates. (Overlapping has to be larger than 70% of the area
of the smaller candidate.)

Finally, the vehicles detected in this single-frame way are
passed to the multiframe validation and tracking module (see
Fig. 3). A predefined number (empirically set to 3) of consec-

mation errors in the experiment in which the car is overtaken.

utive identifications of an object classified as a vehicle triggers
the data association and tracking stages. The data association
problem is addressed by using feature-matching techniques.
Harris features are detected and matched between two consecu-
tive frames, as in [14]. Tracking is implemented using a Kalman
filter with a constant velocity model [14].

B. System Validation

In a first experiment, we evaluated the different parame-
ters provided by the vision sensor, i.e., H2V relative distance
and speed, together with their corresponding errors. A set
of sequences was recorded, in which a driver was requested
to perform an overtaking maneuver in a two-lane road at
approximately 25 km/h. A vehicle was parked in the right-
hand (nonovertaking) lane, so that the host vehicle overtakes
these vehicles at a relative speed of about 25 km/h. In addition
to the stereo vision sensor, two DGPSs are used, with one
placed at the lead vehicle’s position and the other on board
the host vehicle (see Fig. 7). The measurements supplied
by these DGPSs (after linear interpolation due to their low
sampling frequency, i.e., 5 Hz) are taken to be the ground
truth.

Fig. 8 plots the stereo and the DGPS distance estimates,
including the absolute error and the stereo depth estimation
uncertainties [18], of the experiment in which the car is the
vehicle overtaken. The DGPS H2V, which is taken to be the
ground truth, lies mostly within the limits of the stereo depth
estimate including their corresponding uncertainties. As can
be observed, the greater the depth, the greater the absolute
error. Depth estimates may not be reliable at long distances
(absolute errors). However, the absolute error decreases as the
H2V distance decreases.
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Fig. 9. H2V relative speed (in kilometers per hour) taken from the CAN bus
(the leading vehicle is parked) and from the DGPS depth values and the discrete
stereo measurements, estimated by averaging the discrete stereo values at each
second, in the experiment where the car is overtaken.

Although the depth estimation errors are sufficiently small
for the precision required in the present application, those of
the discrete estimate of the relative speed from the Kalman
state variable are not. As demonstrated in [19], discrete dif-
ference between two noisy depth estimation values introduces
a considerable error in the relative speed computation for
noninfinitesimal At¢, and this clearly limits the vision system’s
precision. Those authors propose an optimal value for At,
which is directly proportional to depth. In the present case, we
define a practical value of At =1 s and compute the average
speed of the last 36 frames. This approach is very effective in
practice. Fig. 9 shows the relative speed obtained from the CAN
bus (recall that the leading vehicle is parked in this experiment),
which was computed by means of DGPS H2V distance values,
the discrete relative speed provided by the Kalman filter, and
the relative speed computed at each second. One observes that
the discrete values of the stereo relative speed are not at all
useful. However, the proposed approach previously described
provides relative speed estimates that are accurate enough for
the application’s requirements—the root-mean-squared error is
around 3 km/h.

C. Single-Frame SVM Classifier Results

As described in Section III-A, the generic candidates are
classified by means of two different linear SVM classifiers
(daytime and nighttime). To define the SVM decision thresh-
olds, we use the ROC curves defining the work points in terms
of the relationship between the detection rate (DR) and the
false positive rate (FPR). In these experiments, two thirds of
the samples were used for training, and one third was used for
test. The ROC curves are shown in Fig. 10. On the one hand,
the decision threshold for the daytime classifier is fixed to 0.03
with a DR of 96.1% and an FPR of 6.4%. On the other hand,
the decision threshold for the nighttime classifier is fixed to
0.07 with a DR of 91.4% and an FPR of 7.8%. We have to
consider that these results are single-frame results, so they will
be improved in multiframe validation and tracking stages. The
final classifier is trained with all the available samples.
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Fig. 10. ROC curves for both daytime and nighttime linear SVM classifiers.
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ments (image taken from Google Maps).

