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VIRTUOUS: Vision-Based Road Transportation for
Unmanned Operation on Urban-Like Scenarios
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Abstract—This work presents an intelligent transportation
system (ITS) that was implemented on an autonomous vehicle
designed to perform global navigation missions on a network of
unmarked roads. This is the first step toward the complete imple-
mentation of ITS in urban environments, which is the long-term
goal of this work. Using a global positioning system, global
navigation is achieved by means of a global planner and a task
manager that recurrently coordinate the execution of vision-based
perception tasks for the road tracking of nonstructured roads
and the navigation of intersections. In addition, a vision-based ve-
hicle-detection task has been developed, which endows the global
navigation system with a reactive capacity. The complete system
has been tested on the BABIECA prototype vehicle, which was
autonomously driven for hundreds of kilometers around a private
circuit, designed to emulate an urban quarter, at speeds of up to
50 km/h, successfully carrying out different navigation missions.
During the tests, the vehicle drove itself across crossroads and
performed the appropriate turning maneuvers at intersections.
It also demonstrated its robustness with regard to shadows, road
texture, weather conditions, and changing illumination.

Index Terms—Intelligent road transportation system, intersec-
tion navigation, unmarked roads, vision and global positioning
system (GPS).

I. INTRODUCTION

THE main issue addressed in this work is vision-based and
differential global positioning system (DGPS) aided in-

telligent transportation systems (ITS) for the execution of au-
tonomous missions on a network of unstructured roads that are
designed to emulate an urban scenario.

A. ITS on Highways and Extra Urban Roads

The techniques deployed for road tracking on unmarked
roads are, in many ways, similar to those developed for
road tracking on highways and structured roads, as they face
common problems. Nonetheless, most of the research groups
currently working on ITS focus their efforts on autonomously
navigating vehicles on structured roads; that is, marked roads.
This reduces the navigation problem to the localization of
lane markers painted on the road surface. This is the case
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with some well-known prestigious systems such as the rapid
adapting lateral position handler (RALPH) [33], developed on
the Navlab vehicle at the Robotics Institute, Canergie Mellon
University, Pittsburgh, PA, and the impressive unmanned
vehicles developed during the last decade by research groups
at the Universitat der Bundeswehr Munchen (UMB), Munich,
Germany, [17], [18], [28] and Daimler-Benz, Munich, Ger-
many, [19] or the generic obstacle and lane detection (GOLD)
system [3], [5], [6] implemented on the ARGO autonomous
vehicle at the University of Parma, Parma, Italy. All of these
systems have more than proved their validity in extensive tests
carried out over thousands of kilometers of autonomous driving
on structured highways and extra urban roads. Other interesting
works on this topic, including offroad navigation, can be
found in [10], [11], [15], [20], [25], [27], [31], [34], [37], [42],
[44], and [45]. However, not that many research groups have
tackled the problem of autonomous vision-based navigation on
completely unstructured (unmarked) roads. Among the few that
have are the supervised clustering applied to road following
(SCARF) and unsupervised clustering applied to road following
(UNSCARF) systems [46] and autonomous land vehicle in a
neural net (ALVINN) [32]. Since the early 1980s, the group
at the University of Bundeswehr, Munich, Germany, headed
by Dickmanns, have also produced a remarkable amount of
work on this topic. Early results for the autonomous guidance
of vehicles on either marked or unmarked roads can be seen
in [16] and [17], where nine road and vehicle parameters were
recursively estimated following the four-dimensional (4-D)
approach on three-dimensional (3-D) scenes. Nevertheless,
despite some sound results obtained in this field, road-based
vision on unmarked roads can still be regarded as an open
problem at present.

B. ITS on Urban-Like Environments

Great interest has recently arisen in the design and devel-
opment of intelligent systems for assisted driving, not only on
highways but also in urban environments. In response to this,
the urban traffic assistant (UTA) project [19], developed by the
Daimler-Benz group, undertook the design of an intelligent
stop-and-go system for inner-city traffic that uses stereo vision
and demonstrates an ability to recognize traffic signs, traffic
lights, walking pedestrians, zebra crossings, and stop lines.
Other research groups have focused on partial problems, using
vision-based pedestrian detection [48], [8], obstacle detection
[7], [24], [30], or intersection detection [26], [38] to provide
warning signals as aids to the human driver. A more ambitious
project, aimed at recognizing intersections and autonomously
navigating a vehicle across them, has been carried out at
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Fig. 1. Babieca autonomous vehicle.

Carnegie Mellon University. The first objective was achieved
by means of a previously configured neural network, but the
autonomous navigation of the intersection was only partially
solved [22]. A similar system can be found in [29], where a truly
autonomous system for intelligent navigation over a network
of unmarked roads and intersections has been designed and
implemented. The vehicle is equipped with the so-called expec-
tation-based multifocal saccadic vision (EMS-Vision) system
and can be considered to be the first completely autonomous
vehicle capable of successfully performing global missions
over a network of unmarked roads. The work developed by the
Department of Electronics, University of Alcalá (UAH), Alcalá
de Henares, Madrid, in the field of ITS began in 1993 with the
design of a vision-based system for outdoor environments [37].
The system was implemented on an industrial forklift truck
that was autonomously operated around the university campus.
Close cooperation between the Department of Electronics and
the Industrial Automation Institute (IAI), Consejo Superior
de Investigaciones Cientificas (CSIC) since 1998 has led
to the development of a vision- and DGPS-based ITS [43],
[14] for the autonomous execution of global missions over a
network of unstructured roads and intersections. This is the real
innovation of the whole approach presented in this paper. The
complete navigation system was implemented on BABIECA,
the commercial electric prototype Citroen Berlingo depicted in
Fig. 1. This vehicle is equipped with a color camera, a DGPS
receiver, a computer, and the necessary electronic equipment to
automatically control the steering wheel, as well as the brake
and accelerator pedals. Thus, complete control of both lateral
and longitudinal movement is automatically maintained during
navigation. Real tests were carried out at the IAI on a private
circuit designed to emulate an urban quarter with streets, inter-
sections, and roundabouts. Additionally, a live demonstration
exhibiting the system’s autonomous driving capabilities was
made during the IEEE Conference on Intelligent Vehicles 2002,
on a private circuit in Satory, Versailles, France.

