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There is clear evidence that investment in intelligent transportation system technologies brings major
social and economic benefits. Technological advances in the area of automatic systems in particular
are becoming vital for the reduction of road deaths. We here describe our approach to automation of
one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a ste-
reo vision system responsible for detecting any preceding vehicle and triggering the autonomous over-
taking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans
overtake. Its input is information from the vision system and from a positioning-based system consisting
of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is
the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals.
The system has been incorporated into a commercial Citroën car and tested on the private driving circuit
at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck
– with encouraging results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The development of advanced driver assistance systems (ADAS)
to aid in driving-related tasks has a key role to play in the automo-
tive field (Lu, Wevers, van der Heijden, & Heijer, 2004). Assistance
systems – to prevent accidents or to make driving safer – which
alert the driver of imminent risks through visual or audible signals
have been included in commercial cars in recent years (Castro,
Delgado, & Medina, 2011; Chang, Tsai, & Young, 2010; Geronimo,
Lopez, Sappa, & Graf, 2010; Lindgren, Angelelli, Mendoza, & Chen,
2009; Perez et al., 2010). Although these techniques are necessary
and provide a warning to the driver, their dependence on human
reaction time for a decision to be made remains a problem.

The first system introduced in commercial vehicles with the
potential to influence traffic safety was adaptive cruise control
(ACC) (Kestinga, Treibera, Schönhofa, & Helbing, 2008; Peng,
2010). This was an extension of cruise control (CC) – CC allows the
driver to set a driving speed – in which the vehicle is capable of
following a leading car on highways by automatic action on the
throttle and brake pedals, i.e., longitudinal control. Lateral or steer-
ing control, however, remains one of the toughest challenges in
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the development of commercial ADAS. The currently most advanced
system is lane keeping assistance (LKA) (Wang, Lin, & Chen, 2010;
Wang et al., 2005; Wu et al., 2008) which provides limited additional
steering torque to aid the driver in maintaining the vehicle within
the lane if a potential lane departure is detected. Complete lateral
vehicle control has yet to be solved by the automotive sector.

Research on developing automated vehicles to improve high-
way safety and efficiency is one of the most extensively studied
topics in the field of intelligent transportation systems. The first
relevant results with respect to steering control were obtained in
the 1990s. The Vislab (Broggi, Bertozzi, Fascioli, Lo, & Piazzi,
1999) and Navlab (Pomerleau, 1995) research groups in Italy and
the United States, respectively, use video images to locate the vehi-
cle’s location on the road. In longitudinal control, California Part-
ners for Advanced Transit and Highways (PATH) (Godbole &
Lygeros, 1993) developed a control system in which cars moved
along the highway in tightly spaced platoons.

Of all manœuvres, overtaking is one of the most complex since
it combines both lateral and longitudinal control. The work to be
described here is part of a collaboration between the AUTOPIA pro-
gram of the Centre for Automation and Robotics (CAR, CSIC-UPM)
and the RobeSafe group of Alcala University. Its aim is to develop
a system capable of performing overtaking autonomously using
as input data from a vision system to acquire information about
vehicles in the vicinity, and an inertial measurement unit (IMU)
with a differential global positioning system (DGPS) to obtain the
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vehicle’s positioning. A fuzzy-logic based controller is responsible
for sending the appropriate output to the vehicle’s actuators –
the steering wheel, and throttle and brake pedals.

The problem of automating the overtaking manœuvre has been
tackled from different points of view. A simulated guidance-based
on-line trajectory planning algorithm – based on the principles of
Rendezvous Guidance – is defined in Usman and Kunwar (2009).
A mathematical model is used in Shamir (2004) to design a smooth
and comfortable optimal lane-change trajectory for simulation
purposes.

Different methods for vehicle detection in overtaking have been
proposed. In Zhu, Comaniciu, Pellkofer, and Koehler (2006) a fusion
of dynamic modeling and robust information is used for motion
estimation. In Wang, Bebis, and Miller (2005), detection is per-
formed by modeling the background of a traffic scene divided into
dynamic and quasi-static regions. A conflict-probability-estima-
tion-based overtaking control method is presented in Wang, Yang,
and Yang (2009) using a four-wheeled electric vehicle denomi-
nated a cybercar. The same kind of vehicle is used in Feng, Rong-
ben, and Ronghui (2008) in which a vision navigation system is
used to perform overtaking manœuvres.