IV. EXTENDED FLOATING CAR DATA
EXPERIMENTAL RESULTS

A. Description of the Experiment

The proposed system was tested on data from real traffic
conditions. A set of video sequences was recorded on a route
through the Madrid (Spain) M-30 highway (see Fig. 11). The
route distance is approximately 15 km and was driven up to
eight times: four times going South (from A to B), where we
found free traffic, and four times going North (from B to A),
where we found a congestion that started to decrease during
the last minutes of the experiment. The video sequences were
recorded from 7:20 A.M. to 10:38 A.M., including different
lighting (nighttime/daytime) and weather (rainy/cloudy) condi-
tions, as well as different levels of congestion. Consequently,
we produced a video database including 195 min. (Although
the experiment had a total duration of 198 min, 3 min was lost
due to a problem in the recording system.)
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TABLE 1
GLOBAL xFCD RESULTS

# frames | # vehicles in range True Identifier Missed False Multiple

(groundtruth) Positives | exchanged | vehicles | Positives counts
Nighttime (from 7:20am to 8:35am) 161907 727 025 18 84 63 50
Daytime (from 8:35am to 10:38am) 266493 1133 1007 24 102 80 66
Total (198 minutes) 428400 1860 1632 42 186 149 190
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Fig. 12. Vision-based vehicle detection results under daytime, cloudy, and rainy conditions with different levels of traffic congestion, corresponding to 13 min

of a sequence.
B. Measured Variables

The main variables provided by the xFCD system are given
here.

1) Average road speed: This is computed by means of the
host speed (via CAN bus) and the relative speed of the
vehicles ahead (vision based).

2) Number of vehicles: This variable provides the number of
vehicles detected ahead (left, middle, and right lanes).

3) Relative H2V distance: This is the relative distance be-
tween the host vehicle and the vehicle ahead (located on
the same lane).

Many other variables are obtained by the xFCD system.
Some of them are directly available via CAN bus, and other
variables are indirectly available after some processing. Among
all of them, we remark the following: speed, acceleration, revo-
lutions per minute, number of stop-and-go (based on the speed),
outside temperature and humidity, windshield wiper status,
different light status (fog, emergency, high beams, indicators,
etc.), number of gear changes, number of lane changes (based
on the indicator lights), fuel consumption, etc.

C. Vision-Based Vehicle Detection Results

Global results are presented in Table I. We have labeled the
total amount of vehicles in range in all the sequences (ground
truth). Note that we distinguish between true positives and
vehicles that are detected from a previously detected vehicle
(identifier exchanged). In both cases, we consider the vehicle as
detected, assuming that some errors will appear in the relative
distance computation when a new vehicle is associated with

a previously tracked vehicle. Accordingly, we obtain DRs of
88.44% and 90.99% under nighttime and daytime conditions,
respectively. 0.84 false-positive/min are obtained under night-
time conditions, whereas 0.69 false-positive/min are detected
under daytime conditions. In addition, 6.67% and 5.82% of
the vehicles are counted more than one time under nighttime
and daytime conditions, respectively (i.e., a new identifier is
generated).

Nighttime detection performance is lower than daytime per-
formance due to two main reasons: First, the nighttime ROI
selection scheme is not stereo based, which is prone to generate
more false positives. Second, in the sequences used in the
experiments, most of the rain fell under nighttime conditions.
Although rain does not seem to have any effect on detection
performance under daytime conditions (due to the stereo-based
approach), some false positives and false negatives under night-
time conditions are generated due to the effect of rear light
reflections through the water drops.

Figs. 12 and 13 show some of the variables provided by the
system in two of the sequences (daytime and nighttime, respec-
tively) with different levels of traffic congestion. The following
variables are drawn: host speed (via CAN bus interface), the
average road speed, the distance between the host vehicle and
the vehicle ahead, and the number of vehicles detected per
frame. The maximum number of vehicles detected per frame is
6. (Note that the minimum number is 1 since we always count
the host vehicle.) The number of detected vehicles does not
seem to affect average road speed computation, which implies
that the relative distances of the vehicles detected in adjacent
lanes and the proposed method for computing the relative speed
are coherent up to a point. (Extensive ground truth data will be
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needed to assure the actual goodness of the relative distance
and speed measures.) The average difference between the host
speed and the average road speed is 0.4 km/h. This can be
explained by the fact that the host vehicle is driving on the
central lane of a three-lane highway most of the time, and
therefore, the higher speed of the vehicles located on the left
lane is somehow compensated with the lower speed of vehicles
located on the right lane.

V. ROUTE LINE OF SIGHT THROUGH HYBRID FIXED AND
EXTENDED FLOATING DATA

As we described in Section I, LOS qualitatively describes
the conditions of the road. LOSs are often calculated using
a combination of speed and occupancy. These two variables
are collected by the fixed magnetic loops deployed underneath
the road. At each point of measurement, two magnetic loops
are installed. Speed is directly calculated from the travel time
between the pair of loops (knowing their fixed separation). On
the other hand, occupancy is obtained through the total time that
a loop is active, i.e., the percentage of time in a minute that the
loop detects a vehicle above it; thus, the occupancy indicates
some kind of density of vehicles in a segment of the road.
This monitoring method implies two important issues: First,
in congested scenarios, speed detection is unreliable, because
the magnetic loops are unable to discriminate between two
consecutive vehicles that travel through the pair of loops at
each point of measurement. Second, even in free-flow traffic
scenarios, data are only collected at discrete points in the
road; thus, no continuous route information can be supplied.
The xFCD system proposed and described can be used to
mitigate these issues, providing both better speed description
and a hybrid route LOS. We define the route LOS as the set
of sequential LOS calculations that are performed from the
speed and occupancy data collected by the XFCD system at an
increased spatial resolution.

