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Abstract

In this article a segmentation method is described for the face skin of people of any race in real time, in an adaptive and unsupervised way,
based on a Gaussian model of the skin color (that will be referred to as Unsupervised and Adaptive Gaussian Skin-Color Model, UAGM). It is
initialized by clustering and it is not required that the user introduces any initial parameters. It works with complex color images, with
random backgrounds and it is robust to lighting and background changes. The clustering method used, based on the Vector Quantization
(VQ) algorithm, is compared to other optimum model selection methods, based on the EM algorithm, using synthetic data. Finally, real
results of the proposed method and conclusions are shown.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of human face tracking systems within an image
sequence has an increasing importance in the last years in
applications such as: videoconferences with improved
visual sensation [1], face identification in security systems
[2], panoramic displays controlled with the gaze in virtual
reality systems [3], lip readers [4], aid to the mobility of
handicapped people [5,6], etc. To achieve this different
techniques are applied, as for example, deformable
templates to locate and track eyes and mouth in grey images
[7]. Other authors as [1] use the pixel count of image edges,
their integral projection and circular deformable templates
to accomplish the eyes and mouth tracking. Baluja and
Pomerleau [8], from The Carnegie Mellon University,
apply an ALVINN neural network for this purpose. Cipolla
[9], from the Cambridge University, locates certain points in
the image employing a family of scalable Gabor filters and
groups them in face candidates using geometric and grey
level features. Using a probabilistic approach it locates the
face with greatest probability among all candidates. On the
other hand Yang, Waibel and Stiefelhagen [3,10] segment
the face using a stochastic model of the skin color with some
a priori model parameters calculated off-line and within this
object they locate eyes and mouth. Heinzmann and Zelinsky
[5] apply templates matching in grey and color images with

the aid of a specific hardware called M.E.P. from Fujitsu to
locate facial features such as: eyes, mouth, eyebrows, etc.
Crowley and Coutaz [11] employ three processes, all in
parallel: winking detection, histogram matching in normal-
ized color and correlation to calculate the gaze direction.
Through a confidence factor it knows at each moment the
process to apply.

Color segmentation of the user face skin is a good method
for doing face tracking because it is robust, easy to adapt to
different light conditions and different users and performs in
real time. On the other hand, color segmentation methods
don’t require many parameters. Within this, an interesting
approach consists on applying statistic techniques, through
which the different parts, of an image (classes) are well
characterized by statistics measures of low order such as:
mean, variance, correlation of functions or spectral power
density. In this way the segmentation problem of an image is
turned into a statistical optimization problem. That produces
greater precision in the characterization of the classes in the
image.

The segmentation techniques of images based on stochas-
tic models may be supervised or unsupervised. The design
of an autonomous segmentation system implies the use of
unsupervised techniques. However the low reliability of
some methods or the high complexity of others are the
reasons why they are not typically used in real time segmen-
tation, being a current topic of research [12,13]. The main
problem found in unsupervised segmentation is the model
adjustment according to the image histogram. A methodical
and general solution hasn’t been found yet.
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In this article, we present a method for the calculation of a
stochastic adaptive model of the color distributions of the
skin on a normalized color space in an unsupervised way
with a low computational cost. We will refer to this algo-
rithm as Unsupervised and Adaptive Gaussian Skin-Color
Model (UAGM).

This property makes the movement estimation easier
since only an adjustment of the model is needed to
estimate it. However, the color is not a physical
phenomenon but a perception of the spectral character-
istics of an electromagnetic radiation in the visible spec-
trum captured by the retina [15]. The skin color as a
feature to track human faces presents several problems:
(1) the color of the face obtained by the camera is
influenced by factors such as light conditions, move-
ment of objects, etc.; (2) different cameras produce
different colors for the same person and under the
same lighting conditions; and (3) the skin color changes
from one person to other. It is necessary to solve the
noted problems in order to use the color feature.

The authors of this work have accomplished a study of the
distribution of human color skin in different color spaces
(RGB, normalized RGB, HSI, SCT, YQQ [16]) and came to
the conclusion that the best space for this application is
normalized RG.

r � R
R1 G 1 B

g� G
R1 G 1 B

�1�

In this space, the human skin color forms a compact class,
the color differences between different people are reduced
working with chromaticities, eliminating the intensity.
Under certain light conditions, the skin color distribu-
tion can be modeled by a Gaussian function in “rg”
space [10]. In spite of this, the segmentation may
yield considerable errors if it works with a universal a
priori model, being as well dependent on both lighting
conditions and the camera used. To solve this, a perso-
nalized model is proposed for each user that is capable
of detecting the skin class of that person, in an unsu-
pervised way. It works properly with random back-
grounds, making the model adaptive. In this way the
previously three outlined problems are solved.