In previous work (Naranjo, Gonzalez, Garcia, & de Pedro, 2008),
a lane-change controller was developed in the AUTOPIA program,
determining experimentally the relationship between the speed
and the lane-change distance using vehicle-to-vehicle (V2V) com-
munication to perform the manœuvre. This system was based on a
priori knowledge of the state of the road. However, the develop-
ment of ADAS in mass-produced cars allows one to assume that
autonomous or semi-autonomous vehicles will be driving on our
roads in the medium to long term. Consequently, it is obligatory
to have a system capable of permitting the coexistence of these
kinds of vehicle with today’s human driven vehicles on the roads.
Given this premise, all the sensorial information will have to be
on board the autonomous vehicle, and the path-tracking actually
generated will have to depend on the traffic conditions. Our goal
is to develop a system whose behavior is as close to that of the hu-
man driver as we can make it. To this end, different trajectories will
be generated depending on the leading vehicle’s characteristics as
obtained from vision-based information.

The rest of the article is structured as follows. Section 2 de-
scribes the manœuvre to be implemented. Section 3 gives a brief
description of the mass-produced car used in the experimental
phase. Section 4 presents the vision-based traffic information sys-
tem developed to activate the autonomous control system, which
is detailed in Section 5 for both longitudinal and lateral control.
Section 6 includes the experimental results with the prototype
autonomous vehicle on CAR’s private driving circuit. Finally,
Section 7 presents the conclusions and describes the next steps
in our research.
2. Description of the problem

An overtaking manœuvre is a driving action involving a rapid
movement to negotiate an obstacle. This movement includes a
steering wheel turn combined with a speed increase. The former
is applied to perform a double change of lane – first to overtake
the obstacle, and then to return to the original lane in a progressive
steering change. Our goal is to develop a system capable of distin-
guishing between the vehicles that may be on the road – truck, car,
or motorbike – and of performing the automatic manœuvre as hu-
man drivers do.

Let us consider the general case in which a vehicle is driving in
the right lane along a straight stretch of a highway. One can distin-
guish three kinds of preceding vehicles according to their length
and width. To make overtaking close to that done by humans, dif-
ferent path references were set to perform the manœuvre with
safety. Fig. 1 presents the vehicles to be overtaken and the possible
trajectories. As can be seen, the wider the preceding vehicle is, the
greater the lateral movement, and the longer the preceding vehicle,
the more prolonged the manœuvre.

An automatic overtaking manœuvre can be naturally divided
into two stages. The first is to detect when the manœuvre can be
carried out. To this end, a vision-based system was developed to
analyze the conditions of the environment, permanently checking
whether it is possible to overtake so as to activate the automatic
manœuvre.

The second stage consists of performing the manœuvre autono-
mously. One has to consider different lateral displacements
according to the nature of the preceding vehicle. The time of great-
est risk is when the overtaker and the overtaken are running in
parallel. The greater the speed, the less time is spent in the over-
taking lane. Finally, the vehicle has to return to the original lane.
Since safety is the priority parameter in this kind of cooperative
manœuvre, time constraints must be imposed for the manœuvre
to be performed autonomously. With these premises, the following
variables involving the preceding vehicle are taken into account
(see Fig. 1):

Time-to-collision (TTC) obtained by dividing the distance
between the preceding vehicle and the automatic one by their
relative speed. These two parameters are obtained from the
vision system.
Preceding vehicle width (PVW) obtained from the vision
system. It is used to determine how fast the steering change will
have to be.
Preceding vehicle length (PVL) estimated from the vision sys-
tem. It determines the time the automatic vehicle will spend
in the overtaking lane – how sudden the speed change has to
be.

The rest of the variables needed to carry out the autonomous
manœuvre are obtained from the vehicle’s on-board sensor sys-
tems, the principal variable being the position which is given by
a differential global positioning system (DGPS) combined with an
inertial measurement unit (IMU) (Milanés, Naranjo, Gonzalez,
Alonso, & de Pedro, 2008).

Errors inherent to the use of the sensors (cameras, GPS receiv-
ers, and the IMU) may lead to some imprecision in the measure-
ments. For this reason, fuzzy logic was selected as control
technique since it is a well-tested method for dealing with this
kind of system, provides good results, and can incorporate human
procedural knowledge into the control algorithms. It also allows
the designer to partially mimic human driving behavior.
3. Automated prototype vehicle

A commercial convertible Citroën C3 Pluriel equipped with
automatic driving capabilities was used in the real experiments.
This section presents a brief description of the vehicle’s equipment.

