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a b s t r a c t

Intelligent systems designed to reduce highway fatalities have been widely applied in the automotive sec-
tor in the last decade. Of all users of transport systems, pedestrians are the most vulnerable in crashes as
they areunprotected. This paper dealswith anautonomous intelligent emergency systemdesigned to avoid
collisions with pedestrians. The system consists of a fuzzy controller based on the time-to-collision esti-
mate – obtained via a vision-based system – and the wheel-locking probability – obtained via the vehicle’s
CAN bus – that generates a safe braking action. The system has been tested in a real car – a convertible Cit-
roën C3 Pluriel – equippedwith an automated electro-hydraulic braking system capable of working in par-
allel with the vehicle’s original braking circuit. The system is used as a last resort in the case that an
unexpected pedestrian is in the lane and all thewarnings have failed to produce a response from the driver.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Road safety continues to be one of the sticking points for Euro-
pean governments. Even though the number of road accidents
involving personal injury fell by some 12% between 1991 and
2007 (Commission, 2009), the European Transport Commission is
working to improve these results.

A report by the national highway traffic safety administration in
the United States indicated that about 80–90% of traffic crashes are
caused by driver errors (N.C. for Statistics, Analysis, 2006). Accord-
ingly, active vehicle safety has become a major topic of research in
intelligent transportation systems (Castro, Delgado, & Medina,
2011; Chang, Tsai, & Young, 2010; Milanés, Pérez, Godoy, & Onieva,
2012). Moreover, automobile manufacturers are ever more con-
cerned about vehicle safety, and are increasing their efforts to find
reliable solutions to the problem. Several intelligent systems are
beginning to be included in commercial vehicles, such as Antilock
Braking Systems (ABS), Collision Warning, Lane Keeping, 4 Wheel
Active Steering (4WAS), and Active Suspension systems. With re-
spect to longitudinal dynamics, Adaptive Cruise Control (ACC),
mainly used on highways, is capable of detecting the speed and
distance of the vehicle ahead and modifying the speed accordingly.
In urban environments, Volvo has developed an intelligent system

capable of stopping the car in the case of a rear-end collision at
speeds below 15 km/h in traffic jam situations.

The ability to quickly reduce speed in a stable manner is one of
the vital functions of a vehicle. A large proportion of situations
threatening the safety of a vehicle occurwhen the driver tries to stop
the vehicle abruptly without taking into account the car’s perfor-
mance in specific environmental conditions (slippery surface, brak-
ing and cornering, l split). This is why an anti-lock system seems to
be mandatory in any emergency braking control algorithm.

Since vehicles exhibit highly nonlinear dynamics that are hard
to model precisely for this kind of manœuvre, and pedestrians
are the most vulnerable in crashes as they are unprotected, intelli-
gent systems need to be developed in order to protect them.

Indeed, pedestrian protection is a key problem in the context of
the automotive industry and its applications. Onboard sensor sys-
tems are required to predict the vehicle host-to-pedestrian (H2P)
distance as well as the time-to-collision (TTC) (Milanés et al.,
2012). Range-based sensors such as radar and laser provide very
accurate distance and time-to-crash measurements, and they have
been previously used by many authors (Gidel, Checchin, Blanc,
Chateau, & Trassoudaine, 2010). However they are too expensive
solutions for automotive industry compared with digital cameras.
So, cameras are the most commonly used sensor for this purpose.
The use of video sensors comes quite naturally for the problem
of pedestrian detection since they provide texture information
which enables the use of quite discriminative pattern recognition
techniques. The human visual perception system is perhaps the
best example of what performance might be possible with such
sensors, if the appropriate algorithm were used. In addition, the
use of image data as a source of information fits in with other
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intelligent vehicle applications such as lane detection, vehicle
detection, and autonomous driving.