This article has been structured as follows. Section
2 describes the UAGM algorithm. Section 3 shows a
comparison between the clustering method here
proposed, based on the Vector Quantization algorithm
(VQ), and other optimum models selection methods,
based on the EM algorithm, using a series of
synthetic data. It is demonstrated that equal or better
results are obtained with the proposed method, being
easier to apply and having smaller computational cost.
Also some empirical segmentation results with real
data for the UAGM method are shown. Finally, in
Section 4 the conclusions on the proposed method
are drawn.

2. UAGM method

Let X be a finite set of pixels of an image,X �
{ x1; x2;…; xN} ; with each pixel defined by its color compo-
nents “rg” xj � �xjr; xjg�: For simplicity, a 2D image has
been indexed as a 1-D array of lengthN. Let K be the
number of classes into which theN components ofX must
be classified. We consider a model ofK components (MK)
where each model is defined by a vector of parametersuK [
R

d
: Assume the probability of each classP�vi� is a priori

known, and that the probabilistic structure of each class will
be considered a Gaussian function. Within a Bayesian
approach, denoting byP�Xuvi ; ui� the probability that a
pattern pertaining to classi takes the valueX, the probability
of X for the statistics of all classesu � �u1; u2;…uk� will be

P�Xuu� �
XK
i�1

P�Xuvi ; ui�P�vi� �2�

The unsupervised classification goal will be to estimate
vectoru applying the maximum likelihood method, consis-
tent in estimating the vector of parametersû that maximizes
the probabilityP�Xuu�: Making use of standard techniques
[17] the following equations are obtained:

P�vi uxj ; û i� �
P�xj uvi ; û i�P̂�vi�XK

i�1

P�xj uvi ; û i�P̂�vi�

� uĈi u
21=2 exp{ 2 1

2 �xj 2 m̂i�TĈ21
i �xj 2 m̂i�} P�v̂ i�XK

i�1

uĈi u
21=2 exp{ 2 1

2 �xj 2 m̂i�TĈ21
i �xj 2 m̂i�} P�v̂ i�

�3�

P̂�vi� � 1
N

XN
j�1

P�vi uxj ; û i� �4�

m̂i �

XN
j�1

P�vi uxj ; û i�xj

XN
j�1

P�vi uxj ; û i�
�5�

Ĉi �

XN
j�1

P�vi uxj ; û i��xj 2 m̂i��xj 2 m̂i�T

XN
j�1

P�vi uxj ; û i�
�6�

for i [ �1;K�, wherem̂i is the mean of classi, Ĉi is the
covariance matrix for classi, P̂�vi� is the a priori probability
for classi and P�vi uxj ; û i� is the probability that datumxj

belongs to classi.
The explicit values ofP̂�vi�; m̂i ; Ĉi cannot be obtained

from these equations. It is a set of non-linear equations
that do not yield a unique solution and requires an iterative
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procedure to be solved. Expectation-Maximization (EM)
[12] has been the algorithm used to resolve this problem.

The estimation ofK is known as the cluster validation
problem. One possible solution to this problem is to treatK
as a parameter to be estimated along with the model para-
metersu . This approach results in a maximum-likelihood
(ML) estimate ofK which has been shown to be strongly
biased toward the maximum number of states considered.
This bias reflects the roughly monotonically increasing
behavior of the intensity log-likelihood as a function ofK
[13]. An alternative solution for the problem accomplishes a
segmentation for different candidate classes (K), according
to the applied method, and fix a cost function that permits to
determine the optimumK. Following this line there are
different methods with distinct cost functions (FHV,
Evidence density, MDL, MML, GMM, etc.). These will
be briefly explained in point 3 making a comparison to the
UAGM method.

The a posteriori likelihoodP�vi uxj ; û i� is simplified to
reduce the parameters estimate calculation, assuming the
following hypothesis: (1)Normalization is not performed.
Pixels are classified into classes according to their probabil-
ities to belong to one of such classes. Before comparing, the
probabilities should be normalized using the same normal-
izing factor. That is the reason why normalization is not
necessary. (2)The probabilities for each a priori class are
equal. The equiprobability hypothesis is assumed as the
content of the image is not known before hand. (3)The
covariance matrices for each one are equal. It is intended
to carry out a rough segmentation of the image to estimate
the main colors. Skin should belong to one of these colors as

it looks as a big blob in the image. (4)Variances are equal
and crosscovariances are assumed to be zero, denoting this,
independence between the components of the class. It was
empirically demonstrated for skin class.