We will now proceed to show the collected data from the
magnetic loops and the host vehicle during the same day and

3.2

Vision-based vehicle detection results under nighttime, cloudy, and rainy conditions with different levels of traffic congestion, corresponding to 7 min

time of the experiment. We will show the comparison between
two significant variables for the LOS calculation, i.e., speed and
occupancy, and we will propose a new method for determining
the LOS using hybrid data from both the magnetic loops and
the xFCD.

A. Comparison Between Fixed Loops and xFCD

The xFCD system collects the value of the whole set of
parameters described in Section IV-B and its GPS position
every minute. To implement a fair comparison with the mea-
surements produced by the fixed loops, we select the one that is
closest to the position of the floating vehicle in each measure
point and time. This is an approach used for interpolating
the values collected by fixed loops along the space between
them [20].

1) Speed: Fig. 14 shows that, in general, the fixed loops
record higher speed values. These differences are reduced in
higher speed values. It is also remarkable that fixed loops do
not register almost any speed value below 10 km/h, which is
not consistent with the observation of heavy congested traffic
in the South-to-North routes.

Table II shows the mean speed values recorded by both
the vehicle V,, and the fixed loops V; in the North-to-South
and South-to-North routes (averages over 39 and 124 mea-
surements, respectively). Observe that the highest difference
between the speed recorded by the vehicle and the fixed loops
happens in the South-to-North route, where there is a much
higher congestion.

2) Occupancy: The second variable that is used in the LOS
determination is the occupancy. The xXFCD do not include direct
calculation of this variable. Instead, we can approach it through
the number of vehicles that the host vehicle has counted through
the following equation:

No(t)
O(t) _ d(t)-3

max

x 100 (1)
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Fig. 14. Speed collected by the (red) vehicle and (blue) fixed loops.

TABLE 1II
MEAN SPEEDS IN NORTH-TO-SOUTH AND SOUTH-TO-NORTH ROUTES

(Vo) (km/h) (V) (/) (PGl o5)

North-to-South 74.9 81.0 10.9

South-to-North 26.6 34.1 91.8

where N, (t) is the number of counted vehicles in any of the
three lanes of the roadway, d(t) is the host vehicle traveled
distance (depending on its speed), and Opyax = 1000/6 is the
maximum capacity of the roadway, i.e., the maximum number
of vehicles per kilometer. (We have considered a mean value
of 6 m for the length of the vehicle plus the distance between
vehicles in a heavily congested scenario.)

Fig. 15 shows the occupancy values obtained from both (1)
and the fixed loops. To implement a fair comparison between
those pairs of values, we take the occupancy measurement of
the magnetic loop that is closer to the point and time of measure
of the host vehicle. From Fig. 15, we can observe that 1) in
general, the estimated occupancy values calculated through (1)
are significantly lower and 2) nevertheless, this estimation O(t)
is capable of reproducing the fendency of the actual occupancy
measured by the magnetic loops, except in the presence of low
speed, where O(t) overestimates the actual occupancy.

Consequently, the proposed estimation of the roadway occu-
pancy is a feasible approach to the actual occupancy, but the
values of this variable that are provided by the magnetic loops
are more reliable.

B. Route Hybrid LOS

LOS determines the effectiveness of sections in a road
infrastructure. In consequence, LOS is extensively used in
the analysis of traffic conditions, describing the road’s safety
and driving comfort based on speed and occupancy. To con-
sider speed and occupancy in the calculation of LOS, a
speed/occupancy (S/O) plane is used. In this type of graph, the
top-left corner (high speed, low occupancy) determines free-
flow traffic states, whereas the lower-right corner (low speed,
high occupancy) represents congestion. The LOS will then
decay from A to F, following the diagonal between these two
corners. Fig. 16 show the S/O planes generated by the values of
speed and occupancy obtained from the magnetic loops and the
xFCD.

9.00 9.30 10.00 10.36

Time (h)

From the observations of Figs. 14—-16, we conclude that the
magnetic loops and the xFCD provide better measurements
of occupancy and speed, respectively. In consequence, the
calculation of LOS could be improved by considering hybrid
values of these two variables obtained from the host vehicle and
the fixed loops. Following this approach, we can build an S/O
plane considering the speed values recorded by the host vehicle
and the occupancy measurements performed by the magnetic
loops. The resultant S/O plane can be observed in Fig. 17.