From the computer vision perspective, pedestrian detection is a
difficult task. Large variations in pedestrian appearance (e.g.,
clothing, pose, etc.) and in environmental conditions (e.g., lighting,
moving background, etc.) make this problem particularly challeng-
ing. The first stage in most systems consists of identifying generic
obstacles as regions of interest (ROIs) using prior scene knowledge
(camera calibration, ground plane constraint, etc.) and a computa-
tionally efficient method. Subsequently, a more computationally
expensive pattern recognition step is applied. The lack of explicit
models leads to the use of machine learning techniques, where
an implicit representation is learned from features obtained from
thousands of samples. The following surveys provide both a gen-
eral and a detailed background on work on pedestrian detection
for automotive applications (Gandhi & Trivedi, 2007; Moeslund,
Hilton, & Krüger, 2006; Poppe, 2007), including some of recent
publication (Enzweiler & Gavrila, 2003; Gerónimo, López, Sappa,
& Graf, 2010). Most work on human motion is summarized in
Moeslund et al. (2006) and Poppe (2007). The focus of Gandhi
and Trivedi (2007) and Gerónimo et al. (2010) is on the application
of pedestrian protection in the intelligent vehicle domain, covering
both passive and active safety techniques. Finally, an overview of
the current state of the art both methodologically and experimen-
tally is presented in Enzweiler and Gavrila (2003), in which a novel
benchmark set has been made publicly available.

An intelligent system for pedestrian protection can be divided
into three steps: pedestrian detection, assessment of the risk of
collision, and, if appropriate, emergency stopping. The first two
steps have to rely on a fast and reliable exteroceptive sensor. A vi-
sion-based algorithm able to detect pedestrians was developed in
the present work. It will provide not only the distance to the obsta-
cle, but also the level of confidence of that datum.

In this communication, we describe a fuzzy controller for an
intelligent emergency stopping system. It uses as inputs the
wheel-locking probability – obtained through on-board vehicle
sensors via a Controller Area Network (CAN) bus – in order to opti-
mize the braking distance and the TTC – obtained via a vision-
based pedestrian detection system – to assess the risk in each case
of emergency. The output is the braking pressure exerted on the
wheels through an autonomous electro-hydraulic braking system
installed in a Citroën C3 vehicle.

In brief, the main contributions of the work are the following:

� A vision-based intelligent emergency stopping control algo-
rithm to avoid hitting pedestrians has been implemented in a
real vehicle.

� The proposed control system is conceived to allow any car to be
driven manually, with automatic assistance if necessary. Fur-
thermore, the system implemented can easily be adapted and
installed on any production car.

� A stereo vision-based pedestrian detection algorithm provides
reliable and fast estimates of distance to the target.

� The braking action takes into account not only an estimated TTC
from the camera, but also the probability of wheel-lock in order
to improve the braking distance.

The rest of the article is organized as follows. Section 2 presents
the hardware implementation and control architecture of the exper-
imental vehicle. The pedestrian detection systemwill use two input
variables: the wheel locking probability – presented in Section 3 –
and the estimation of TTC provided by the vision-based pedestrian
detection system – described in Section 4. The resulting controller
is described inSection5. Section6presents the experimental results,
and some concluding remarks are given in Section 7.

2. Experimental prototype vehicle

The experimental trials used a commercial mass-produced car
equipped with automatic driving capabilities (see Fig. 1). This sec-
tion briefly describes those modifications and explains the control
architecture.

2.1. Hardware implementation

The autonomous braking system consists of a 1-l capacity brake
fluid tank that includes a gear pump and coupling to a 350-W, 12-
V supply, DC motor. Pressure control is implemented through three
valves. The first is a spool directional valve to allow or stop the flow
of brake fluid; the second is an electro-proportional pilot to regulate
the nominal pressure; and the third is a pressure limiter tube – fixed
at 160 bars – to avoid any excessive pressure being exerted in the
wheels (Milanés, González, Naranjo, Onieva, & de Pedro, 2010).

The automatic braking system is controlled via a CAN I/O device
that is connected to the on-board control unit (OCU) where the
control program is executed (a C++ application). The device in-
cludes a relay output to activate the spool directional valve and
an analog output from 0 to 10 V to manage the electro-propor-
tional pilot. Since this valve is oversized for this vehicle, the
maximum allowed voltage is 6 V – 60% of the valve’s opening.
The system was installed under the trunk in the place reserved
for the spare wheel (Fig. 1).