To automate a vehicle, the actuators involved in the driving-
related tasks have to be modified. To this end, a power stage was
developed in parallel with the vehicle’s electronic control unit. This
power stage was pulse-width modulation (PWM) controlled
(Naranjo, Gonzalez, Garcia, de Pedro, & Haber, 2005). A switch per-
mits either the original steering system or the automatic one to be
selected. For the throttle, an analogue signal replaces the action on
the throttle when a switch is on. Finally, an electro-hydraulic brak-
ing system was installed in the vehicle’s boot to manage the vehi-
cle’s brakes (Milanés, González, Naranjo, Onieva, & De Pedro,
2010).



Fig. 1. Representation of cases of overtaking.

3364 V. Milanés et al. / Expert Systems with Applications 39 (2012) 3362–3373
Sensors were installed to receive information on the vehicle’s
environment and for the vehicle’s positioning. The former is ob-
tained via a vision-based system (Llorca et al., 2009; Parra et al.,
2007), and the latter uses a fusion GPS/IMU system (Milanés
et al., 2008). Fig. 2 shows the prototype vehicle used in the exper-
imental phase.
4. Vision-based vehicle detection system

The vision system installed in the prototype vehicle is responsi-
ble for detecting any preceding vehicle – i.e., motorbike, car, or
truck – and determining its width and length, and its distance
away.
4.1. Description of the system

The commonest approach to vehicle detection has until now
been to use active acoustic-based (Chellappa, Qian, & Zheng,
2004), radar-based (Park, Kim, Kang, & Koo, 2003), or laser-based
(Hancock et al., 1998; Wang, Thorpe, & Suppe, 2003) sensors.
However, passive sensors, in particular optical sensors, have been
attracting much of the attention of the research community and
the industry because of their two main characteristics: cheapness
and potential new applications such as lane departure warning
(LDW), pedestrian detection, traffic sign recognition, etc. Of all
these applications, algorithms for detecting and tracking vehicles
(Mandellos, Keramitsoglou, & Kiranoudis, 2011) are one of the
most important topics in the field. A review of the background con-
cerning vehicle detection, covering both active and passive sensors,
may be found in Sun, Bebis, and Miller (2006).
Fig. 2. Automated prototype vehicle equipped with DGPS, IMU, and vision system.
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Fig. 3 is an overview of the proposed vision-based vehicle detec-
tion system. Initial regions of interest (ROIs) are computed using
the monocular method described in Llorca, Sánchez, Ocaña, and
Sotelo (2010). Lane markings are detected, thereby reducing the
vehicle search area. If no lane markings are detected, a basic ROI
corresponding to a straight road is used instead. Vehicle candidate
regions are selected using a combination of symmetries (vertical
edges, horizontal edges, and gray level symmetries) and white
hat and Canny features together with a non-maximum suppression
procedure which removes overlapped candidates (Llorca &
Sánchez et al., 2010).

A second camera was added to obtain a more detailed descrip-
tion of the leading vehicle’s features. Stereo processing results in a
dense disparity map which allows the 3D position, the TTC, the
width, and the length of the vehicle to be estimated accurately.
The camera pitch angle is estimated dynamically by means of the
so-called virtual disparity map from which regions corresponding
to the ground-plane can easily be removed (Llorca et al., 2009).
One thus obtains a more precise specification of the areas of the
ground where vehicles are to be expected (see Fig. 4).

Each candidate vehicle region output by the monocular module
is verified in stereo mode by counting the number of depth fea-
tures corresponding to the filtered dense disparity map. In partic-
ular, the locations where the number of depth features exceeds a
certain fraction of the window area are passed onto subsequent
modules, thus ensuring that each candidate region corresponds
to a real 3D object.

Depth features are also used to obtain geometrical information
about the candidate vehicle. First, the 3D position of each candi-
date is found by applying the so-called 3D subtractive clustering
algorithm (Parra et al., 2007) to the set of 3D points contained in
the ROI. Consecutive 3D measurements, after filtering, are used
to compute the relative velocity (Vr) and the host-to-vehicle
(H2V) TTC. The leading vehicle’s speed is then simply the sum of
the host’s speed taken from the CAN bus and the relative velocity.
The absolute and relative depth estimation errors are determined
by the stereo quantization error procedure as proposed in Llorca,
Sotelo, Parra, Ocaña, and Bergasa (2010).

