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Abstract. Mobile robots capable of moving autonomously in more or less structured environments are being
increasingly employed in the automation of certain industrial processes. Along these lines, the authors constructed
a platform, on the base of a commercial industrial truck, provided with sufficient autonomy to carry out tasks within
an industrial environment (VIA: Autonomous Industrial Vehicle).

One of the sensor systems used in the truck is a system of artificial vision which enables it to move on asphalted
surfaces both in open environments (roads) and closed ones, seeking the markings which most easily allow it to
determine the path marked in the images. The system for following roads is capable of following painted lines,
determining the sides of the road by texture analysis or determining the minimum width of the road for the robot
to pass, according to the circumstances. A model of the road predicts its situation and enables a decision to be
made on whether the information provided by the algorithm is reliable or not. At the same time, a neural network
is trained with the results obtained by any of the previous algorithms, in such a way that when the training process
converges the network takes over the steering of the truck.

The vision system, composed of a CCD colour camera and a “frame grabber” installed in a PCI slot of a Pentium
120 PC, provides a path every 100 ms, which allows the industrial truck to be steered at its maximum speed of
10 m/s.
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1. Introduction

A subject that has awakened great interest in robotics
has been and continues to be mobile robots. There are
various reasons for this but perhaps the one that has had
the greatest influence has been the notable advances
made in the field of electronic and sensor systems (in-
crease in the calculation capacity, cost reduction, more
powerful design tools, etc.) and those obtained in other
technologies, which have opened up many possibil-
ities for designing mobile robots capable of moving
with a certain autonomy in restricted spaces. All this
is causing leading companies to centre their research
on attempting to provide their equipment with “intel-
ligence” in a search for greater coordination between

production and the flow of materials. Thus, in order
to attract industry to solutions based on Automatically
Guided Vehicles an attempt must be made to reduce
costs and installation times and to increase flexibility.

After the results and experience acquired in the field
of control and guiding of mobile robots (Mazo and
Maravall, 1990) and invalid chairs (Mazo et al., 1995),
the Department of Electronics of the University of
Alcalá (where very common subjects to any type of
mobile robot are considered) decided to consider the
subject of guiding an industrial vehicle. An industrial
truck was used for this work to which the necessary
adaptations were made in order to deal with control
and guiding using the information obtained from dif-
ferent types of sensors.
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Figure 1. View of the standard industrial truck.

2. General Structure of the System

The vehicle used for executing the steering tests was a
standard industrial truck (ASTI, 1995), a view of which
is shown in Fig. 1.

Figure 2. Sensor location.

This is a structure with the following dimensions
(length×width× height): 1700 mm× 1100 mm×
2000 mm, mounted on three wheels: two fixed (without
any possibility of steering or traction) at the rear and a
single wheel in the centre at the front which is used for
steering and traction. Certain modifications were made
to the commercial structure in order to achieve, on the
one hand, electronic control of steering and speed and,
on the other hand, to locate the entire sensor system
(ultrasonic, infra-red, camera, etc.).

The low level electronic control system designed en-
ables the steering to be controlled with a resolution of
±0.1◦ (with maximum values of±90◦). The speed
control allows a resolution greater than 0.001 m/s to
be achieved, the maximum speed being 10 m/s. Fur-
thermore, the two fixed wheels on the truck both have
encoders in order to detect any possible sliding of the
drive wheel.

Safety sensors were included together with the high
level sensors (ultrasonic, infra-red and CCD colour
camera) to allow the truck to be detained in extreme
cases. Thus, photo-electric proximity sensors, which
are activated if there is any risk of collision with an
obstacle, and contact sensors, which are activated if ei-
ther of the sides of the truck hits any obstacle (however,
lightly), are included.

The high level sensors, which are those on which
the autonomous guiding of the truck is based, were
located in the following manner (see Fig. 2): ultrasonic
sensors at the front and on both sides, vision camera
located in the high part and directed in order to capture



P1: NTA/SGR

Autonomous Robots KL569-04-RODRIGUEZ March 12, 1998 13:52

Automation of an Industrial Fork Lift Truck 217

Figure 3. Control architecture.

the surroundings nearest to the truck and an infra-red
system which, together with the camera, allows three-
dimensional information to be obtained on certain areas
in the scene.

The control architecture implemented is shown in
Fig. 3 and includes five large blocks: Motor control,
safety sensors, dead-reckoning, external sensors (vi-
sion, infra-red and ultrasonic), main unit and commu-
nications bus (LON). The function of each of these is
as follows:

Motor Control. This has the task of controlling the
linear and angular speeds of the drive wheel, using
the information provided by the encoders coupled to
the axles of the electric motors for steering and traction
(both of which act on the drive wheel).

Safety Sensors. As has already been mentioned,
these provide the safety functions in extreme situations.

Dead-Reckoning. This has the task of processing in-
formation from the different encoders located in the
various wheels, with the object of estimating the posi-
tion of the truck.