The a posteriori probability (Eq. (3)) becomes the follow-
ing discriminate function:

df�vi uxj ; û i� � �xj 2 m̂i�T�xj 2 m̂i� � ixj 2 m̂ii
2 �7�

This way the statistical estimation problem is reduced to a
clustering one by the Euclidean distance where one must
estimate the statistics�m̂i� of each class and the number of
classes or existing colors�K̂� in an image. Though the preci-
sion of the segmentation is reduced applying the hypothesis
proposed, it is enough to detect the main colors of an image
and, therefore, give a good estimate of the skin color.

To estimate�m̂i� a local competitive learning is applied
based on Euclidean distance employing the Vector Quanti-
zation method (VQ) proposed by Kohonen [18]. To reduce
the problem of local learning an initialization method will
be used based on an approximate histogram. To estimate the
number of classes�K̂� the resulting clustering will be eval-
uated comparing to the topology of the colors distribution
through a cost function, that attempts to minimize the inter-
nal deviation between the pixels belonging to the same class
and maximize the distance between the different classes. A
number of classes between 2 and a maximum�Km�ax� will be
tested, so that the value ofK together with the maximum
value of the cost function will give the number of the main
colors�K̂� in the image. The centroid location of the classes
will represent the estimated means of the classesm̂�
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�m̂1; m̂2;…; m̂K�: The skin class is located among these
classes, calculating the distance to the pattern applying a
Gaussian model on it. All those pixels for which the prob-
ability density function of the model yields a value greater
than an adaptive threshold (Th) will be segmented as skin.
Finally an adaptation of the model is accomplished through
the estimate of its parameters, using a linear combination of
those which are already known under the maximum like-
lihood criterion. In Fig. 1 a schema with the different phases
of the process is shown.

Each phase in the clustering method is described in detail
below.

2.1. Initial location

The aim of this phase is to give an initial estimation of the
mean vectors of the classes that best approximate the color
distributions of the histogram. Starting from these positions
a local competitive learning algorithm will be applied to
obtain the mean vector for each class. This type of learning
makes the final positions of the vectors dependent on the
initial estimate.

A good initial estimate is obtained applying an approx-
imate histogram of the “rg” space. The mean vectors are
located on the positions of greatest pixel concentrations in
the histogram. These concentrations will be associated to
the main colors of the image, among which is the skin
color. The colors produce spatial Gaussian distributions in
the histogram with a size equal to the working resolution
�256× 256 colors). However, these distributions become
delta funtions choosing a smaller resolution of onlyN × N
(much smaller than 256) chromaticities.

The user can choose the resolution of the approximate
histogram,H, specifying the number of accumulators,N,
for each color component. Therefore, each component is
split into N intervals of sizeS equal to the dynamical
range of the color component,P, divided by the number
of accumulators,N, �S� P=N�: The approximate histogram
will be an N × N matrix where each accumulator is

initialized to zero. For each image pixel,x � �xr; xg� :
H� facum�x�� � H� facum�x��1 1 �8�

facum�x� � truc
xr

S

� �
; truc

xg

S

� �� �
�9�

where truc( ) indicates the floor rounded value of integer
division.

The histogram approximation implies anS× Scolor reso-
lution so that colors that are separated in the histogram less
than this value, will fall in the same accumulator and will be
considered as a unique color. The image main colors are
obtained this way. For this application, we use a 50× 50
accumulators matrix that provides a resolution of 0.02, for a
dynamical range of 1 in the color components (r,g[ [0,1]).
This resolution is more than sufficient for our purposes as it
implies to detect 2500 different chromaticities independent
on luminance. On the other hand the skin class has a maxi-
mum evaluated variance of 0.0175. Most of the pixels
belonging to one class will fall within the same cell. Color
variances of other objects having the same or smaller values
have been evaluated.

The algorithm locates the initial positions of theK vectors
under evaluation on the positions of theK greatest accumu-
lators obtained from the approximate histogram. These posi-
tions are not the exact centers of the color distributions but
provide a good initial approximation of them with a maxi-
mum error of^P=2N:

A problem that can appear is the dispersion of a color
distribution in several accumulators depending on where the
mean of the distribution falls. In Fig. 2(a) this effect is noted
assuming that distributions mostly fall in an accumulator
and therefore the dispersion effect is negligible. In Fig.
2(b) a great dispersion of Color 2 is appreciated that causes
the distribution over two accumulators. Nevertheless this
effect is corrected during the training and determination
phase of the optimum number of objects as a number of
vectors equal to the main color distributions are located
on the real centers of the Gaussians.
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2.2. Competitive learning

To adjust the cluster centers a competitive learning algo-
rithm is used based on Euclidean distance proposed by
Kohonen and denoted as VQ (“Vector Quantization”).
This algorithm uses a reduced set of vectors (called neurons)
to approximate a large volume of information. To apply the
VQ algorithm, the number of vectors of the approximation
(K) and an estimate of the initial positions of these vectors
must be known. The first parameter will be evaluated
between a minimum of 2 (as each image is assumed to
have at least a face and a background) and a maximum
value (Kmax). For each value ofK the learning phase is
accomplished to further evaluate the resulting clustering
through the cost function.