The preceding vehicle’s width, used to optimize the lateral off-
set of the overtaking trajectory, is computed as follows. The veri-
fied ROI is enlarged by 10%, and the value of the mode of the
depth features contained in the ROI is calculated. For each column
of the enlarged ROI, the number of depth features whose values are
equal to the mode plus-or-minus a certain tolerance is determined,
generating a histogram like the one depicted in Fig. 5. The lateral
boundaries of the histogram are then found, and the vehicle’s
width in pixels is computed. The 3D vehicle’s width is finally
obtained using this estimated width in pixels, the depth of the
Stereo
Refinement

Multi-frame
validation

and Tracking

ehicle detection.



Fig. 4. From left to right: original image, dense disparity map, and filtered map (without ground-plane points or points that are very high).

Fig. 5. From left to right: ROI in the original image; enlarged ROI in the filtered dense disparity map; column histogram and lateral boundaries.

Fig. 6. From left to right: ROI in the original image; XOZ map and the ROI used to compute the length; row histogram and lower bound of the dark area.
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vehicle, prior knowledge of the camera geometry, and the flat-
world assumption (acceptable in most cases).

The leading vehicle’s length is an important parameter that can
be used to minimize the time the host vehicle remains in the over-
taking lane. This length can not be computed from the rear view of
the leading vehicle. Once the host vehicle has entered the overtak-
ing lane, however, the side of the leading vehicle is visible to the
stereo pair (see Fig. 6). To estimate the leading vehicle’s length in
that position, we use the XOZ map (bird’s eye view) as is depicted
in Fig. 6 in which the leading vehicle appears with an L-shape. A
histogram is formed from the counts of points of each row corre-
sponding to an ROI located from the rear part of the vehicle to
the top of the XOZ map. This histogram is analyzed to detect the
lower bound of the region in which no points are detected. Sub-
tracting this lower bound of the dark area from the rear part of
the vehicle in the XOZ map gives the vehicle’s length directly.

The selected and verified candidates are classified by means of a
linear support vector machine (SVM) classifier in combination with
features of the ‘‘histograms of oriented gradients’’ technique
(Llorca & Sánchez et al., 2010). A predefined number (empirically
set to 3) of consecutive identifications of an object classified as a
vehicle triggers the data association and tracking stages. The data
association problem is addressed by using feature matching tech-
niques. Harris features are detected and matched between two
consecutive frames, as in Llorca and Sánchez et al. (2010). Tracking
is implemented using a Kalman filter with a constant velocity
model. The state of the filter is modeled as S ¼ ½x; z;w; l; _x; _z�T with
x/z being the H2V lateral/longitudinal position, w/l the width/
length of the leading vehicle, and _x= _z the H2V relative velocity in
the world. Note that length measurements are only valid once
the side of the leading vehicle has become visible.
4.2. System validation

The vehicle detection system runs in real time (25 Hz) with an
image resolution of 320 � 240 pixels, a baseline of 30 cm, and a
camera focal length of 8 mm. In a first experiment, we evaluated
the different parameters provided by the vision sensor, i.e., the
H2V distance, the relative speed, the TTC, and the leading vehicle’s
width and length, together with their corresponding errors. A set of
sequences was recorded in which a driver was requested to per-
form an overtaking manœuvre in a two-lane road at approximately
25 km/h. Three types of vehicle of different sizes (a motorbike, a
car, and a truck; see Fig. 7) were parked in the right-hand (non-
overtaking) lane, so that the host vehicle overtakes these vehicles
at a relative speed of around 25 km/h. Besides the stereo vision
sensor, two DGPSs are used, one placed at the lead vehicle’s posi-
tion and the other on board the host vehicle (see Fig. 8). The mea-
surements supplied by these DGPSs (after linear interpolation due
to their low sampling frequency – 5 Hz) are taken to be the ground
truth.



Fig. 7. The three vehicles used in the experiments.

Fig. 8. Scheme of the manual driving experiment.
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Fig. 9 plots the stereo and the DGPS depth estimates, including
the absolute error and the stereo depth estimation uncertainties
(Llorca et al., 2010), of the experiment in which the car is the vehi-
cle overtaken. The DGPS H2V, which is taken to be the ground
truth, lies mostly within the limits of the stereo depth estimate
including their corresponding uncertainties. As can be observed,
the greater the depth the greater the absolute error. Depth esti-
mates may not be reliable at long distances (absolute errors). How-
ever, the absolute error decreases as the H2V distance decreases.