Two cameras are used to detect pedestrians (Fig. 1). They are
connected to a laptop via two FireWire ports. The cameras are
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Fig. 1. Experimental prototype vehicle, on-board vision system, and automatic electro-hydraulic braking system.
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synchronized at 25 Hz, with an image resolution of 320 � 240 pix-
els, a distance between the cameras (baseline) of 30 cm and a cam-
era focal length of 8 mm. The interconnection between the OCU
and the laptop is via an Ethernet port to transmit the vision system
output values.

2.2. Control architecture

The control architecture is based on a classical hierarchical sys-
tem that is widely used in mobile robotics (Murphy, 2000). It nat-
urally divides into three stages: perception, planning, and
actuation (Fig. 2).

In the first stage – perception – all the sensorial inputs coming
from the environment and the on-board vehicle sensors are ac-
quired. The vehicle is equipped with a differential global position-
ing system (DGPS) and an inertial measurement unit (IMU) that
are used for the vehicle’s guidance (Milanés, Naranjo, González,
Alonso, & Pedro, 2008). The stereo vision system located in the
rear-view mirror (Fig. 1) is responsible for pedestrian detection.
The vehicle’s CAN bus is designed to handle the acquisition of on-
board sensor data such as wheel speed – coming from the four
wheels – and the vehicle’s acceleration.

In the second stage – planning – the control strategies are car-
ried out. The decision system selects among different fuzzy con-
trollers in order to perform the appropriate manœuvre as a
function of the environmental data – provided by the first stage.
The appropriate controllers to execute ACC (Onieva et al., 2010)
or intersection manœuvres (Milanés, Pérez, Onieva, & González,
2010) have been developed previously.

The last stage – actuation – executes the targets received from
the planning stage, and modifies the outputs generated as voltage
levels than can be sent to the actuators. Specifically, this is the va-
lue to apply to the electro-proportional pilot.

3. Slip-based braking system

During the acceleration or braking phases, the friction forces
sgenerated Fx are proportional to the normal load Fz of the vehicle
through the road adhesion coefficient l. Hence, knowledge of tyre-
road forces is crucial, because optimal braking performance is
related to the maximum tyre-road friction coefficient. Since deter-
mining these forces precisely is far from straightforward, one
usually takes slip to be the decision variable in an anti-lock control
system. It can be experimentally shown that l is a nonlinear func-
tion of the wheel slip ratio s (Liu, 2008; Zanten, Erhardt, & Lutz,
1990)

s ¼ xr�Vx
Vx

if Vx > xr; Vx > 0 ðbrakingÞ
s ¼ xr�Vx

xr if Vx < xr; xr > 0 ðacceleratingÞ

(
ð1Þ

As a result, many such control systems seek to ensure that the
wheel slip ratio stays within a certain safety range, which is usually
between 0.1 and 0.2 for most road conditions (cf. Zanten et al.
(1990) for more details). In other studies, known optimal slip ratios
for various road characteristics are used as reference signals (e.g.,
Wang, Chen, & Tao, 2003; Wang, Li, Chen, Su, & Hsu, 2009). How-
ever, the main problemwith these methods is how to find the opti-
mal slip ratio when the road characteristics are unknown or poorly
known.

Although many attempts have been made, an accurate and gen-
eral mathematical model of tyre behavior for any road conditions
and driver action has yet to be obtained. Furthermore, at present
there are no affordable sensors which can accurately identify the
road surface and make this data available to an anti-lock controller
(cf. Akbarzadeh, Emami, & Pariz, 2004).

Many different control techniques have been applied to try to
solve this complex problem, most of the times in a simulation envi-
ronment. Examples are: model based adaptive control (Su, Chang,
& Chen, 2006) and sliding modes control (Kayacan, Oniz, & Kaynak,
2009), fuzzy control (Mauer, 1995), neuro-fuzzy control (Wang
et al., 2009), genetic neural control (Lee & Zak, 2001). Fuzzy logic
in particular seems to be an interesting choice because of its good
compromise between tuning simplicity – contrarily to neuro-fuzzy
and genetic neural control – and robustness to disturbances and
parameter variations – it is independent of complex vehicle and
brake models. It is well known (cf. Jamshidi, Vadiee, & Ross,
1993) that the performance of fuzzy controllers can compare favor-
ably with that of advanced model-based digital controllers. How-
ever, to the best of our knowledge, this intelligent control
approach has yet to be implemented in real platforms (mass-pro-
duction cars) for an emergency braking situation.