The initial locations of the vectors are determinant in this
method since they can largely influence on the accuracy of
the final result. In Refs. [19,20] a discussion on this topic is
presented. In our case the local learning problems of VQ
method are not solved using random data initialization but
the proposed method, assuring a good estimate for the
neurons.

Given the finite set of normalized pixels of an imageX �
{ x1; x2;…; xN} and a number of mean vectors located on the
positions defined bŷm:

m̂� �m̂1; m̂2;…; m̂K�; m̂i � �m̂ir ; m̂ig� �10�
The VQ method gives the best approximation to the prob-
ability density function,f �x�; of the stochastic variablex [
R2 making use of a finite number of vectorŝm; called
neurons. A two layers system is used: an input layer and a
competitive layer, as can be seen in Fig. 3.

Index i is obtained in an implicit way by a decision
process of the form

i � arg min
k

{ ix 2 m̂ki} �11�

wherei i denotes the Euclidean norm.
To calculate the best approximation ofX, Kohonen

defines a quadratic mean error of the quantification function,

as it is shown in Eq. (12). The minimum of this function will
give the set of vectorŝm that best approximatesX. The
gradient descent technique is employed to find the mini-
mum, obtaining recurrent Eq. (13) to move the neurons in
the color space.

E �
Z

ix 2 m̂ii
2f �x� dx �12�

m̂i�t 1 1� � m̂i�t�1 g�t��x�t�2 m̂i�t�� �13�
whereg�t� is the learning step varying in the range [0,1]

A training subsetXL � { x1; x2;…; xL} is randomly taken
from the input samplesX. The Euclidean distance to the
vectorsm̂ is calculated for each samplexj. The vector show-
ing the minimum Euclidean distance to the sample will be
the winner. This vector is moved an amount proportional to
the distance that separates the pixel from the vector. This
process is iteratively repeated until the vectors are moved
less than an a priori empirically defined threshold. The
quantity that pixels are moved is controlled by parameter
a�t� and decays with time.

2.3. Clustering quality factor

Through the previous learning process the best possible
approximation of theK vectors color distribution is
obtained. A classification of the pixels in the vectors’ proto-
types is accomplished below, using the Euclidean distance
to the vectors:

xj [ ai if i � arg min{ixj 2 m̂ki} 1 # k # K; ;xj [ X

�14�
A quality factor is needed to evaluate the adjustment
between the number of classes and the color distribution.
The maximum value of the factor corresponds to the opti-
mum number of classes and therefore the optimum cluster-
ing. Pixels between classes are distributed in such a way that
some measure of internal similarity of the class is maxi-
mized and therefore the divergence between the different
classes is also maximized.

Prototype vectors (or mean values for each class) are
defined by Eq. (15) whereMk is the number of pixels that
belong to clusterkth.

m̂k � 1
Mk

XMk

i�1

xi 1 # k # K �15�

The mean pattern vector for all classes will be

m̂0 � 1
M

XM
i�1

xi �
XK
k�1

m̂k �16�

whereM indicates the total number of pixels to classify.
The within-cluster scatter matrix and the between-cluster
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scatter matrix can be regarded as

SW � 1
K

XK
k�1

1
Mk

XMk

i�1

�xi 2 m̂k��xi 2 m̂k�T �17�

SB � 1
K

XK
k�1

�m̂k 2 m̂0��m̂k 2 m̂0�T �18�

In the last matrix all classes have the same weight when
defining the mean variance with respect to the pattern. It
makes that classes with very few pixels decrease the effect
of classes with a great number of pixels. In this application
we intend to locate the image main colors. A modification
has been introduced on this matrix so that the average
variance is weighted for each class with respect to the global
pattern, through the number of pixels of the class. Therefore,
a modified between-cluster scatter matrix has been applied,
defined by the following equation:

SB � 1
KM

XK
k�1

Mk�m̂k 2 m̂0��m̂k 2 m̂0�T �19�

The within-cluster and between-cluster scatter matrices
depend on how the pixels are distributed on the different
classes. Thus, for homogeneous classesSW matrix decreases
while SB matrix increases since the variance between classes
is greater. MatrixSW is minimized and, conversely, matrix
SB is maximized to achieve the greatest similarity between
pixels belonging to one class. Therefore, the main goal will
be to increase the ratio, i.e. to augment the variance between
classes with respect to the internal variance of each class.