Although the depth estimation errors are sufficiently small for
the precision required in the present application, those of the dis-
crete estimate of the relative speed from the Kalman state variable
_z are not. As demonstrated in Stein, Mano, and Shashua (2003), the
discrete difference between two noisy depth estimation values
introduces a considerable error in the relative speed computation
for non-infinitesimal Dt, and this clearly limits the vision system’s
precision. Those authors propose an optimal value for Dt which is
directly proportional to depth. In the present case, we define a
practical value of Dt = 1 s and compute the average speed of the
last 25 frames. This approach is very effective in practice. Fig. 10
depicts the relative speed obtained from the CAN bus (recall that
the leading vehicle is parked in this experiment), that computed
by means of DGPS H2V distance values, the discrete relative speed
provided by the Kalman filter, and the relative speed computed at
each second. One observes that the discrete values of the stereo
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relative speed are not at all useful. However, the proposed ap-
proach described above provides relative speed estimates that
are accurate enough for the application’s requirements – the
root-mean-squared-error (RMSE) is around 3 km/h.

The above method for estimating the relative speed allows the
H2V TTC to be computed with reasonable accuracy. Fig. 11 depicts
the TTC estimated by means of DGPS measurements (ground truth)
and by the stereo vision system. The absolute error is less than
0.3 s for a TTC below 6 s.

The results of estimating the leading vehicle’s width and length
are depicted in Fig. 12. One observes that the width of the car esti-
mated by the stereo vision system only achieves accuracy from
frame 505, i.e., from distances of less than 25 m. The width esti-
mate degenerates from frame number 540 due to the lane change
process during which the car is not fully visible. The length estima-
tion procedure is only triggered once the host vehicle is mostly lo-
cated in the overtaking lane, when the side of the car ahead has
become visible.

Further details of the results of the three experiments (motor-
bike, car, and truck) are given in Tables 1–5. One observes that
the relative speed, depth, TTC, and width estimates are not accu-
rate at long distances due to the stereo quantization error. How-
ever, as the H2V distance decreases all these estimates gain in
precision. The range for motorbikes is 10 m less than for cars and
trucks. The relative speed is computed with a RMSE of around
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ation errors in the experiment in which the car is overtaken.
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Fig. 12. Stereo video estimate of the car’s width and length, and ground truth.

Table 1
RMSE of the relative speed estimate, and range.

Type of vehicle CAN speed (km/h) (ground truth) Speed RMSE (km/h) Range (m)

Motorbike 21.2981 2.9943 34
Car 22.8 3.2075 44
Truck 42.4734 3.1717 45
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3 km/h. The mean relative depth error is below 3% in all cases. The
mean relative TTC error is about 3% for both the car and the truck,
and some 6% for the motorbike for a TTC of less than 6 s. Vehicle
width estimates at long distances are unreliable, but for distances
less than 30 m the width RMSE allows a safety lateral offset to be
defined for the overtaking manœuvre depending on the type of
leading vehicle. With respect to the vehicle length estimates,
firstly, if the leading vehicle is a motorbike, length detection is



Table 2
RMSE of the H2V depth estimate.

Type of vehicle Depth RMSE (m) Depth RMSE (m) depth < 30 m Depth RMSE (m) depth < 20 m Relative depth error mean (%)

Motorbike 0.7086 0.2932 0.1690 1.62
Car 0.9041 0.3678 0.1490 1.97
Truck 1.7443 0.2458 0.2100 2.91

Table 3
RMSE of the H2V TTC estimate.

Type of vehicle TTC RMSE (s) TTC RMSE (s) (TTC < 6 s) TTC RMSE (s) (TTC < 3 s) Relative TTC error mean (%) (TTC < 6 s)

Motorbike 1.2966 0.3790 0.2116 6.29
Car 0.9314 0.1782 0.1538 2.9
Truck 2.2386 0.1883 0.1056 3.1

Table 4
RMSE of the width estimate.

Type of vehicle Width (m) (ground truth) Width RMSE (m) Width RMSE (m) depth < 30 m Width RMSE (m) depth < 20 m

Motorbike 0.74 0.1577 0.1021 0.0403
Car 1.75 0.5860 0.1514 0.0541
Truck 2.8 0.6308 0.2396 0.0202

Table 5
RMSE of the length estimate.