The work described in this paper is organized into the fol-
lowing sections. Section II presents the complete control archi-
tecture for the global navigation system. In Sections III and IV,
the vision-based algorithms for lane tracking and intersection
navigation, respectively, are described. Section V provides some
global results and, finally, in Section VI the whole system and
future projects are discussed and concluding remarks are made.

Fig. 2. Geometrical circuit representation.

II. CONTROL ARCHITECTURE

Efficient control architecture is needed to properly manage
the information provided by the vehicle’s sensors, (the color
camera and DGPS receiver) and the flow of data generated
during navigation. The design of the control architecture
involves the development of a global system for task execution
and monitoring to integrate the perception capabilities of the
vehicle. A global planner is also needed to direct and focus
the behavior of the perception and actuation modules on an
environment model.

A. Environment Model

A geometrical and topological description is provided for the
actual environment in which the vehicle operates. The aim of de-
veloping an environment model is to facilitate path planning, as
can be seen in Fig. 2, where a geometrical map of the test circuit
is depicted. The operating environment is designed to resemble
an urban quarter, including streets, intersections, roundabouts,
and stopping points. The geometrical map is a simplified ver-
sion of the test circuit and does not take into account the real
curvature at intersections.

The next step is to convert the geometrical map into a topolog-
ically directed graph, where both the intersections and stopping
points are represented by nodes and the streets that link them
by arcs (or edges) of different lengths, taking into consideration
the direction of circulation, as in [1].

B. Control-Architecture Description

The control architecture has been divided into several clas-
sical layers, with the aim of planning and executing the optimal
path between the current location and the destination stopping



SOTELO et al.: VIRTUOUS: VISION-BASED ROAD TRANSPORTATION FOR UNMANNED OPERATION 71

Fig. 3. Control architecture.

point specified by the user with the help of an a priori circuit
map. Global navigation is achieved by properly concatenating
local perception tasks that jointly solve vision-based navigation
on streets and at intersections. The same idea was suggested and
successfully deployed in [22] for crosscountry navigation. The
proposed architecture is shown in Fig. 3. A basic description of
the different layers of the control scheme is provided as follows.

• Planning layer: the global planner included in this layer
computes the shortest path between the current location
and the destination station, providing a recommended ve-
locity profile for the global mission depending on whether
the vehicle is navigating along a street or at an intersection.

• Coordination layer: the core of this layer is the task man-
ager and it provides a link between planning and execution
by enabling the system to manage tasks and replan its path
in emergency situations or at explicit user request.

• Navigation layer includes vision-based tasks for lane
tracking, intersection navigation, and vehicle detection.

• Low level is composed of the vehicle’s onboard sensors,
a color camera, and DGPS receiver, together with their
respective synchronized software drivers and the actuator
modules for the steering wheel and acceleration pedal.

C. Global Planner

Depending on the previously obtained topological model of
the environment, the path-planning problem can be reduced to
one of traversing a mathematical graph composed of arcs, or
edges, and nodes, where the edges represent tracks (or streets)
and the nodes represent the intersections. To find the shortest
route on this graph, the popular Dijkstra algorithm [9] has
been chosen. Although the shortest route may not always be
the best option, we have decided to adopt this simple criterion
for demonstrative purposes. Other criteria or objectives can
be easily accommodated by simply modifying the analytical

expression used to evaluate the different solutions found by the
algorithm during execution. Likewise, the global planner pro-
vides an appropriate velocity profile for the different sections
of the route by taking into account the kinematic and dynamic
constraints of the vehicle. Local navigation of each section of
the final route involves the following specialized vision based
tasks: lane tracking and intersection navigation. A global plan
could look something like

Track the lane until the next intersection.

Turn right at that intersection.

Track the lane until the next intersection.

Go ahead at that intersection.

Track the lane until the stop station.

III. LANE TRACKING

The main aim of this vision-based task is to correctly track
the lane of any kind of nonstructured road (roads without lane
markers painted on them), while correctly detecting other vehi-
cles. Efficient performance of this task is essential if the system
is to autonomously navigate between two intersections in a re-
liable and accurate manner. Given the wide range of weather
and illumination conditions in outdoor scenarios, vision-based
lane tracking on unmarked roads can be regarded as a complex
problem to tackle. Both the lane-tracking system and the vi-
sion-based vehicle-detection algorithm (developed in this work)
have already been extensively documented in [43]. However, a
summary of the lane-tracking system is provided in this paper.

A. Road Segmentation

As has been successfully tested in previous work [39], the
lane-tracking task begins with the use of a second-order poly-
nomial road model for both the edges and center of the road.
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Road models are used because they ease the reconstruction of
road geometry and permit the filtering of data computed during
the feature searching process. Then, making use of the system’s
hardware capabilities, the original 480 512 incoming image
acquired by the color camera is rescaled in real time to a low-res-
olution 60 64 image. Accordingly, all figures in this paper
that show the result of a vision-based process are low-resolu-
tion images of 60 64 pixels. The aim of this process is to de-
crease computing time, although it is, of course, dependant on
the real-time constraints implicit in the control of high-speed
vehicles for road-tracking applications. As discussed in [4], due
to the existence of physical and continuity constraints derived
from vehicle motion and road design, it is more efficient to an-
alyze a specific portion of the image, namely, the region of in-
terest, rather than the whole image. Accordingly, a rectangular
region covering the nearest 20 m ahead of the vehicle is pro-
posed. This restriction is sufficient to ensure the early detection
of other vehicles, particularly in urban or industrial areas where
the maximum velocity usually is under 50 km/h.

