
R. Moreno-Díaz et al. (Eds.): EUROCAST 2007, LNCS 4739, pp. 1119 – 1125, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ego-Motion Computing for Vehicle Velocity Estimation

M.A. Sotelo1, R. Flores1, R. García1, M. Ocaña1, M.A. García1, I. Parra1,
D. Fernández1, M. Gavilán1, and J.E. Naranjo2

1 Department of Electronics, University of Alcalá, Alcalá de Henares, Madrid, Spain
{sotelo, rflores, mocana, garrido, parra, llorca}@depeca.uah.es

2 Industrial Automation Institute, CSIC, Arganda del Rey, Madrid, Spain
jnaranjo@iai.csic.es

Abstract. In this paper, we present a method for computing velocity using a
single camera onboard a road vehicle, i.e. an automobile. The use of computer
vision provides a reliable method to measure vehicle velocity based on ego-
motion computation. By doing so, cumulative errors inherent to odometry-
based systems can be reduced to some extent. Road lane markings are the basic
features used by the algorithm. They are detected in the image plane and
grouped in couples in order to provide geometrically constrained vectors that
make viable the computation of vehicle motion in a sequence of images. The
applications of this method can be mainly found in the domains of Robotics and
Intelligent Vehicles.

Keywords: Vision, Ego-motion, Velocity Estimation, Intelligent Vehicles.

1 Introduction

Accurate estimation of the vehicle ego-motion with regard to the road is a key
element for computer vision-based assisted driving systems. In this method, we
propose the use of a single camera onboard a road vehicle in order to provide an
estimation of its longitudinal velocity by computational means. The main advantage
derived from the use of computer vision for ego-motion computation is the fact that
vision is not subject to slippery, contrary to odometry-based systems. We propose to
obtain couples of road features, mainly composed of road markings, as the main
source of information for computing vehicle ego-motion. Additionally, the use of lane
markings allows avoiding the use of complex direct methods [1], [2], [3] for motion
estimation. Instead, motion stereo techniques are considered. This technique has
previously been deployed in the field of indoor robotics [4]. The method is based on
sampling a dynamic scene rapidly (e.g., 25 images per second) and measuring the
displacements of features relative to each other in the image sequence.

2 System Description

In outdoor scenes where many artificial objects and structures exist, a couple of static
points that belong to the same object and are equally distant from the image plane

1120 M.A. Sotelo et al.

may be observed and measured simultaneously. In particular, the left and right edges
of lane markings constitute a clear example of coupled points that can be used for
computing vehicle ego-motion using perspective projection laws. Let us, then, assume
that there are two road points, P1 and P2, with coordinates (X1, Y1, Z1) and (X2, Y2,
Z2), where Z stands for the point depth (distance from the image plane). Let us
assume that Z1=Z2=Z, which means that both points are equally distant from the
image plane. The coordinates of the points in the image plane, p1 and p2, can then be
computed as

⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+=

Z

Y
fv

Z

X
fup

Z

Y
fv

Z

X
fup

vcuc

vcuc

22
2

11
1

,

,
 (1)

where uc and vc represent the coordinates of the principal point in the image plane
(optical center), and fu and fv are the camera focal length, given in pixels units, in the u
(horizontal) and v (vertical) axes, respectively. Let B=|X1-X2| be the horizontal
distance between the road points and b=|x1-x2| the horizontal distance between the
corresponding image points. Based on the previous statement, b=fu·B/Z. Finally, let us
consider that the camera is translated causing the two road points to move relative to
the camera with the velocity (dX/dt, dY/dt, dZ/dt) while fu and B remain constant. In
general, the derivative of b with respect to time can be computed as

dt

dZ

Z

b

dt

dZ

Z

Bf

dt

dZ

dZ

db

dt

db u ⋅−=⋅−=⋅=
2

 (2)

For a couple of road points, the distance from the image plane Z can be computed
under the planar road assumption as follows

()αθ

θ

−⋅=

⎟
⎠
⎞

⎜
⎝
⎛= −

tan

tan 1

vfv
Z

H
 (3)

where � stands for the camera pitch angle with respect to the horizontal line parallel
to the road, v is the vertical coordinate of the coupled road points in the image plane,
and H is the camera height with respect to the road plane. Let us remark that
coordinate v can be directly measured from the image, while parameters H and � are
supposed to be known.