Type of vehicle Length (m) (ground truth) Length RMSE (m)

Motorbike 2.8 –
Car 3.9 0.1744
Truck 14 1.3710
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impossible because the measurements are too noisy. Accordingly,
if the vehicle ahead is detected to be a motorbike (using the esti-
mated width), a fixed length is defined in order to ensure sufficient
space for overtaking. And secondly, for the car and the truck, the
estimated respective length RMSEs were 0.1744 m and 1.3710 m,
representing relative errors of about 5% and 10%, respectively. In
order to ensure a safety margin when providing the leading vehi-
cle’s length to the fuzzy controller, we increase the final value of
the estimated length by 20%.
5. Control system

This section describes the lateral and longitudinal controllers,
with an explanation of how and when to switch to the overtaking
controllers. The control is performed using fuzzy logic.
5.1. Controller description

Prior to proceeding with the design of the controller, we estab-
lished the prerequisites constraining an overtaking manœuvre.
Spain’s Road Circulation Code imposes two constraints: (a) the
time to carry out the overtaking manœuvre must be less than
15 s; (b) the overtaken vehicle cannot increase its speed once the
manœuvre has been triggered.

It was also necessary to consider the phases into which overtak-
ing can be divided. It is widely accepted that the manœuvre can be
treated as consisting of three phases (Naranjo et al., 2008; Pérez,
Milanés, Alonso, Onieva, & de Pedro, 2010; Shamir, 2004): first,
from the time when overtaking is initiated to the time at which
the overtaker’s nose is parallel with the overtaken’s rear-end, i.e.,
the phase of changing lanes in order to overtake; second, up to
the time when the overtaker’s rear-end is parallel with the over-
taken’s nose, i.e., the phase during which the overtaker is driving
in the overtaking lane; and third, up to the time at which the over-
taker has returned to the original, non-overtaking lane.

The control design is aimed at performing overtaking as hu-
mans do, subject to the aforementioned two constraints. Two fuzzy
controllers were developed, one for the longitudinal and one for
the lateral control.

5.1.1. Longitudinal controller
The manœuvre is triggered via the stereo vision system when

the TTC is less than 6 s (t0). This value was selected based on the
accuracy results obtained with the vision-based detection system
(see Section 4.2). When overtaking is initiated, the overtaker’s
speed is already greater than the overtaken’s speed, but the driver
accelerates further in order to complete the manœuvre as soon as
possible.

Using relative velocities Vr and distances dr, the time intervals t/
of each phase can be written in general as

t/ ¼
dr

Vr
¼ dr

V2 � V1
ð1Þ

where V2 and V1 are the mean overtaker’s and overtaken’s speeds in
each phase.

For simplicity, in the following the overtaken’s speed V1 will be
considered constant. The incremental equation of (1) in phase 1,
where dr = D is the distance between the two vehicles at the begin-
ning of the manœuvre, yields

t/1 ¼
Ddr

DVr
¼ D
ðV2ðt/1Þ � V1ðt/1ÞÞ � ðV2ðt0Þ � V1ðt0ÞÞ

ð2Þ

It is then straightforward to see that the overtaker’s speed at the
end of the first phase would be

V2ðt/1Þ ¼ V2ðt0Þ þ
D

t/1
ð3Þ

This value is limited by the maximum allowed speed.
The reference speed in the second phase is also obtained using

Eq. (1)

V2ðtÞ ¼ V1 þ
L1 þ aL2

t/2
; 8t 2 ½t/1; t/2� ð4Þ
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where L2 is set to 3.6 m and L1 is obtained from the stereo vision
system – a a = 1.2 scale factor is applied to take associated errors
into account – once the two vehicles are in different lanes. This va-
lue is compared with V2(t/1) and the greater is used as the reference
speed for this phase.

Since the maximum allowable time to perform overtaking is
15 s and several factors can lead to major delays in its execution,
an overall 8 s interval was set for our experimental trials. Following
the analytical results of Shamir (2004), the time to perform the first
and third phases was set to t/1 = 3 s. The time for the second phase
was limited to t/2 = 2 s. Finally, the third phase will be similar to
the first, but will be finished faster (t/3 6 3 s).

The speed controller designed to follow these reference speeds
is based on a previously developed controller with some modifica-
tions (Onieva et al., 2010) to permit maximum comfort in acceler-
ation. Fig. 13 depicts the control surface of the fuzzy longitudinal
controller. As input values, the actual Velocity and Velocity Error
were used. The output was the Pedal variable defined in the inter-
val [�1,1]. Values from �1 to 0 represent braking actions, and val-
ues from 0 to 1 throttle (acceleration) actions. The slower the
actual speed, the smaller the throttle action, the goal being to avoid
undesired sharp accelerations – greater than 2 m/s2.