The combined use of color and shape restrictions provides
the essential information required to drive along nonstructured
roads. Prior to the segmentation of the image, the accurate selec-
tion of the most suitable color space becomes an essential part
of the process. Although the red, green, blue (RGB) color space
has been extensively tested and used on nonstructured roads
in previous road-tracking applications [46], [13], [37], it does
have some well-documented disadvantages; it is nonintuitive
and does not separate colors uniformly, which means that two
relatively close colors may be widely separated in the RGB color
space, the components of which are only slightly correlated.
This means that humans cannot imagine a color from its RGB
components. In some applications, the RGB color information
is changed into a different color space where the luminance
and chrominance components of the color are clearly separated
from each other. It also has the advantage that the color-de-
scription model is reasonably similar to human perception of
colors. Furthermore, in outdoor environments, changes in lumi-
nance can be substantial due to unpredictable and uncontrollable
weather conditions, while changes in color or chrominance are
not that relevant. This makes it highly recommended to use a
color space where a clear separation between intensity (lumi-
nance) and color (chrominance) information can be established.
The hue, saturation, and intensity (HSI) color space is a good ex-
ample, as it allows colors to be described in terms that can be
intuitively understood. Humans can easily recognize the basic
color attributes, such as intensity (luminance or brightness), hue
of color, and saturation [21], [23]. Hue represents the impres-
sion made by the predominant wavelength in the perceived color
stimulus. Saturation corresponds to the relative purity of the
color and, thus, nonsaturated colors are grayscale colors. Inten-
sity is the amount of light in a color; maximum intensity is per-
ceived as pure white and minimum intensity as pure black. Some
of the most relevant advantages of using the HSI color space
are that it is close to human perception of colors, having a ad-
vanced ability to discriminate between colors, especially hues.
The difference between colors is directly quantified by using a
distance measure. For these reasons, we propose using the color
features of the HSI color space as the basis for performing the

segmentation of nonstructured roads. The HSI color space seg-
ments the image by using the cylindrical distribution of its color
features. From the analytical point of view, the difference be-
tween two color vectors in the HSI space can be established
by computing the distance that separates them along the chro-
matic plane and the intensity axis. Before segmenting the image,
pixels are divided into chromatic and achromatic, as proposed in
[23]. Achromatic pixels are only segmented according to their
intensity value. Obviously, nonachromatic pixels are automat-
ically categorized as chromatic. The chromatic pixels are seg-
mented using both their chromatic and intensity distances to a
given road-pattern HSI color vector. The HSI color features of
road pixels are confined to a cylindrical region around the HSI
road pattern vector. The road-pattern HSI color vector is updated
during every iteration, as described in Section III-D.

The quality of road segmentation can be strongly enhanced
by adding spatial constraints based on the geometrical road
model. In an intuitive approach, the probability of a pixel being
segmented as road is high if it is located close to the central
trajectory of the previous road model (as estimated during the
last iteration of the algorithm). In order to incorporate spatial
constraints to the segmentation of each pixel in the image, the
dimension of the cylindrical surface used for segmentation,
denoted by , is modified according to the geometrical distance
in the three-dimensional (3-D) space between the pixel under
consideration and the previously estimated road model. The
distance is computed from measurements calculated along the
image plane using the camera calibration parameters under the
flat terrain assumption, thus turning the segmentation stage
into a position- and color-dependant process. This is based
on the way in which humans perceive the road while driving:
those areas of the scene that resemble the road, such as paths
running parallel to it, but are in fact unlike our previous model
of it, are disregarded. Accordingly, those pixels near the central
trajectory of the previous road model are segmented using
the proposed modification, so that low threshold values are
achieved. For those pixels far away from the previous road
model, the opposite is true and then the values are higher. From
the analytical point of view, the proposal reflects an exponential
variation of threshold values and (for chromatic
distance and intensity distance , respectively) for
each individual pixel as a function of , according to the
expression in

(1)

where and represent the threshold values for the
chromatic and luminance distances, respectively. For a pixel lo-
cated at a distance of from the previous model, and

are the maximum threshold values estimated during
the previous iteration. is an empirically determined param-
eter devised to control the threshold value, particularly of those
pixels located at the sides of the road. The value of is cal-
culated based on the empirical fact that the distribution of the
color distance between road pixels and the road pattern has a
standard deviation that is below 30% in most of the real cases.
This leads us to intuitively select a color threshold based on a
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similarity greater than 70%. In practice, is determined so that
the threshold value is 70% of the maximum threshold for pixels
located at a certain distance from the model ,
where represents the estimated road width during the
previous iteration of the algorithm. This empirical value has
demonstrated its appropriateness in practical trials by helping
to carry out a stable segmentation, yielding the numerical value
for depicted

(2)

A chromatic pixel is classified as road if it simultaneously
verifies that and , while an
achromatic pixel is segmented as road if the single condition

is satisfied. On the other hand, the maximum
threshold values and must be dynamically updated
so the segmentation process can adapt to changing color and
luminance conditions. To achieve this, the root-mean-squared
values of the chromatic and luminance distances to the road
pattern ( and ) are computed for each pixel
classified as road. The maximum threshold values for the next
iteration ( and ) are calculated as described
in (3), dnding on , and an exponential
factor essential to guarantee the stability of the segmentation
process. This provides the threshold values for the next itera-
tion ( and ), exactly equal to
and , respectively, for pixels located on the road edges

.

(3)

To enhance the quality of the segmentation process, the re-
sulting binary image is reinforced by a morphological opening
operation followed by the removal of small white blobs caused
by segmentation noise.

B. Handling Shadows and Brightness

Shadows and bright spots on the road are admittedly one
of the greatest difficulties for vision-based systems operating
in outdoor environments [3]. The problem becomes especially
dangerous at the hours of the day when the sun shines directly
onto the image plane, causing loss of tracking, or when en-
tering or exiting tunnels, which has the same effect. To tackle
this problem of strong luminance changes, some authors pro-
pose improving the dynamic range of visual cameras [4] or
enhancing the sensitivity of the cameras to the blue compo-
nent in colors. Another approach looks only at the problem
of shadows, attenuating their effects by using an appropriate
software preprocessing technique to relay the physical proper-
ties of shaded road pixels. This means that the resulting seg-
mentation can be enhanced against the effects of both shadow
and brightness. The color features of pixels located within the
limits of the road, but classified as nonroad after the segmenta-
tion process, are considered for brightness and shadow attenua-
tion. At the beginning, the shaded pixels should simultaneously
exhibit an intensity value lower than average for road pixels,
while presenting a predominantly normalized blue component.
The pixels that meet these conditions are assumed to belong

Fig. 4. Attenuation of shadows. (a) Original shaded images, (b) segmentation
without attenuation of shadows, and (c) segmentation after attenuation of
shadows.