The results of experiments with our instrumented vehicle will
be used to select the aforementioned slip safety ranges in order
to provide an estimate of the probability of wheel lock.

3.1. Experimental slip ratio ranges

Several tests were performed with the experimental platform
described in Section 2. The vehicle accelerates until it reaches
40 km/h, and a constant pressure is then applied to the brake until
the vehicle has stopped.

Fig. 3(a) presents the evolution of the vehicle’s speed in each of
these emergency manœuvres. The acceleration phase was
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Fig. 2. Prototype vehicle control architecture.
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performed automatically in order to reduce the influence of the hu-
man driver. The greater the braking pressure applied, the steeper is
the slope of the velocity. Note that speeds for Pf = 50% and Pf = 50%
exhibit the classical sawtooth shape associated to the ABS activa-
tion, which shows the evolution of wheel angular velocities when
the brake is rapidly hold and released. One notes also in Fig. 3(b)
that the slip ratio values are more significant for the higher braking
pressures. As a consequence, the slip ratios are correlated with the
wheel locking probability Pb (Fig. 3(c)). A trade-off was made be-
tween slip ratio noise and the significant safety ranges in order
to select the thresholds (smin = 0.02, smax = 0.2) in the following
function:

Pb ¼ kð�ssat � sminÞ

k ¼ 1
smax � smin

�ssat ¼ maxðminð�s; smaxÞ; sminÞ
where �s is the mean value of the right and left rear slip ratio values.
Fig. 3(c) shows that the selected thresholds provide a correct match
between the only three tests in which the ABS system was triggered
and those in which the Pb value is equal to unity. Furthermore, the
highest probability of wheel lock is always estimated before the in-
stant of activation of the ABS, tABS.

4. Pedestrian detection system

Pedestrian detection is carried out using the system described
in Parra et al. (2007) and Llorca et al. (2009) (Fig. 4 gives an over-
view of the pedestrian detection architecture). Non-dense 3D maps
are computed using a robust correlation process that reduces the
number of matching errors (Poppe, 2007). The camera pitch angle
is dynamically estimated using the so-called virtual disparity map
(Llorca et al., 2009). Two main advantages result from pitch com-
pensation. First, the accuracy of the time-to-collision estimate in

car-to-pedestrian accidents is increased. Second, the separation be-
tween road points and obstacle points is improved, resulting in
lower false-positive and false-negative detection rates (Llorca
et al., 2009).

The 3D maps are filtered assuming the road surface to be planar
(which can be acceptable in most cases), i.e., points under the ac-
tual road profile and over the actual road profile plus the maxi-
mum pedestrian height are removed since they do not
correspond to obstacles (possible pedestrians). The resulting fil-
tered 3D maps are used to obtain the ROIs.

Based on the idea that obstacles (including pedestrians) have a
higher density of 3D points than the road surface, ROI selection can
be carried out by determining those positions in the 3D space
where there is a high concentration of 3D points. A 3D subtractive
clustering method is proposed to handle the ROI selection stage
using sparse data. The idea is to find high-density regions, which
are roughly modeled by a single 3D Gaussian distribution, in the
Euclidean space. The parameters of each Gaussian distribution
are defined according to a minimum and maximum extent of
pedestrians. Thus, while pedestrians are correctly selected, larger
obstacles such as vehicles or groups of pedestrians are usually split
into two or more parts. For the stereo accuracy, the method is
adapted to the expected depth error (Fernández et al., 2007).