5.1.2. Lateral controller
The obstacle avoidance literature includes several proposals of

procedures to estimate the optimal trajectory to take in such
demanding situations, and to decide whether it is more convenient
to brake than to steer. One proposal (Horiuchi, Okada, & Nohtomi,
2004) is to use, under reasonable assumptions, the following for-
mula for the maximum speed in steering to avoid an obstacle:

Vmax 6 D

ffiffiffiffiffiffiffi
lg
2H

r
ð5Þ

where Vmax is the maximum speed a vehicle can move at to avoid an
obstacle located D meters ahead by obtaining a lateral displacement
of H meters. This inequality assumes that the manœuvre involves
the maximum lateral tyre potential, cmax = lg, where l is the
tyre–road coefficient of friction.

If Vmax is replaced by the relative velocity Vr, and a comfortable
lateral acceleration (cc = 1 m/s2, (BECHTEL, 1993)) is used instead
of the maximum lateral acceleration cmax, then Eq. (5) can be
rewritten to obtain the maximum lateral displacement that en-
sures a comfortable manœuvre

H ¼ ccD2

2V2
r

ð6Þ
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Fig. 13. Throttle and brake control surface.
where L and Vr will be provided by the stereo vision system. Note
from Fig. 1 that the final lateral displacement H should be less than
the distance to the left (far) edge of the road Hl and greater than the
lateral distance between the vehicles:

ds þ
PVW

2
þ OVW

2
6 H 6 Hl

where ds is a safe distance that will be set at 1 m, and OVW is the
host vehicle’s own width. The maximum lateral displacement is
determined by forcing compliance with the proposed times for
the overtaking manœuvre – 3 s for the lane-change. If TTC = 3 s,
the distance between the two vehicles is D = 3Vr. Hence, from Eq.
(6), H = 4.5 m. Assuming lanes of 3 m in width, the maximum lateral
displacement during the manœuvre has to be less than or equal to
Hl = 4.5 m. Hence the time allowed for the lane change is consistent
with the problem’s constraints.

A fuzzy-logic based system was developed to perform the lat-
eral control. Two variables were considered to implement the
steering wheel management:

Velocity whose function is to maintain the comfort of the
manœuvre – the greater the speed, the lighter the action on
the steering wheel and vice versa. The definition of its member-
ship function is shown in the top plot of Fig. 14.
Lateral Displacement whose function is to determine how many
meters the overtaker has to move laterally so as to satisfy the
1.5 meter lateral displacement requirement. The goal is to per-
form not a lane change but a lateral displacement depending on
the vehicle to be overtaken. The definition of its membership
function is shown in the middle plot of Fig. 14.

The output is the steering wheel position normalized to the
interval [�1,1] where �1 indicates the maximum displacement
to the left and 1 the maximum displacement to the right. Seven
singleton-type membership functions were defined to codify the
output variables (see bottom plot of Fig. 14). Fig. 15 shows the con-
trol surface for the fuzzy lateral controller.
5.2. Controller validation

Before including the vision-based system to detect the preced-
ing vehicle, the lateral and longitudinal controllers were both val-
idated. To this end, a GPS point was located in the center of the
right lane of one of the straight stretches at the CAR’s private driv-
ing circuit. This point was taken to be the rear-end of a motionless
preceding vehicle. The distance between vehicles was dynamically
calculated using the DPGS/IMU positioning system. The width and
the length were then introduced via software so as to check the
controllers. Table 6 lists the values used as reference.

Fig. 16 shows the results using different vehicles. The upper plot
depicts the evolution of the autonomous system in X–Y coordi-
nates. The lower plot represents the speed of the vehicle during
the manœuvre. One can appreciate the instants at which the
manœuvre is triggered – TTC = 6 s. From that moment, the refer-
ence speed is set to a higher value so as to ensure that the manœ-
uvre is completed in time. TTC = 0 s indicates the instant when the
overtaker’s nose is parallel with the overtaken’s rear-end. At that
moment, the minimum lateral displacement requirement has to
be satisfied. In all the cases, the lateral displacement was greater
than the minimum required displacement.

Note the difference in trajectories depending on the type of the
preceding vehicle. In the case of a motorbike, the two vehicles are
parallel before the overtaker has left the right lane but is maintain-
ing a lateral safety distance as human drivers do. The steering
change is mainly done during the first instants of the manœuvre.
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Fig. 15. Steering wheel control surface.

Table 6
Lengths and widths for the leading vehicle.

Type of vehicle Length (m) Width (m)

Motorbike 1 –
Car 4 1.5
Truck 12 2.5
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The wider the preceding vehicle, the greater is the lateral
displacement.