Fig. 5. Brightness attenuation. (a) Original image with brightness on
the pavement, (b) segmentation without brightness attenuation, and
(c) segmentation after brightness attenuation.

to a shadow on the pavement and, consequently, are reclassi-
fied as road pixels. This technique allows the road segmenta-
tion to be enhanced in the presence of shadows and contributes
enormously to improving the robustness of the color-adaptation
process, particularly along stretches of road that are largely in
shadow. Although these assumptions are quite simplistic, they
have demonstrated in practice to be extremely useful in atten-
uating shadows and brightness, achieving higher quality seg-
mentations. Even in other situations that produce similar ef-
fects on the image, such as potholes, the attenuation process
would still remove them from the segmented image, leading to
clear road segmentation where edge features can be easily ex-
tracted. On the other hand, alternative sensorial systems, such
as stereovision, would be needed to accurately detect the pres-
ence of potholes and assess, by measuring their depth, for ex-
ample, the danger they represent. To graphically illustrate the
benefits derived from this operation, Fig. 4 shows an example
of road segmentation in the presence of strong shadows. As can
be appreciated, the road edges are neatly distinguished after the
attenuation of the shadows.

Analogously, a brightness attenuation technique has been de-
vised. In this case, pixels initially classified as nonroad, but
located within the road edges and exhibiting higher intensity
values than the average road pixels, are assumed to correspond
to brightness on the pavement caused by the sun and, conse-
quently, are reclassified as road pixels. After applying the pre-
vious process, white blobs, caused by brightness, are removed
from the segmentation, as depicted in Fig. 5. The improvement
achieved by attenuating both brightness and shadows as de-
scribed allows real images, in real and complex situations, to be
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Fig. 6. Maximum road width for each line in the region of interest.

handled at an extraordinarily high performance level, making it
an outstanding feature of this work.

C. Estimation of Road Edges and Width

As previously described, the central trajectory of the road and
its edges are estimated using parabolic functions. These polyno-
mial functions are needed to obtain the lateral and orientation
errors of the vehicle with respect to the center of the road.

1) Estimation of the Central Trajectory of the Road: For the
central trajectory of the road in Fig. 5(a), the current instant in
time is estimated using the segmented low-resolution image and
the previously estimated road trajectory. To enhance the road-es-
timation process, the temporal integration of the measures ob-
tained at different instants of time and the amount of data used
to carry out the estimation is analyzed. As initially proposed
in [40], a weighted-recursive least-squares estimator with expo-
nential decay is used for this purpose.

a) Data Measurement and Validation: The aim of this
first stage is to extract a number of candidate points from the
central trajectory of the road at time instant . For each line in
the region of interest, the maximum road width is determined
using the segmented image, as depicted in Fig. 6. The middle
point of each maximal road width line is considered to be a
candidate and its coordinates are validated if the
road width of line is greater than a previously computed
threshold. In order to provide the algorithm with noise-rejection
capacity, only those candidate pixels whose distance from the
previous estimation of the road center (denoted by ),
in the 3-D scene under the threshold are validated and asso-
ciated with the current measurement of the central trajectory
of the road. This allows for a validation area to be established
around the previous road model. All measurements outside the
validation area are regarded as invalid and are discarded.

b) Road-Model Update: Measures validated in the last
stage constitute the starting point for updating the parabolic road
model. As previously mentioned, to estimate the central trajec-
tory of the road, a weighted-recursive least-squares estimator
with exponential decay is proposed. Although it is a well-known
and well-documented theory, we repeat the basic equations in
this paper for completeness. Thus, for a number of candi-
date edge points at time with coordinates in the image plane
given by , the estimation of the parabolic function coef-
ficients that describe the road model in the image plane
is carried out in the three stages described as follows.

a) Update prediction

(4)

b) Update state-covariance estimate

(5)

c) Update state estimate

(6)

with

where represents the state estimation during the
previous iteration of the algorithm, i.e., at time instant

( is the sampling period of the road tracking
algorithm). is a scalar value that can vary in the range

and represents the state covariance
during the previous time step. To achieve a proper tradeoff
between robustness and transient response, has been
experimentally set to 0.7, performing adequately in real
tests.

2) Road-Edge Estimation: Road edges are estimated using
the same filtering technique described in the previous section.
Measures for the left and right road edges are validated and en-
hanced using three fundamental points: the estimation of the
central trajectory of the road at current time ; the estimation
of road width at time ; and the slowly varying
road width assumption. Thus, a validation area is established
for both the left and right measures. The location of the left and
right validation areas are based on the central trajectory of the
road estimated at time and the estimated width at time .
The left validation area is situated on the left, m
from the central trajectory of the road , while the right val-
idation area is obviously located on the right, at m
from . The left and right edges are estimated independently
using the validated measures, obtained by the same weighted-re-
cursive least-squares approach.

3) Road-Width Estimation: The road width is estimated
using the previously mentioned slowly varying road-width
assumption. An individual road width measure is obtained for
each line in the region of interest, by computing the difference
between the left and right edges. The average road width mea-
sure at time is computed using the individual measures
for each line, normalized by the number of valid measures in the
region of interest. The slowly varying road-width assumption
is incorporated using a recursive least-squares-based estimator,
similar to those employed for the estimation of road edges.
This allows for a smooth estimation of the road width.
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Fig. 7. Random selection of pixels for HSI road-pattern update.

D. Road-Color Features Update

After completing the road-edges and width-estimation pro-
cesses, the HSI color features of the road pattern are updated to
take into account changes in road appearance and illumination.
Thus, the updated road-pattern HSI color vector will serve as
the basis for the road-segmentation process in the next iteration
of the algorithm, as described in Section III-A. Pixels close to
the skeleton lines of the road intuitively present color features
that closely resemble the road color pattern. Accordingly, as de-
picted in Fig. 7, a set of pixels in a region of 1 m in the
3-D scene surrounding the central estimation of the road during
the current iteration, denoted by , is chosen at random. Ob-
viously, the selected pixels are only validated if they have been
segmented as road pixels during the current iteration.