One of the most widely used criteria maximizes the trace
of SW

21 SB, according to Eq. (20). This criterion is known as
Hotelling or generalized Fisher ratio [21]. For a given
number of classesK the cost function�FK� will be the
sum of the eigenvaluesl1,l2,…,lK of matrix SW

21 SB.

FK � tr�S21
W SB� �

l1 ± 0

l2

: :

± 0 lK

26666664

37777775
�
XK
i�1

li ; 1 # K # Kmax �20�

Thus, the optimum number of classes will be the maximum
in the cost function (F). The degree of success achieved
under this criterion depends on how the patterns to classify
are grouped. The final results will be right if these patterns
form compact groups, i.e. they are well separated and
features for each pattern are independent. We work under
the assumption that the previous conditions are met, since
color distributions have compact shapes, they are relatively
separated and the dependence between characteristics (r and
g) is low.

2.4. Skin segmentation

Once the main colors that compose the image are classi-
fied, the skin class must be located among them. A class (not
pixel) discriminant method is used, consistent with comput-
ing the Euclidean distance between the centers of the image
clusters�m̂k� and a pattern cluster representing the color
prototype for human skin (mpattern). The closest class to
this prototype will be considered as the skin class, according
to the following equation:

m̂�0�S � min
k

im̂k 2 mpatterni
n o

�21�

To improve the segmentation of this class, the color distri-
bution of skin class pixels is modeled through a 2D Gaus-
sian function, N�m�0�S ;C�0�S �; where m�0�S stands for the
position of the skin class prototype andC�0�S is the covar-
iance matrix of the color components “rg” of the pixels
classified as skin (MS). This Gaussian function provides
the probability that a pixel belongs to the skin class:

f �xj uskin� � 1

2puĈSu1=2
exp 2 1

2 �xj 2 m̂S�TĈ21
S �xj 2 m̂S�

h i
�22�

A threshold (Th) is established so that iff �xuskin� is greater
than the chosen threshold the pixel is considered to belong
to the skin class.

2.5. Model adjustment

A linear combination of the previous model parameters
will be used to predict the new ones. LetXS be the set of
pixels belonging to the skin class, modeled by a 2D normal
function. If YS � BXS is a linear transformation ofXS,
whereB is a �m× p� real matrix of rankm, with m # p;
thenYS is also a 2D normal distribution.

A stochastic Gaussian model has been used, defined by its
mean �m̂�0�S � and covariance�Ĉ�0�S �, to perform the skin
segmentation of a static image. In an image sequence, it
can be considered that the estimated value of the statistics
will be a linear combination of the lastz values calculated in
the previous iterations, i.e.

m̂�p11�
S �

Xz2 1

l�0

alRl �23�

Ĉ�p11�
S �

Xz2 1

l�0

blRl �24�

wherem̂�p11�
S is the estimated mean vector at instant�p 1 1�;

Ri, are the previous mean vectors andal # 1 are the weight-
ing coefficients used to calculate the estimated mean,l �
0;…; z2 1: Ĉ�p11�

S Is the estimated covariance matrix at
instant �p 1 1�; bl # 1 are the weighting coefficients for
the estimated covariance; andSl are the previous covariance
matrices. Weighting coefficients determine how the
previous statistics influence on the estimation of the current
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statistics. The maximum likelihood criterion will be used to
find the best set of coefficients for optimal prediction. The
probability function obtained upon applying the estimated
model to theMS skin class pixels in the 2D normalized color
space, will be the product of the probabilities for each pixel.

L �
YMS

k�1

f �xk� � 1

�2p�MSuĈsu
1=2MS

� exp 2
1
2

XMS

k�1

�xk 2 m̂s�TĈ21
s �xk 2 m̂s�

" #
�25�

Applying simple mathematical transformations and proper-
ties related to the matrix trace, the following equation can be
derived.

log L � 2MS log�2p�2 1
2 MS loguĈSu 2 1

2 MS tr Ĉ21
S CS

2 1
2 MS�mS 2 m̂S�TĈ21

S �mS 2 m̂S� (26)

The first partial derivative of logL; with respect to the
weighting coefficients, is calculated in order to obtain the
maximum probability. A numerical iterative technique
proposed by Anderson [22] is used to solve this equation,
as in general, there does not exist an explicit solution. Basi-
cally, coefficientsa l