With respect to the speed, in the trial in which the vehicle to be
overtaken is a truck, there is a further change in the reference
speed when the two vehicles are parallel. Once the manœuvre
has been completed, the reference speed is reset to its initial value.
All the trials satisfy the initial requirements, demonstrating that
the controllers developed are capable of performing autonomous
overtaking with adequate safety.
Table 7 summarizes the lateral displacement errors at the
beginning of the second phase – the overtaker’s nose is in parallel
with overtaken’s rear-end – corresponding to the three vehicles.
6. System integration

The results of an experiment with the integration of the two
fuzzy controllers and the stereo vision system are shown in
Fig. 17. The systems were mounted in the prototype vehicle
(Fig. 2). The overtaken vehicle was an electric Citroën Berlingo
van which has been used in numerous experiments in the AUTOPIA
program (Milanés, Pérez, Onieva, González, & de edro, 2010;
Naranjo et al., 2005, 2008; Pérez & Milanés et al., 2010). It was
equipped with a DGPS receiver and a differential Hall effect sensor
coupled to a cogwheel attached to one of the forward wheels
(Pérez et al., 2010b) so as to log its position and speed, respectively.

For the trial, a straight stretch of road of 200 meters in CAR’s
facilities was used. The overtaken vehicle is started and when it
reaches a reference speed close to 8 km/h, the overtaking vehicle
is started. As can be seen, the overtaking vehicle’s reference speed
is set at 15 km/h so as to mimic a real traffic situation in which the
overtaking vehicle detects a slower preceding vehicle.

The vision-based system is continuously checking the vicinity of
the host vehicle. When the host vehicle is sufficiently close to the
preceding one (TTC = 6 s), the first phase of the overtaking manœ-
uvre is initiated. To ensure a rapid manœuvre, the target speed is
raised to 26.6 km/h according to Eq. (3). Note also that at the end
of this phase the overtaking vehicle is already in the opposite lane,
and the two vehicles are separated by more than 2 m laterally. The
second phase is then enabled until the overtaking vehicle is able to
return to its original lane. Finally, the overtaking vehicle performs
the third phase of the manœuvre, returning to the right-hand lane.
Once the manœuvre has been completed, the reference speed is re-
set to the initial value, and the host vehicle continues on its way.
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Table 7
Distance between vehicles at TTC = 0.

Type of vehicle Distance mean (m) Distance RMSE (m)

Motorbike 1.87 0.12
Car 2.76 0.13
Truck 3.36 0.15
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7. Concluding remarks and next steps

Autonomous systems to aid the driver in specific tasks are rap-
idly changing from being a utopian dream to becoming an every-
day reality. The present communication has presented our
approach towards solving one of the major causes of fatalities in
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road transport: overtaking. The proposal is based on a stereo vision
system to detect the preceding vehicle and then to activate the
autonomous overtaking system. A commercial car was instru-
mented to manage its actuators autonomously. The system was
tested in a real environment with good results.

The vision system was capable of detecting the preceding vehi-
cle and its speed with sufficient accuracy, distinguishing between
motorbikes, cars, and trucks. Once the width of the preceding vehi-
cle had been detected and the autonomous manœuvre activated,
the system was capable of determining the length of the preceding
vehicle to modify the host’s speed so as to reduce the time it
spends in the overtaking lane.

The longitudinal controller was a modification of a previously
developed controller (Onieva et al., 2010) aimed at achieving the
maximum comfortable acceleration (2 m/s2) during the manœuvre
so as to reduce its duration while maintaining a smooth ride for the
occupants.

The lateral controller was a newly developed fuzzy controller
designed to perform the steering change autonomously. As inputs,
the controller uses signals from the vision system – lateral dis-
placement and speed – and a DGPS/IMU system to obtain the vehi-
cle’s positioning with sufficient accuracy.

The system was designed to satisfy constraints on overtaking
time and safety in the lateral displacement. The wider the preced-
ing vehicle the greater the lateral displacement has to be, and the
longer the preceding vehicle the greater the speed. The experimen-
tal results demonstrated the proposed system to be capable of pro-
viding a good solution to the automation of this manœuvre.

While the results achieved are promising, there still remain sev-
eral questions in need of further investigation. Among them, the
detection of oncoming traffic via stereo vision, increasing the vehi-
cle detection range, and performing the autonomous lateral dis-
placement at greater speeds will be studied as part of future
research. To this end, the fuzzy controllers will have to be modified
to take these new scenarios into account.
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