As previously mentioned, the HSI road-pattern characteris-
tics for the next iteration of the algorithm are then computed
by correctly averaging the individual HSI characteristics of the
pixels selected for the current iteration. The adaptation process
described in this section is, in practice, crucial for ensuring
a stable performance by the segmentation algorithm during
changing illumination conditions and on color-varying asphalt.

E. Discussion of the Method

Performance of the lane-tracking system has been extensively
analyzed on several nonstructured roads with extreme changes
in both weather and lighting conditions. The road-tracking al-
gorithm was initially evaluated on a private circuit of unmarked
roads and on rural roads, obtaining correct results in both cases.
Nonetheless, a more realistic testing ground for evaluating the
system is a university campus, where typical urban conditions,
such as zebra crossings, parked vehicles, etc., exist. Fig. 8 de-
picts two representative situations of urban driving. Fig. 8(a)
shows the segmentation and road-edge estimation in the vicinity
of a zebra crossing, while Fig. 8(b) illustrates the results ob-
tained close to other vehicles. Correct segmentation and edge
estimations are also achieved in both cases. The road-tracking
scheme was also evaluated on roads without asphalt, yielding
adequate results even in this kind of scenario. To verify the va-
lidity and generality of the segmentation and updating scheme,

Fig. 8. Segmentation and road-edge estimation in urban areas in the presence
of (a) a zebra crossing and (b) other vehicles.

Fig. 9. Segmentation and edge estimation under cloudy conditions.

Fig. 10. Segmentation and road-edge estimation under post-rainy conditions.

Fig. 11. Road segmentation under nonthick foggy conditions.

the road-tracking algorithm has been tested under different envi-
ronmental and weather conditions, such as sunny, cloudy, rainy,
and even foggy conditions. Some examples of segmentation and
road-edge estimations obtained under these conditions are given
in Figs. 9–11.

The previous section lets us state that the road-segmentation
algorithm based on the HSI color space and under 2-D spatial
constraints successfully provides an accurate and robust estima-
tion of the edges and width of nonstructured roads, i.e., roads
without lane markers. As demonstrated, the practical results also
support the validity of the method under different environmental
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and weather conditions. There are, however, some limitations to
the use of the road-tracking algorithm just after sunrise, just be-
fore sunset, and on very sunny days, primarily due to the direct
incidence of sun rays onto the camera plane.

IV. NAVIGATION AT INTERSECTIONS

Intersection navigation is completely vision based and ac-
counts for any angular value between the intersection branches.
The same system used for road tracking, a simple monocular
color-vision system, is proposed for navigating at intersections.
This is a major issue, as it will make cheap prototype naviga-
tion systems possible. Two basic maneuvers can be executed at
an intersection: it can change its direction by turning left or right
or it can go straight ahead and cross the intersection by main-
taining its current direction. As the problem of crossing an in-
tersection is basically the same as that of tracking the lane, even
though some road edges are partially or completely occluded,
the same algorithmic solution is used for this kind of maneuver.
This is possible thanks to the ability of the lane-tracking algo-
rithm, using the temporal recurrent least-squares filtering tech-
nique previously described, as it deals with occlusions of the
road-edge features, even during several consecutive iterations.
If, for example the left road edge disappears from the scene, the
right road edge, together with the estimation of the road width,
serves as the basis for reconstructing the road geometry. Turning
right or left at an intersection is quite a different problem that
needs to be addressed in a different manner.

A. Turning Maneuvers at Intersections

The scientific rationale for the navigation strategy proposed
for turning maneuvers made at intersections is based on the
way in which humans drive. So, let us consider the case of a
human driver carrying out a turning maneuver at an intersec-
tion with strongly reduced visibility. The human driver would
probably start the turning maneuver, left or right, at a very low
velocity until complete visibility of the new road was attained,
from which point increasingly higher velocities could be reli-
ably achieved. Taking into consideration the limitations of the
camera’s field of vision, a similar approach could be used to
make an autonomous vehicle perform a turning maneuver at
an intersection. The vehicle should begin the maneuver (left or
right, according to the plan) at a low velocity. Throughout the
turn, the vehicle performs a simple circular open-loop trajectory
described by its minimum radius of curvature, which is given by
a maximum steering angle of . The maneuver is carried out
at a low speed until a large enough perspective of the new road
is gained. From that point on, lane tracking resumes control of
the vehicle and its velocity gradually increases. Due to the lim-
ited perspective of the road, particularly at the beginning of the
turning maneuvers, the road edges can no longer be modeled as
parabolic polynomials. In this case, there is no correspondence
between the real road edges and a second-order function, par-
ticularly when the road edges are not even within the camera’s
field of vision. However, this should not cause an abrupt dis-
continuity in the road-model estimation when traversing an in-
tersection. To solve this contradictory and compromising situa-
tion, we propose decoupling the segmentation process from the

Fig. 12. Fixed road models for (a) left and (b) right turns at intersections.

road-edge estimation. This leads to the use of a fixed road model
that is not updated with the image segmentation results obtained
during the turn. This invariable model is the valid reference used
to plot the vehicle’s turning angle, until a large enough perspec-
tive of the road is gained and road tracking can be resumed.
This makes segmentation and road-edge estimation independent
from each other during the turn at an intersection. The fixed road
model is geometrically located in the image plane facing the di-
rection, chosen in the global plan, of the turn to be performed at
the next intersection. Fig. 12 shows the fixed models for left and
right turns at an intersection, which cause the vehicle to turn left
or right, respectively. These models are located in the region of
the image where the road is expected to reappear when the turn
has been completed, so no discontinuity in the vehicle-turning
angle occurs. On the other hand, the road-width estimation is
also kept constant throughout the entire turn, taking as constant
the last estimated value before starting the turn .

Continuity in the road-edge and -width estimation is pre-
served due to the least-squares-based estimator that brings
the road model from its initial position at the beginning of
the turning maneuver (at ) to the corresponding fixed
model in a soft and gradual manner. As previously mentioned,
the end of the turning maneuver is basically determined by
visual information. For this reason, the image segmentation
is correlated with several a priori road models. The vehicle
is expected to appropriately perceive the new road when the
previous correlation is high enough, i.e., when the new road
resembles some of the a priori road models utilized in the
comparison. From that point onward, lane tracking resumes
control of navigation.