(i) andb l
(i) are calculated in an iterative

and independent way, where the superscript (i) denotes for
the ith iteration at step (p). The iterative process implies the
parameters calculation in the following order:a l, m̂S, CS,b l,
ĈS; 1� 0;…; z2 1: The process is stopped if max�ub�i�l 2
bi21

l u ; 1� 0;…; z2 1� # e; wheree is an error parameter
empirically defined. The algorithm for theith iteration will
be:

a�i�j �
Xz2 1

l�0

RT
j �Ĉ�i21�

S �21Rl

 !21

RT
j �Ĉ�i21�

S �21mS j

� 0;…; z2 1 �27�

m̂�i�S �
Xz2 1

l�0

a�i�l Rl �28�

C�i�S �
1

MS

XMS

l�1

�xl 2 mS��xl 2 mS�T 1 �xl 2 m̂�i�S ��xl 2 m̂�i�S �T

�29�

Xz2 1

l�0

tr�Ĉ�i21�
S �21Sj�Ĉ�i21�

S �21Slb
�i�
l

� tr�Ĉ�i21�
S �21Sj�Ĉ�i21��21C�i�S j � 0;…; z2 1 �30�

Ĉ�i�S �
Xz2 1

l�0

b�i�l Sl �31�

The model is applied on a new image�p 1 1�; using the
estimated statistics atpth iteration, the segmentation is
accomplished and the parameters are again estimated for
the next image. It has been empirically observed that the
segmentation improves using an adaptive threshold propor-
tional to the trace of the estimated covariance matrix, as it is
shown in the following equation:

Th� KTh tr�ĈS� �32�

3. Results

At this point, a comparative study between the proposed
method to find the optimum number of classes and methods
from other authors is presented, using a series of synthetic
data referenced in [14].1 Practical results obtained with the
UAGM method are also analyzed, applied to a real case of
skin segmentation.

3.1. Comparison with other methods

In this section we provide a brief description of the differ-
ent methods chosen to establish the comparison. Readers are
referred to Refs. [14,17,23–25] for further information.

1. Fuzzy Hypervolume(FHV). This method is outlined in
Ref. [23] and looks at models with the lowest total
volume, defined via

V�K� �
XK
k�1

�����
uCku

q
�33�

whereCk is the covariance matrix of classk.
2. Evidence density. This technique is explained in Ref. [24]

and uses the FHV measure to penalize the log of the
likelihood �L�Xuu� � ln P�Xuu�� at the maximum likeli-
hood solution

r�K� � L�Xuû K�
V�K� �34�

3. Minimum description length(MDL). This method was
developed by Rissanen [25]. It is based on the selection
of the model order that minimizes a length function
formed by a combination of data and model parameters.

MDL �K� � 2L�Xuû K�1 1
2 Np�K� ln N �35�

whereNp(K) is the number of parameters in theK Gaus-
sian model, andN is the number of data points.

4. Minimum message length(MML). Created by Wallace
and Freeman, and further extended in Ref. [17]. The
MML expression used is a given in Ref. [17].
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MML �K� � K
Xd
i�1

ln�2s 2
pop�i��2 ln�K 2 1�!

1
Np

2
ln k�Np�2 ln K! 1

Xd
i�1

XK
k�1

ln

��
2
p

Nk

s 2
k;i

1
1
2

ln N 2
1
2

XK
k�1

ln P�k�2 L�Xuû �1
Np

2

�36�
whered is the dimension of the data setX, spop(i) is the
population variance of theith measurement,k�Np� is the

optimum lattice quantification constant in anNp

dimensional space,s k,i is the maximum likelihood solu-
tion for the standard deviation of theith measurement in
thekth class,P�k� is the relative abundance of classk, Nk

is the number of data items belonging to classk (hence
Nk � P�k� × N� andL�Xuû �is the log of likelihood at the
maximum likelihood solution. This equation is derived
from the asumption that, a priori, each component of the
mean vector,mk,i for the K Gaussians, have a flat
distribution in the range (2s pop(i), s pop(i)). Likewise
the standard deviations for each of the Gaussians,
s k,i, are assumed to have a flat distribution in the
range (0,s pop(i)).
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Fig. 4. Data for experiment 1: (a)s � 1:2; (b) s � 1:0; (c) s � 0:66:

Fig. 5. Results for experiment 1,s � 0:66:



5. Gaussian mixture modeling(GMM). Developed in
Ref. [13]. It outlines that the evidence of a sample
�ln P�X�� depends on three factors.

ln P�X� � L�Xuû �1 fpost�H�1 fprior�û ;X� �37�

where L�Xuu� is the log-probability under a Bayesian
approach,fprior is an a priori function andfpost is an a
posteriori function that depends on the Hessian
matrix of the GMM parameters. Thus, the estimated

evidence ofX is:

ln P�X� � L�Xuû �2 K
Xd
i�1

ln�2s 2
pop�i��1 ln�K 2 1�!

1
Np

2
ln�2p�2 1

2

 XK 2 1

k�1

ln
XN
j�1

 
P̂�vkuxj ; uk�

P̂�vk�
2

P̂�vK uxj ; uK�
P̂�vK�

!2

12d
XK
k�1

ln� ��
2
p

NP̂�vk��2 2
XK
k�1

Xd
i�1

ln lk;i

!
(38)
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Fig. 6. Results of experiment 1,s � 1:0:

Fig. 7. Results of experiment 1,s � 1:2:



where l k,l are the eigenvalues of the covariance
matrix. For simplicity, a normal assumption applied
is to consider that the covariance matrices are diag-
onal. Thus,lk;l � s 2

k;1: Notice that the a priori func-
tion is similar to the one used in the MML method,
where the lattice constant has been substituted by its
lowest limit. Linear interpolation is used for those
values where the constant does not exist.