The 2D candidates are then obtained by projecting the 3D
points of each resulting cluster, and computing their bounding
boxes. A Support Vector Machine (SVM) based classifier is then ap-
plied using an optimal combination of feature-extraction methods
and a by-components approach (Parra et al., 2007). While the RBF
kernel provides better performance, the linear kernel is the best
solution computationally. Each candidate (possible pedestrian) is
divided into six regions (head, left and right arms, left and right
legs, and a region between the legs). Each region is independently
learned using different features. The optimal combination is ob-
tained using texture features (Texture Unit Number) for the head
and the region between the legs, histograms of gray level
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Fig. 3. Soft acceleration followed by a hard braking with braking pressures varying between 10% and 60%. (a) Vehicle speed of the whole maneuver. (b) Vehicle slip ratio of
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differences for arms, and Histograms of Oriented Gradients (HOG)
for the legs (Parra et al., 2007). The final classifier is trained with
67,650 samples (22,550 pedestrians and 45,100 non-pedestrians,
including mirror images) obtained by a manual labeling process
from sequences recorded in real traffic conditions. Our pedestrian
database was firstly presented in Parra et al. (2007).

Nonetheless, the 2D bounding box corresponding to a 3D candi-
date might not perfectly match the actual appearance of the pedes-
trian in the image plane. Multiple candidates are generated around
each original candidate. The so-called multi-candidate (MC) ap-
proach has been shown to increase the detection rate, the accuracy
of depth measurements, and the detection range (Parra et al.,
2007). The resulting pedestrians detected are tracked by means
of a Kalman filter, and the data association problem is solved using
the Hungarian method.

The last block of Fig. 4 represents the computation of the TTC
between the host vehicle and the pedestrians detected ahead,
and is defined according to the requirements of the application.
For example, in the case of a driving alert application, this stage
will trigger alarms to the driver depending on the host-to-pedes-
trian (H2P) TTC. For a pedestrian collision avoidance application,
this stage will compute an input to the brake pedal controller.

5. Control algorithm

First the specifications of the desired behavior of the intelligent
control system have to be set. Since the implementation is of an
emergency system to avoid colliding with pedestrians, the primary
requirement is for maximum braking pressure to be applied when-
ever the value of Pb is less than 50%. This requirement is reflected
in the rule:

R1 IF Pb Low THEN Brake All

The value of Pb can change very rapidly. When it is greater than
50%, the fuzzy controller modifies the pressure applied on the
wheel so as to avoid locking. The variations in the fuzzy output de-
pend on the value of the TTC, so that if the pedestrian is detected
early the output pressure is less. If, however, the pedestrian is de-
tected very close, the output pressure is increased. These changes
are reflected in the following three rules:

R2 IF Pb High AND TTC Critical THEN Brake All
R3 IF Pb High AND TTC Medium THEN Brake Medium
R4 IF Pb High AND TTC Soft THEN Brake Nothing

The Pb input variable comprises two membership function def-
initions, one for each of its two associated linguistic labels – Low
and High. The cross point between them is fixed at 75% of wheel
lock probability to increase the weight of the linguistic label that

represents the system reaching its physical limit when the wheels
are to be blocked. The TTC has three membership function defini-
tions according to the critical level of the detection of the pedes-
trian. Thus, the linguistic label Soft is used when early detection
occurs, and the braking pressure is relaxed. The linguistic label
Critical covers the situation when a pedestrian is detected very
close to the vehicle, in particular, TTC values of less than one sec-
ond are considered to constitute high risk situations, and maxi-
mum brake pressure is applied.

The output fuzzy variable is Brake. The shape of its membership
function is defined using Sugeno singletons which are based on
monotonic functions. Three singletons are defined with values of
1 – All, 0.5 – Medium, and 0 – Nothing, to exert the maximum,
medium, or minimum pressures, respectively.

The control algorithm is represented in Fig. 5 as a control sur-
face obtained by plotting the inferred control action Brake for a
grid of values of Pb and TTC. The appreciable smoothness in
changes of slope indicate that the rules selected are appropriate.