1) Image Processing at Intersections: Basically, except for
those processes concerned with feature adaptation as a function
of the road model, image processing at intersections is similar
to image processing for lane tracking. Indeed, the road model
cannot be used for HSI feature updating during a turning ma-
neuver at an intersection, as it remains fixed and so provides no
relevant information. Accordingly, segmentation is performed
solely on the basis of HSI color characteristics and no threshold
modification is carried out based on the distance between the
pixel under consideration and the estimated road model. The rest
of the image-segmentation process remains unchanged. Finally,
the HSI road-color pattern is updated based on all the pixels seg-
mented as road during the current iteration, thus avoiding the
need to rely on the road model, as it provides no reliable infor-
mation during the turn. Experience shows that the image-seg-
mentation and adaptation method presented in this section, al-
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Fig. 13. Segmented images of a left turn at an intersection.

though slightly degraded, still remains stable during intersection
navigation as long as there is enough road within the camera’s
field of vision. To demonstrate the performance of the segmen-
tation process under these conditions, a sequence of four seg-
mented images of a left turn at an intersection is depicted in
Fig. 13.

B. Determining the End of the Turning Maneuver

As previously described, the end of the turning maneuver
is determined using visual data; the maneuver finishes when
enough of the new road comes into view. So, in a first intuitive
approach, the end of the turning maneuver is determined by
computing the correlation between the incoming segmenta-
tion and some a priori road-model templates. Unfortunately,
experience shows us that this simple correlation measure
cannot reliably determine the end of the turn. On the one hand,
segmentations similar to the a priori road-model templates can
occur even from the beginning of the turn, which could lead to
a false detection. On the other hand, without a parabolic model
to enhance the segmentation, segmentation noise increases
drastically during the turn. For this reason, vehicle localization
during the turn is reinforced using a Markov stochastic process,
which from here on will be referred to as Markov localization
process. The basic idea is to enhance vehicle-localization
robustness while continuing to use visual information. For this
purpose, the angular trajectory followed by the vehicle during
the turn is modeled by a random variable denoted by , as
depicted in Fig. 14.

As is graphically shown by variable in Fig. 14, the localiza-
tion space is defined as all the possible angular positions of the
vehicle. Its definition domain ranges from at the beginning
of the turn to , or higher for really sharp turns, by the end
of the turning maneuver. A probability density function (pdf) is
calculated for all possible positions along the localization space.
The function is updated during each iteration using the typical
Markov assumptions and in so doing becomes a Markov sto-
chastic process. The abcise , where the density function

Fig. 14. Modeling of the vehicle’s turning angle � at intersections.

reaches its maximum, indicates the vehicle’s most reliable an-
gular position during the turn. Let denote the proba-
bility of being at location at time , where is a location within
the localization space. reflects the initial state of knowl-
edge. If the vehicle’s position is accurately known, is
centered on it. If not, is uniformly distributed to reflect
the global uncertainty about the vehicle’s location. In this work,

is initially set to , taking advantage of the fact that
the vehicle is starting the turn. The distribution is up-
dated whenever the vehicle moves or acquires a new image.

1) Updating During Vehicle Movement: Vehicle
motion is modeled by the conditional probability .

denotes the probability that motion action , when
executed at , carries the vehicle to position . is then
used to update the belief function about vehicle motion, where

denotes the resulting belief at time , as indicated
in

(7)

Computation of is carried out, taking into account
the kinematic and dynamic constraints on the vehicle. This im-
plies the use of the vehicle kinematic model (which is similar to
the popular Ackermann model) and proprioceptive knowledge
about the vehicle’s current velocity and steering angle . Let

denote the radius of curvature of the trajectory followed by
the vehicle during the turn. The differential angular arc , de-
scribed by the vehicle between two consecutive iterations, can
easily be obtained, as in (8), where the vehicle’s linear velocity

is kept constant.

(8)

where represents the time between two consecutive algo-
rithmic iterations and the vehicle’s linear velocity. On the
other hand, the radius of curvature can be calculated using
the vehicle kinematic model, yielding the expression in

(9)

where denotes the wheelbase and stands for the vehicle’s
steering angle. Thus, can be explicitly written as a function
of measurable magnitudes, as in

(10)
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Fig. 15. Model of p (� j � ).

Although cannot be regarded as an exact value, due to
sliding, backlash, and measure noise not explicitly considered in
the model, but (10) is helpful in modeling . The proba-
bility that the vehicle reaches position , from the previous one
at , can be assumed to be the same as the probability that it
covers an angular trajectory in a time interval of

. Based on the previously described model, is the most
likely value for . Likewise, the probability will gradu-
ally diminish as the difference between and increases. On
the other hand, the vehicle’s forward movement is physically
constrained, making it highly improbable that its angular posi-
tion decreases with time

(11)

Following this reasoning, we propose to model
using an auxiliary random variable denoted by . Probability

can be substituted by probability , so that
, while a Gaussian function is used for positive

values of , yielding a maximum at . The model for
is graphically depicted in Fig. 15. Thus, the model can

be analytically represented by a truncated Gaussian function in
the sense that it is zero for negative values.

The vehicle kinematic model is not a completely precise way
to determine the increment in the angular location of the vehicle
between two consecutive iterations. In practice, it has been ob-
served how the standard deviation of the Gaussian model is ap-
proximately equal to the average value . Accordingly, the
standard deviation of the Gaussian model for has been
empirically set to , so that the probability of angular
values near is almost zero. However, due to the fact that

is zero for negative values of , the proposed model
is not exactly a Gaussian function. This is corrected by using a
normalizing factor , as described in the next section.