3.2. Experiment 1

To prove the properties of the previously commented
methods, a simple classification problem has been used
that resembles the problem of colors classification in an
image. Data are generated using four Gaussian functions
with the same standard deviation (s ) but different means:

m1 � �0;0�T m2 � �2;
���
12
p �T

m3 � �4; 0�T m4 � �22;2
���
12
p �T

s � {1 :2; 1:0;0:66} (39)

A hundred twenty samples are taken from each Gaussian,
implying a total of 480 samples, and three different variance
cases are evaluated (see Fig. 4), obtaining the results shown
in Figs. 5–7. The results for the methods presented in
Section 3.1 have been obtained after 10 iterations of the
EM algorithm, employing a different random seed for
each one. A maximum number of 10 iterations have also
been taken in the UAGM method. For all methods, a number
of classes (K) between 1 and 7 has been evaluated.

As can be observed, for the case ofs � 0:66 ands � 1:0;

all methods yield a correct result, identifying an optimum
number of four classes corresponding to the four Gaussians
of the experiment. For the case ofs � 1:2; only the MDL,
MML, GMM and UAGM methods provide correct results.
In all methods, the optimum result is provided by the mini-
mum of the function, except in UAGM, where the optimum
is given by the maximum of such function. Notice that there
exists a clear correlation between MDL, MML and GMM
methods, due to the intimate links existing between
them [26,27]. On the other hand, it is interesting to also
emphasize that the MML method appears to be more stable,
under the same conditions.
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Fig. 8. Data for experiment 2.

Fig. 9. Results for experiment 2.



3.3. Experiment 2

In this example, the behavior of the models is investigated
upon data also generated by four Gaussians. However, in
this experiment, Gaussians are paired such that each pair has
a common mean. We sets1 � s3 � 1 and s2 � s4 �
2:250 samples are taken from each function (see Fig. 8).
We apply the same methodology as in previous example.
The experiment results are shown in Fig. 9.

m1 � m2 � �1; 1�T

m3 � m4 � �21;21�T

s1 � s3 � 1

s2 � s4 � 2 �40�

L.M. Bergasa et al. / Image and Vision Computing 18 (2000) 987–1003 997

Fig. 10. Iris data.

Fig. 11. Results for experiment 3.

Fig. 12. Example of the approximate histogram obtained.



The MML, MDL, GMM and UAGM methods give a correct
result of four optimum classes, while the FHV and Evidence
yield a wrong value of two. This experiment is not
applicable to the outlined colors classification problem
since it can not have two different distributions with the
same mean.

3.4. Experiment 3 (Iris data)

Anderson’s “Iris” data set is well known in analysis of
classifiers. It consists of measurements from the plants’
morphology. “Iris data sets” are formed by 50 samples of
three classes of data:Iris versicolor, Iris virginica and Iris
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Fig. 13. Learning results for a number of neurons between 2 and 7, using 10% of samples.



setosa. Each data is formed by four characteristics. Only
characteristics�x2; x3� (Fig. 10) have been taken. The
different methods have been applied, obtaining the results
shown in Fig. 11.

As can be proven all methods provide a correct result of
K � 3: Data classification has been accomplished using the
UAGM method obtaining four errors in 150 data, implying a
97.5% of correct results. These results are similar to the ones
exhibited by the GMM method (98% of hits), though a
smaller calculation time is required.

3.5. Skin color segmentation

After analyzing the previous experiments, we can
conclude that the results obtained using the UAGM algo-
rithm are similar to those obtained with the MML, MDL and
GMM methods. It is a much more simple method because
the EM algorithm has been substituted by a competitive VQ
learning method, solving the cluster validation problem by
means of a cost function. Then it requires shorter calculation
time, improving results provided by FHV and Evidence
methods.

Next, it is presented a complete example of segmen-
tation for a real image, using the UAGM algorithm. Fig.
12 depicts the color image to analyze, the histogram in
the “rg” space and its approximate histogram. Vectors
are initially located on the peaks of the histogram, to
further perform the training phase through competitive
learning.

The neurons positions are shown in Fig. 13, before train-
ing (circles) and after the training stage (crossings) for a
number between 2 and 7 and a training set of 10% of the
image pixels. As can be observed, the vectors are distributed
on the greatest pixels density areas.