Based on relations (2) and (3), an equation can be formulated for each couple i of
road points equally distant from the image plane. Equation (4) shows a mathematical
relation from which vehicle velocity (v=dZ/dt) can be computed.

dt

db

b

Z

dt

dZ
v i

i

i ⋅−== (4)

 Ego-Motion Computing for Vehicle Velocity Estimation 1121

Let Nt represent the number of road point couples found by the algorithm at frame t.
The optimal estimation of vehicle velocity v can be done by optimizing the system
formed by the Nt equations that can be written at each iteration of the algorithm.
Based on the previous statement, the problem can be mathematically formulated as
the minimization of the estimation square error SE, represented in equation 5.

()∑
=

−⋅=
tN

i
tii

t

bb
N

SE
1

2

,

1
 (5)

where ib represents the estimation of b for couple i, and bi,t stands for the

measurement of b for couple i at frame t. This criteria leads to the final value provided
in equation (6).

∑

∑

= −

−

= −

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≈
t

t

N

i ti

ti

N

i ti

titi

t

Z

b

Z

b

dt

db

v

1

2

1,

1,

1 1,

1,,

 (6)

where bi,t-1 represents the measurement of b for couple i at frame t-1, and Zi,t-1 stands
for the depth measurement for couple i at frame t-1.

3 Extension of the Method - 3D Visual Odometry

We propose an extension of the method for ego-motion computing based on stereo-
vision, achieving what is known as 3D visual odometry. The use of stereo-vision has
the advantage of disambiguating the 3D position of detected features in the scene at a
given frame. Based on that, feature points are matched between pairs of frames and
linked into 3D trajectories. The idea of estimating displacements from two 3-D frames
using stereo vision has been previously used in [5] [6] and [7]. The resolution of the
equations of the system at each frame is carried out under the non-linear,
photogrametric approach using RANSAC. This iterative technique enables the
formulation of a robust method that can ignore large numbers of outliers as
encountered in real traffic scenes. The resulting method is defined as visual odometry
and can be used in conjunction with other sensors, such as GPS, to produce accurate
estimates of the vehicle global position. The mathematical details of the method are
provided in [8]. The obvious application of the method is to provide on-board driver
assistance in navigation tasks, or to provide a means for autonomously navigating a
vehicle. The method has been tested in real traffic conditions without using prior
knowledge about the scene or the vehicle motion. We provide examples of estimated
vehicle trajectories using the proposed method and discuss the key issues for further
improvement.

1122 M.A. Sotelo et al.

In each frame, Harris corners are detected, since this type of point feature has been
found to yield detections that are relatively stable under small to moderate image
distortions. As stated in [6], distortions between consecutive frames can be regarded
as fairly small when using video input. The feature points are matched at each frame,
using the left and rights image of the stereo-vision arrangement, and between pairs of
frames. Features are detected in all frames and matches are allowed only between
features. A feature in one image is matched to every feature within a fixed distance
from it in the next frame, called disparity limit. For the sake of real-time performance,
matching is computed over a 7x7 window. Among the wide spectrum of matching
techniques that can be used to solve the correspondence problem we implemented the
Zero Mean Normalized Cross Correlation (ZMNCC) because of its robustness.

As the window size decreases, the discriminatory power of the area-based criterion
gets decreased and some local maxima appear in the searching regions. On the
contrary, an increase in the window size causes the performance to degrade due to
occlusion regions and smoothing of disparity values across boundaries. In
consequence, the correspondences yield some outliers. According to the previous
statements, some filtering criteria are needed in order to provide outliers rejection. In
order to minimize the number of outliers, mutual consistency check is used.
Accordingly, only pairs of features that yield mutual matching are accepted as a valid
match. It is important to remark that mutual consistency check can be accomplished
without computing correlations more than once. The accepted matches are used both
in 3D feature detection (based on stereo images) and in feature tracking (between
consecutive frames). Figure 1 depicts an example of features detection and tracking
using Harris detector, ZMNCC matching technique, and mutual consistency check.

4 Implementation and Results

The algorithm was implemented on a PC onboard a real automobile in a test circuit. A
Firewire camera was mounted on the test car, providing 640x480 Black&White
images in IEEE 1394 format. The couples of road points detected by the algorithm in
a real experiment are depicted in green on the left hand side of Figure 1. It must be
remarked that the correspondence of road points between two consecutive images is
carried out by implementing an optical flow. In the same figure, the instantaneous
estimation of vehicle velocity at the current frame is provided (37.24 km/h), as well as
the accumulated length of the path run by the car (292.78m in this example).
Similarly, the estimation of vehicle velocity is provided in the right hand side of
Figure 2 for the complete duration of the experiment. The vertical axis represents
vehicle velocity in km/h. The red curve depicts vehicle velocity estimation without
filtering, while the blue curve depicts vehicle velocity estimation using a kalman
filter. The final result issued by the algorithm demonstrated to be very similar to the
vehicle velocity measured by odometry means (around 40 km/h).