2) Updating Upon Image Acquisition: distri-
bution must be validated according to the visual information
contained in the scene acquired by the vehicle’s vision system.
Let denote the vision system measurement, representing the
degree of similarity or correlation, on a pixel-by-pixel basis, be-
tween the current segmented image and the a priori binary road
models expected to be perceived upon intersection completion.
A detailed definition of visual measurement is provided later
in this section. On the other hand, represents the prob-
ability of obtaining measure at position . The belief distri-

Fig. 16. A priori road models for (a) left and (b) right turns at intersections.

bution is updated upon image acquisition and processed
according to

(12)

where represents a normalizing factor to ensure that
is truly a real pdf. Visual measure is obtained by computing,
on a pixel-by-pixel basis, the correlation between the incoming
segmentation and several a priori road models. For this purpose,
three a priori road models have been devised for each turning di-
rection, three for left turns and another three for right turns. The
models, denoted by for left turns and
for right turns, are located on the area of the image, where the
road is most likely to first appear after the turn at an intersection
has been completed. In addition, the width of the a priori road
models is randomly chosen in a given interval from the road
width , estimated just before the intersection maneuver
starts. This enables the system to recognize and track roads with
different widths. Fig. 16 shows the shape of the a priori road
models for left and right turns.

For each a priori road model, coefficients and are com-
puted. Coefficient measures the similarity between the road
area in the segmented image and the road area in a priori model
. Likewise, measures the correlation between the nonroad

area in the segmented image and the no road area in a priori
model . These coefficients are calculated as shown in

(13)

where stands for the total number of road pixels in a
priori model and represents the total number of non-
road pixels in the same model. On the other hand, is the
number of road pixels in the segmented image that match the
road pixels in a priori model , while is the number
of nonroad pixels in the segmented image that match the non-
road pixels in the same model . Correlation index is computed
based on the maximum value of and , evaluated over the
three a priori road models shown in

(14)

where is in the range . The modeling of conditional
probability is accomplished, taking into account the
dynamic constraints on the vehicle’s steering system. In order
to anticipate the trajectory and to avoid overshoot and oscilla-
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Fig. 17. Modeling of p (s j �).

tions, the recovery turning maneuver should start a little before
the turn is completely finished. Accordingly, an experimental
value is established to indicate that the probability of
starting the recovery turn maneuver greatly increases upon com-
pleting angular trajectory , whenever the correlation
measure validates the estimation. The system is mainly con-
ceived to navigate in T-cross intersections in which the vehicle
has to carry out curves most of the time. For this reason, a
value is a minimum sufficient value to ensure that the
vehicle is close to finishing the curve.

An accurate environment map should be used to model
precisely. In earlier research on mobile robot local-

ization in indoor environments [47], probability is
precomputed (where represents the robot’s location) based
on a global map and a sensor model and is stored on a lookup
table. After using lookup table, online computation of
is a quick and simple process. In reduced environments, this
kind of technique is employed for radar- or laser-based sys-
tems. Considering that none of the previous conditions occur
in a vision-based system in large outdoor scenarios, the use
of precomputation becomes quite a complex and inefficient
task. We propose instead a simple and intuitive modeling,
successfully tested in practice, by which the probability of
measuring a high value of is very low at the beginning of the
turn, but becomes increasingly higher as the angular trajectory
of the vehicle gradually approaches . Fig. 17 depicts the
exact model for .

Modeling of probability has been split into two in-
tervals. For any value smaller than , the probability of mea-
suring a high correlation is low, while the probability of ob-
taining a low correlation gradually increases. For angles greater
than , when the vehicle is close to completing the turn, the
probability of measuring a high correlation increases, main-
taining an otherwise low value. Although is not a real
pdf (the integral of along its definition domain does

not add up to 1.0), we can be sure that distribution is
a real pdf due to the normalizing factor in (12). Consid-
ering that vehicle movement and image acquisition are carried
out continuously and simultaneously, the distribution is
updated during each iteration of the algorithm by applying (6)
and (12) consecutively. From the practical point of view, the def-
inition domain of variable must be discretized so as to make
the problem computationally treatable. An angular resolution of

, providing a more than sufficiently precise approximation
of the location, has been set for this purpose. This implies that,
for a typical angular range in a turn of about , the number of
probabilities to compute amounts to 180 180. However, most
of the time probabilities other than zero are focused on a narrow
interval. This means that a selective computation that increases
the algorithm execution speed can be accomplished by consid-
ering only those angular values of for which the probability

is above a given threshold (1% of the maximum
probability in this case). The Markov localization method de-
scribed in this section provides a belief distribution that
tends to have a Gaussian shape. The average of this approxi-
mately Gaussian represents the most probable location
of the vehicle. In order to obtain a measure of the reliability
of the estimated location of the vehicle, the belief distribution

is compared to an ideal Gaussian function
(where is the average of the Gaussian function that best
fits ). The comparison is performed in the least-squares
sense, as in

(15)

where represents the mean-square error between distribution
and the Gaussian function and is the

number of points of the discrete definition domain of variable
. The vehicle should finish the turning maneuver and resume

lane tracking when the estimated angular position is above
(i.e., close to the end of the turn) and, simultaneously,

is below a given threshold (experimentally set to 2.5), indi-
cating high confidence in the vehicle’s estimated location. It was
empirically observed that in practice the mean-square error of
the belief distribution was bellow 2.5 in more than 95% of the
cases in which the segmentation was appropriate. Accordingly,
this value was chosen as a constraint that must be satisfied in
order to consider that a maneuver at an intersection is about to
finish. The intersection maneuver can be stopped at any point
in which enough road is visible from the camera, as long as the
lane-tracking algorithm is able to regain control of the vehicle
from that point onward. If the square error is bellow 2.5, the
segmentation will be most certainly poor, surely caused by not
having enough visibility of the road. To sum up, the Markov
localization method allows visual measures to be statistically
enhanced and its ability to manage uncertainty and degrees of
reliability makes it ideal for vehicle localization.