6. Experimental results

6.1. Pedestrian detection: response time and TTC estimation error

In a first experiment, we evaluated the TTC estimation error and
the response time of the pedestrian detection sensor. A set of se-
quences were recorded in which a driver was requested to drive
along the left lane of a two-lane road at 40 km/h and a pedestrian
was requested to stand in the middle of the right lane. Besides the
stereo vision sensor, two DGPSs were used, the first placed at the
pedestrian’s position, and the second installed onboard the vehicle.
The measurements supplied by these DGPSs (after linear interpola-
tion due to the low sampling frequency – 5 Hz) were considered as
the ground truth. With this experimental setup it was not neces-
sary to carry out the emergency braking manœuvre, since both
host-to-pedestrian (H2P) distance and TTC can be computed using
the z-component of the H2P vector. Fig. 6 shows a schematic view
of this experiment.

The TTC estimation error is computed by dividing the depth
estimation error (Rodríguez & Aggarwal, 1990) by the vehicle
speed. The speed estimation error – which is provided by the
CAN bus – is assumed negligible compared to the stereo quantiza-
tion error. Fig. 7 depicts the stereo and the DGPS TTC for this exper-
iment, including the absolute error and the TTC estimation
uncertainties. Some notable conclusions can be drawn from this
figure. The DGPS TTC, which is considered as the ground truth, is
always inside the limits of the stereo TTC plus its corresponding
uncertainties. As can be observed, the larger the TTC the larger
the absolute error. TTC estimates may not be reliable at long dis-
tances (absolute errors). However, the absolute error decreases as
the TTC decreases.
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Fig. 4. Overview of the stereo vision-based pedestrian detection architecture.
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The root mean square error (RMSE) of the TTC was analyzed. For
TTC < 2 s and TTC < 1 s, the error is reduced by factors of 1.7 and
8.5, respectively. For the entire range of the input variable TTC of
the fuzzy controller ([0,4] s), the error is less than 0.1 s, i.e., a
relative error of 2.5%. This TTC estimation error is expected to have
almost no influence on the controller’s performance.

Human perception-reaction time (response time) for collision
avoidance by braking can be defined as an interval that starts when

some pedestrian enters the driver’s visual field and ends when the
driver has moved the foot from the accelerator to the brake pedal.
It has typically been defined at around 1.5 s (Green, 2000; van der
Horst, 1993; Olson & Sivak, 1986; Summala, 2000). The perception-
reaction time of an automatic system can be defined as just per-
ception time, since the reaction time can be considered negligible.
The visual field of a stereo sensor is defined by the maximum range
(35 m with our current sensor parameters). The bound on the
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response time can be defined as RT = N � fps-1, where fps-1 is equal
to 40 ms (since the sensor runs at 25 Hz) and N is the maximum
number of frames needed to detect a pedestrian. In order to deter-
mine the value of N, the system was run at different positions of
the recorded sequence, simulating the unexpected appearance of
a pedestrian at different distances. Table 1 presents the number
of frames needed to detect a pedestrian, and the corresponding re-
sponse time and distance traveled (note that the system needs at
least three consecutive true positive classifications to start the
tracking (Parra et al., 2007)). As can be observed, the greater the
H2P distance, the larger the value of N. This can be explained as
being due to poorer candidate selection and classifier performance
at long distances. Although the sequences were recorded under
real traffic conditions, this experiment is not enough to ensure a
maximum N of 5 in all situations. Accordingly, we used a theoret-
ical worst case to define a maximum value of N = 10, which means
a bound on the response time of RT = 0.4 s. This worst case value is
three times faster than the typical human response time for brak-
ing. In addition, shorter response times are expected for the short
distances at which the emergency stopping manœuvre is most
needed.

6.2. Autonomous intelligent emergency stopping system

The response time and TTC estimation error are evaluated in
such a way as to meet the required accuracy to perform an auto-
matic emergency stopping manœuvre. Consequently, the vision-
based pedestrian detection system together with the wheel anti-
lock system will yield the braking pressure to apply via the fuzzy
controller. For these trials, the experimental prototype vehicle de-
scribed in Section 2 was used, and a lightweight dummy made of
cardboard was placed in the road as the pedestrian.

Different trials were performed in order to evaluate the maxi-
mum distance required to guarantee the pedestrian’s safety. A
schematic view of the automatic driving experimental setup is
shown in Fig. 8.