At present, the estimation of vehicle velocity is being used in the prediction stage
of kalman filtering in Lane Departure Warning (LDW) Systems developed by the
authors. Similarly, the estimation of vehicle ego-motion is currently being extended to
a 6-component vector providing the complete ego-motion information, including
vehicle longitudinal and angular displacement in X, Y, and Z. Figure 3 depicts an

 Ego-Motion Computing for Vehicle Velocity Estimation 1123

Fig. 1. a) The upper row depicts feature detection results using Harris detector in several
images in urban environments. Detection is constrained to a couple of regions of interest
located in the lateral areas of the image bellow the horizon line. b) The bottom left image shows
an example of features matching in a stereo image. c) The bottom right image depicts an
example of feature tracking in two consecutive frames. ZMNCC and mutual consistency check
is used both for feature detection and feature tracking.

Fig. 2. Detection of coupled road points (left); velocity estimation using vision (right)

example of trajectory estimation using visual odometry. As can be observed, the
system provides reliable estimations of the path run by the vehicle in almost straight
sections. As a matter of fact, in the experiment the car started turning slight right and
then left to run along an almost straight path for a while. After that, a sharp right turn
is executed. Then the vehicle moves straight for some metres until the end of the
street. Figure 3 illustrates the real trajectory described by the vehicle (a) and the
estimated trajectory estimated by the visual odometry algorithm (b). In this case, the
estimated trajectory reflects quite well the exact shape and length of the real trajectory
executed by the vehicle.

1124 M.A. Sotelo et al.

Fig. 3. a) Aerial view of the area of the city where the experiment was conducted. b) Estimated
trajectory using visual odometry.

5 Conclusions

We have described a method for estimating the vehicle global position in a network of
roads by means of visual odometry. To do so, the ego-motion of the vehicle relative to
the road is computed using a stereo-vision system mounted next to the rear view
mirror of the car. Feature points are matched between pairs of frames and linked into
3D trajectories. The resolution of the equations of the system at each frame is carried
out under the non-linear, photogrametric approach using least squares and RANSAC.
This iterative technique enables the formulation of a robust method that can ignore
large numbers of outliers as encountered in real traffic scenes. The resulting method is
defined as visual odometry and can be used in conjunction with other sensors, such as
GPS, to produce accurate estimates of the vehicle global position. As part of our
future work we envision to develop a method for discriminating stationary points
from those which are moving in the scene. Moving points can correspond to
pedestrians or other vehicle circulating in the same area. Vehicle motion estimation
will mainly rely on stationary points. The system can benefit from other vision-based
applications currently under development and refinement in our lab, such as
pedestrian detection and ACC (based on vehicle detection). The output of these
systems can guide the search for really stationary points in the 3D scene. The obvious
application of the method is to provide on-board driver assistance in navigation tasks,

a) b)

 Ego-Motion Computing for Vehicle Velocity Estimation 1125

or to provide a means for autonomously navigating a vehicle. For this purpose, fusion
of GPS and vision data will be accomplished.

Acknowledgments. This work has been funded by Research Project CICYT
DPI2005-07980-C03-02 (Ministerio de Educación y Ciencia, Spain).

References

1. Stein, G.P., Mano, O., Shashua, A.: A robust method for computing vehicle ego-motion. In:
Proceeding of the IEEE Intelligent Vehicles Symposium, Parma, Italy (2004)

2. Horn, B.K., Weldon, E.J.: Direct methods for recovering motion. International Journal of
Computer Vision 2, 51–76 (1988)

3. Meer, P., Mintz, D., Kim, D., Rosenfeld, A.: Robust regression methods for computer
vision: A review. International Journal of Computer Vision 6(1), 59–70 (1991)

4. Huber, J., Graefe, V.: Motion stereo for mobile robots. IEEE Transactions on Industrial
Electronics 41(4), 378–383 (1994)

5. Zhang, A., Faugeras, O.D.: Estimations of displacements from two 3-d frames obtained
from stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(12) (1992)

6. Nister, D., Narodistsky, O., Beren, J.: Visual odometry. In: IEEE Conference on Computer
Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2004)

7. Hagnelius, A.: Visual odometry. In: Master Thesis in Computing Science, UMEA
University (April 2005)

8. García-García, R.G., Sotelo, M.A., Parra, I., Fernández, D., Gavilán, M.: 3D Visual
Odometry for GPS Navigation Assistance. In: IEEE IV Symposium, Istanbul, Turkey
(2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