C. Intersection Navigation Results

To illustrate the behavior of the navigation system described
in this section, Fig. 18 depicts a sequence of four real images of a
left-turn maneuver at an intersection. In Fig. 18, we represent the
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Fig. 18. Sequence of images of a left-turn maneuver. (a) Belief distribution,
(b) segmentation, (c) estimated road model, and (d) localization results.

belief distribution for each image, the segmented image, the es-
timated road model that overprints the original incoming scene
and the values of , and . As can be seen in Fig. 18, the
vehicle’s knowledge of its position throughout the entire turning
maneuver remains reliably high (i.e., a low value of ). It can
also be seen how the road model begins at the last location es-
timated during lane tracking, just before commencing the turn
(the first image of the sequence in Fig. 18) and gradually updates
until it reaches the fixed a priori road model devised for left
turns (the third image of the sequence in Fig. 18). When condi-
tions for completing the turn are met ( and ),
lane tracking is resumed, allowing the road model to be adapted
to the new road, as shown in the last image of the sequence in
Fig. 18. To gain a better understanding of the global process,
Fig. 19 shows a complete example in which, from images 1–5,
the vehicle tracks a lane until it reaches an intersection. In im-
ages 6–9, it performs a right-turn maneuver and, finally, lane
tracking is resumed in images 10–12. To sum up, the following
points must be made. The navigation module proposed in this
section provides continuity during the road-model estimation
and ensures accurate maneuvering at intersections of arbitrary
angular shape, using only one color camera. The localization
method can detect roads with different widths after completing
the turn at an intersection.

V. IMPLEMENTATION AND RESULTS

The complete navigation system described in the previous
sections has been implemented on the Babieca prototype ve-
hicle, a commercial electric Citroen Berlingo, depicted in Fig. 1,
which has been modified to allow for automatic velocity and
steering control at a maximum speed of 90 km/h. The Babieca
is equipped with a color camera, a DGPS receiver, a pentium
PC, and a set of electronic devices to control the accelerator

Fig. 19. Estimated road model for a complete concatenation of actions: lane
tracking, intersection navigation, lane tracking.

Fig. 20. Real trajectory followed by the vehicle on an autonomous mission
between stations 1 and 2.

and steering wheel and to encode the vehicle’s velocity and
steering angle. The color camera provides a standard phase-
altering lines (PAL) video signal at 25 Hz that is processed
by a Meteor frame grabber installed on a 120-MHz pentium
PC running a real-time Linux operating system. The DGPS re-
ceiver is a Z-12 real-time model by Ashtech that implements
the RTCM SC 104 V2.2 standard at 5 Hz. Both velocity (lon-
gitudinal) and steering (lateral) control have been implemented
in this work in order to provide completely autonomous oper-
ation. The longitudinal control module enables the vehicle to
maintain the reference velocity established in the global velocity
profile, computed at the beginning of the autonomous mission.
For this purpose, a simple but robust fuzzy controller [14] has
been designed. The main aim of the lateral control module is to
ensure proper tracking of the road by correctly keeping the ve-
hicle in the center of the lane and moving in the right direction
(parallel to the road trajectory). The description of the lateral
controller is outside the scope of this paper and can be found in
[43]. Further theoretical support to better understand the devel-
opment of the lateral controller can be found in [12] and [41].

The complete navigation system is implemented on real-time
Linux using a preemptive scheduler [2]. The lane-tracking vi-
sion based task is executed at 10 frames/s, while intersection
navigation is run at 4–5 frames/s. Practical experiments were
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Fig. 21. Autonomous mission from station 1 to station 2. (a) Vehicle velocity and (b) vehicle-steering angle.

Fig. 22. Real trajectory followed by the vehicle on an autonomous mission
between stations 5 and 1.

carried out on a private circuit at the Industrial Automation In-
stitute, Arganda del Rey, Madrid. The circuit, shown in Fig. 2,
is designed to emulate an urban quarter with several stopping
points, streets, intersections, and roundabouts. Babieca ran for
hundreds of kilometers on many successful autonomous mis-
sions over this circuit.

To illustrate the global behavior of the complete navigation
system implemented on Babieca, some general results are
shown next. In the first test, the vehicle was commanded to
autonomously navigate from station 1 to station 2. Fig. 20
shows the two-dimensional (2–D) real trajectory followed by
Babieca using universal transverse mercator (UTM) coordi-
nates. Likewise, the vehicle’s real velocity and steering angle
during the mission are depicted in Fig. 21, clearly showing
the strong turns performed at intersections. Similarly, Fig. 22
shows the global trajectory covered by the vehicle in getting
from station 5 to station 1.

A live demonstration exhibiting the system’s capabilities at
autonomous navigation was carried out during the IEEE Confer-
ence on Intelligent Vehicles 2002, on a private circuit in Satory,
Versailles, France. In order to complete the graphical results de-
picted in this section, a complete set of video files demonstrating
the operational performance of the system in real tests can be re-
trieved from ftp://www.depeca.uah.es/pub/vision.

VI. CONCLUSION AND FUTURE WORK

The main novelty of this work is the development of a vision-
and DGPS-based global-navigation system capable of executing
autonomous missions on a network of unmarked roads and in-
tersections. It currently is implemented on a slightly modified
commercial vehicle. The complete system has been successfully
tested on a private circuit, as a first step toward its long-term de-
ployment in urban scenarios. Depending on the specifications of
the mission and the a priori map, the global-navigation system
simultaneously implements two complementary vision-based
behaviors for road tracking and navigation at intersections. A
task manager correctly synchronizes the execution of the ad-
equate vision-based task, depending on whether the vehicle is
moving along a road or traversing an intersection, making use
of the DGPS for this purpose. The fact that the DGPS signal
does not have to be very precise, together with the use of a
single color camera, results in a low-cost system that is suit-
able for midterm commercial development. Another major con-
tribution of this work is the proper tracking of nonstructured
roads, as it is robust, does not require previous instruction, and
allows for real-time operation. Vision-based intersection navi-
gation is another remarkable feature due to the complexity of
the maneuver and the need to maintain continuity while navi-
gating a network of roads. Nonetheless, a lot of work remains
to be done before a truly robust and reliable autonomous system
can be fully deployed in real conditions. In the next step, the
already-existing vehicle detection module will be improved by
combining information provided by other laser- or radar-based
sensors. Another key point will be eradicating the dependence
on DGPS by implementing a vision-based task for intersection
detection, which uses a conventional GPS receiver. Finally, an-
other vision-based specialized task will be developed in the fu-
ture, which will be capable of navigating both intersections and
roundabouts, as at the present time they are in widespread use
in urban environments.
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