Note that this S/O hybrid plane is a route S/O plane because
it takes the xFCD of a vehicle traveling through a route and the
measurements of the corresponding magnetic loops in space
and time. This is a novel approach to LOS calculation based
on mobile and fixed sensor fusion. It provides continuous
information regarding the state of the roadway instead of the
discrete values of LOS that are obtained from the fixed loops.

Using this route S/O hybrid plane, the final determination
of the LOS would be implemented through the definition of
specific thresholds of speed and occupancy that would delimit
different regions in the plane.

In addition to using more accurate measurements of speed
and occupancy and extending the LOS determination to a con-
tinuous route, this approach provides significant information to
both the traffic control center and the driver. In fact, this route
hybrid LOS could become a means to promote the interchange
of data between the users and the infrastructure as both benefit
from it. The traffic control center would be provided with more
detailed data coming from different host vehicles to improve the
determination of the traffic state and the consequent decisions
to be taken. The driver would receive information regarding the
state of the roadway in future points of his route with which
he could estimate travel times or modify his path to avoid
congestions.

VI. CONCLUSION AND FUTURE WORKS

This paper has proposed a novel xFCD system and the
experimental results generated in an actual scenario with real
traffic data and under different light and weather conditions.
The huge amount of collected information provided by this
xFCD system can be used in a great variety of applications.
Among them, we have proposed a novel way of calculating the
LOS of a roadway through hybrid information regarding speed
and occupancy collected from both fixed magnetic loops and a
host vehicle providing xFCD.
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Fig. 17. Route S/O hybrid plane considering the speed values from the xFCD
and the occupancy measurements from the magnetic loops.

We have first presented the results of an xFCD system
equipped with a stereo vision-based local traffic detector in
a set of extensive experiments carried out under real traf-
fic conditions with different lighting and weather conditions,
as well as different levels of traffic congestion. The vision-
based vehicle detection system combines different approaches
(monocular, stereo, and nighttime) to supply generic obstacles
that are classified by means of two linear SVM classifiers
(daytime/nighttime) and HOG features. The detected vehicles
are then validated in a multiframe fashion and tracked using a

Occupancy calculated from the number of vehicles (red) counted by the host vehicle and (blue) measured by the magnetic loops.

Kalman filter. The proposed approach provides data from not
only the host vehicle but from the vehicles located in the field
of view of the host as well, including the vehicle ahead and
the vehicles located in adjacent lanes (when available). Thus,
standard variables such as the host vehicle speed (via CAN bus)
can be enriched and supported with new variables such as the
distance to the vehicle ahead, the average road speed, and the
number of vehicles in range. Although the use of stereo vision
implies managing some errors when estimating the relative
distance (errors that are squared proportional to the depth), it
allows us to have an accurate estimation of the relative speed
by integrating relative distance values during 1 s. The global
results show that the proposed approach produces good results
under different traffic conditions, succeeding when detecting
traffic congestion.

The collected variables were then used to improve the calcu-
lation of LOS in the roadway, together with the measurements
provided by the magnetic loops deployed in the infrastructure.
We built S/O planes based on pairs formed by speed values
collected in the host vehicle and occupancy measurements
recorded by the magnetic loops, with each one supplying the
most accurate information of each separate variable. In addi-
tion, this novel calculation of LOS provides not only discrete
values of LOS in space but a route LOS as well, where the state
of the traffic is monitored in a continuous way.

Although the results are promising and practicably applica-
ble now, future work is still needed in both the detection system
and the LOS calculation. On the one hand, new advances have
to be developed to improve the DR and reduce the number of
false positives in the XFCD system. A more sophisticated en-
semble classifier will be introduced using different classifiers,
depending on the lane, and including a new class for trucks
since they are the main source of error in vehicle counting.
The DR and the accuracy of the H2V relative distance mea-
surements can be improved by combining the proposed vision-
based approach with range-based sensors, such as radar or laser,
or series-production sensors of modern vehicles endowed with
ADASSs. On the other hand, novel approaches to the estimation
of occupancy are needed to better exploit the information
generated by the xFCD. In addition, we need to define the
set of thresholds to determine LOS through the route S/O
hybrid plane. With all this available hybrid information from
both the xFCD and the magnetic loops in the infrastructure,
we will be able to build novel algorithms to estimate traffic
variables such as travel time between two points in a route and
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assess applications in the context of traffic management and
control.
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