Fig. 9 shows the evolution of the relevant parameters in an
emergency braking manœuvre to avoid a pedestrian collision at
40 km h�1. The top plot shows the speed of the vehicle. The second
to top shows the inputs for the fuzzy controller, the gray line rep-
resenting the wheel locking probability and the black one the TTC
value. The next to bottom plot shows the normalized ([0–1]) fuzzy
output of the applied braking pressure. The bottom plot shows the
value of the distance from the vehicle to the pedestrian. The gray
line represents the distance from the first frame in which a

possible candidate is detected until the time when it is determined
that there is indeed a pedestrian (N = 5). The dashed black line
indicates the distance from the latter moment until the maximum
value (N = 10) needed to avoid false emergency manœuvres. The
black line shows the distance covered since the electro-hydraulic
braking system started working.

One can appreciate how TTC and Pb begin to be computed once
the unexpected pedestrian has been detected. At the beginning, the
braking pressure is increased quickly to unity in order to avoid the
collision. When Pb approaches unity, the braking pressure is re-
laxed in order to obtain the best braking distance while avoiding
wheel lock. Once the value Pb falls, the braking pressure starts to
increase again to stop the vehicle in the minimum distance and
in the safest way. Finally, the braking pressure is fixed at 10% to
hold the vehicle stopped in case of a steep slope.

A comparison of the braking distances obtained with various
constant pump pressures versus our intelligent emergency stop-
ping system at 40 km h�1 is shown in Fig. 10. One observes that
the control system avoids wheel lock, and provides a satisfactory
stopping distance when compared to constant pressure braking
in an ABS-equipped vehicle. Note that, even if the braking distance
is not less than that obtained with Pf = 60%, our control system still
exhibits remarkable behavior for such a low sample rate compared
with that used in commercial ABS systems (which usually work at
between 100 and 250 Hz). Consequently, the proposed intelligent
braking system could be used in any mass production car (with
or without ABS).

Finally, Table2 summarizes themeanresultsobtainedat40 km h�1

and 50 km h�1 with different estimated H2P distances, giving the real
braking distances, the minimum detection distances – braking
distance plus distance covered with N = 5, and the safe detection
distances – braking distance plus distance covered with N = 10.

7. Conclusions and future work

This paper has described an autonomous driving system capa-
ble of working in parallel with a human driver in order to carry
out an automatic pedestrian avoidance manœuvre involving brak-
ing action. It consists of: vision-based pedestrian detection to cal-
culate the vehicle–pedestrian distance which, combined with the
vehicle’s speed obtained via a CAN bus, allows the TTC to be deter-
mined; estimation of the wheel locking probability; and a fuzzy
controller that uses these two values as inputs to generate the
braking pressure to be applied in order to avoid collision with
the pedestrian.

The systemwas mounted on a Citroën C3 Pluriel car in which an
autonomous electro-hydraulic braking system had been installed
to be used in parallel with the original circuit. The vision-based
system is located close to the rear-view mirror, and the rest of
the input variables are obtained via the CAN bus of the vehicle.

Several trials conducted at urban speeds – up to 50 km h�1 – on
a real circuit showed the good behavior of the system. We believe
that the designed system will represent an encouraging starting
point for the development of automatic devices that can act on

Table 1
Number of Frames, Response Times, and Distance Needed to Detect a Pedestrian at
Different Distances in the Experiments Performed at 40 km/h.

Initial H2P Distance (m) 35 30 20 10
# of frames (N) 5 4 3 3
Response time (s) 0.2 0.16 0.12 0.12
Distance (m) 2.22 1.77 1.33 1.33

Left
lane

Emergency
break trajectory

Stereo
sensor

Right
lane

Stereo Vehicle-to-Pedestrian
Distance and TTC 

Dummy

Fig. 8. Schematic view of the automatic driving experimental setup.
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the car independently of the driver when a possible collision with a
pedestrian is detected by some means, and all the warnings have
failed to produce the driver’s response.

As future work, the behavior of the system under different
weather conditions (such as fog for the vision system, or snow
for the wheel locking probability) will be studied so as to include

a new fuzzy variable that will take the effects of these environmen-
tal conditions into account in our controller.
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