In Fig. 14 the classification quality factor for a number of
classes between 2 and 7 is shown. As can be seen, the
optimum number of classes isK � 3:

Fig. 15 illustrates the image pixels classification into the
different classes, for the different evaluated configurations
�2 # K # 7�: As can be noticed, face color is well
distinguished from the rest forK � 2: Using K � 3; a
new class appears for the shirt color. WithK � 4; the back-
ground color is split into two classes, due to the existence of
light and dark areas in the image. WithK � 5; the skin color
is split into two, one containing the reddest part (lips and
face rednesss) and other for the rest. WithK � 6; the
shirt color is split into two and, finally, withK � 7 a
new color appears for dark areas in the image, such as
eyes and beard sides. The best approximation of the
image main colors is obtained forK � 3 : skin color,
background and shirt.

The results obtained with this method are better than
those presented in [28], since VQ learning algorithm, with
optimal number of vectors, is performed instead of Self
Organizing Maps (SOMs). SOMs are topology organizers
in the sense that a number of neuronsP is organized on a
map, as a function of the input data topology. SOMs do not
accomplish a clustering process. In fact, another algo-
rithm is required to further perform the classifica-
tion[27]. SOMs reduce the amount of information, but
it still needs to be classified. Examples of this type are
presented in Ref. [28], where a supervised classification
is made, once the neurons are located in the Kohonen
map. After that, pixels are classified employing the K-
nearest neighbors technique. Other examples are given
in Ref. [29,30] where a SOM is applied to organize
data, and a multilayer perceptron performs the segmen-
tation using supervised training.

In the UAGM method, neurons are located on the color
space and their positions are the means of the Gaussian
functions that model the histogram. Thus, the classification
is accomplished in a direct way, without requiring any other
method. On the other hand, the system is capable of calcu-
lating the number of functions that best models the histo-
gram in an unsupervised way.

As can be seen in Fig. 15, the resulting clustering (for
K � 3� is not perfect since colors in the image are present
with a small number of pixels, that are not detected by the
algorithm (the window). On the other hand, the mouth and
part of the hair are also considered as skin color.
Nevertheless, this method gives a good estimate of
the image skin pixels improving the algorithm
presented in Ref. [3], where the a priori skin class is
off-line computed.

Fig. 16 depicts pixels clustering into the optimum number
of calculated classes in the color space (a) and skin segmen-
tation in the �x; y� space (b) for the example figure. The
model is applied on the skin cluster so that all those pixels
for which the function evaluation has a value greater than
the threshold (Th) are segmented as skin.

Fig. 17 shows the pixels belonging to the skin class
(red color) applying the clustering process and the
model for different thresholds. In Fig. 18, the segmented
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Fig. 14. Quality factor.



images in the�x; y� space for different thresholds are
depicted.

Once the skin is segmented for the first image of a
sequence, the model is applied to the following ones, esti-
mating their parameters and using an adaptive threshold. In
Fig. 19, the evolution of mean and estimated covariance is
shown for a sequence of 500 images, acquired without any
kind of previous conditioning. Also, the evolution of the
segmented area is shown as a function of time, where it is

noted that the variation is very small, being its variance 1%
of the total skin area.

4. Conclusions

We present a segmentation method of a person skin
from any race, in real time, in an unsupervised and
adaptive way, without introducing initial parameters.
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Fig. 15. Pixel clustering for the different evaluated classes.
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Fig. 16. (a) Pixels clustering in the rg space. (b) Skin cluster detection.

Fig. 17. Skin pixels for different thresholds.

Fig. 18. Skin segmentation for different thresholds.



The system segments complex color images with
random backgrounds correctly, and is robust to lighting
and background changes. It has been demonstrated that,
assuming certain hypothesis, the employed method is a
particular case of the statistic general Bayesian
approach, but without the convergence and complexity
problems that arise in the same. The EM method has
been substituted by a competitive VQ learning method,
solving the cluster validation problem by means of a
cost function, that is a slight modification of the gener-
alized Fisher ratio. It has been demonstrated that the
results obtained using this method, on a series of
synthetic experiments, are at least as good as those
exhibited by the EM algorithm and the model order
selection techniques: FHV, Evidence density, MDL,
MML and GMM. Several tests have been accomplished
using real image sequences, obtaining optimum results.
The algorithm has been tested with persons of different
races (white, black and yellow), performing correctly in
any case. The main drawback found in the method is
that if a color in the background presents a chromaticity
similar to the skin, it will also be segmented as skin.
Anyway, if the object does not have any connection to
the skin blob, the algorithm eliminates it and, therefore,
it does not affect the estimated parameters. However, if
some connection exists between the object and the skin
blob, it will be considered as skin, introducing noise in
the estimation process. On the other hand, minimum
light conditions are required for correct operation.
Above these minimum conditions the system is capable
to adapt within a large range.
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