Sensor 1 (Vision). This has the task of obtaining vi-
sual information, from a CCD camera, on the surround-
ings through which the truck has to move (Fig. 4).
It permits guiding along defined paths such as roads
(whether painted lines exist or not). The functioning
of this sensor system is the object of the second part of
this article and is described more fully in Section 3 and
following sections.

Figure 4. CCD camera.

Sensor 2 (Infra-red). This module allows three-
dimensional information to be obtained on those parts
of the surroundings which result from the intersection
of this with an infra-red plane of light.

Sensor 3 (Ultrasonic). This module allows the pres-
ence of obstacles or objects in the surroundings of the
mobile robot to be detected (Fig. 5). A first interpreta-
tion of the information obtained through these sensors
permits obstacles to be detected and avoided. A more
detailed analysis facilitates the identification of the ob-
jects and the location of the vehicle with respect to
same.
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Figure 5. Ultrasonic sensors.

Main Unit. This module has the task of processing
the high level information (the path to be followed,
map of the surroundings, position of the obstacles, etc.)
provided by the various sensors, in order to adapt them
to the low level commands (steering and angular speed
of the drive wheel) which the motor control system can
adequately interpret, taking the physical model of the
mobile robot and the type of control to be executed into
account.

Communications Bus (LON). This has the task of
communicating between the various aforementioned
modules. Each block is provided with sufficient “in-
telligence” for high level processing of the external in-
formation received, so that the messages exchanged be-
tween them are kept to a minimum. It is because of this
that emphasis has been placed on reliability and speed
(real time) in communications in the bus selected. A
bus that provides these services and which also allows
the reconfiguration of the system and allows flexibil-
ity is the ECHELON (ECHELON, 1993). Each node
in this bus has a link circuit called a “Neuronchip”
which can be programmed in a high level language
(NeuronC), thus facilitating the configuration of same
(which variables are shared with other nodes) and the
establishment of communications.

Kinematic Model of the Truck

The industrial truck (ASTISA Fork Lift Truck GU-100-
B) is a kinematic model such as the one shown in Fig. 6.

Figure 6. Kinematic model.

Where:

RMD: Drive wheel for steering, whose radius isR =
100 mm.

LW and RW: Left and Right fixed wheels, respectively.
D: Track width of the fixed wheels (D = 1350 mm).
L: Distance between the centre of the imaginary shaft

that joins the two fixed wheels and the drive wheel
for steering (L = 1275 mm).

Although a complete modelling of the truck has to
consider its kinetic and dynamic behaviour (Sarkar
et al., 1994), in this case only its kinetic model has
been considered. That is, the acceleration, friction and
sliding terms have been ignored (Oelen et al., 1995). In
these conditions, the relationships between the output
variables of the kinematic model (V, Ä, x, y, θ ) and
the input variables (Ä,ω) are given by the following
equations:

V = Rω cosϕ

ẋ = Rω cosϕ cosθ

ẏ = Rω cosϕ sinθ

θ̇ = Ä = V tanϕ

L

(1)

whereẋ, ẏ, θ̇ are the variations with respect to the time
of x, y, θ, respectively.

Control System

The control system can be seen in the block diagram in
Fig. 7 and includes different levels. The lowest level is



P1: NTA/SGR

Autonomous Robots KL569-04-RODRIGUEZ March 12, 1998 13:52

Automation of an Industrial Fork Lift Truck 219

Figure 7. Control system.

responsible for the control of the traction and drive mo-
tors. The second level includes control of the speed of
movement and steering of the truck and, lastly, the third
level is responsible for the control of the positioning
coordinates. Different solutions were used to imple-
ment these control systems which range from classic
digital PID controllers at the motor level, to fuzzy neu-
ron controllers at the levels of speed control and truck
positioning.

The positioning coordinates are obtained from each
one of the external sensors (ultrasonic, vision and infra-
red) and from the dead-reckoning module. However,
these coordinates will always be approximations to the
real position. Therefore, it is necessary to establish a
hierarchy among the various sensor systems on the ba-
sis of the precision of the measurements provided. This
precision is given by the position error covariant ma-
trix.

By calling the position estimated by the correspond-
ing sensor system̂p(k) and the real positionp(k), the
error is given as:

e(k) = p(k)− p̂(k) (2)

and the covariant matrix of the error:

J(k) = E{e(k)eT (k)} (3)

The locus of the points where the covariant matrix
coincides with the root mean square error is:

E{e(k)eT (k)} = e(k)eT (k) (4)

with the result being a real ellipsoid, with the centre
in p̂(k)which represents the ellipsoid of uncertainty of
the measurement estimated by the sensor. The greater
the axes of the ellipsoid or the ellipse if working with its
projection on theX-Y plane, the greater the uncertainty
and the poorer the quality of the measurement made.

By knowing the position estimated by each sensor
systemp̂(k) and its corresponding covariant matrix
Q(k), a good final position is given by:

p̂(k) = Q(k)
n∑

i=1

Q−1
i (k)p̂i (k) (5)

Q(k)being obtained from the resulting “parallel” of the
covariant matrices of each one of the sensor systems,
that is to say:

Q−1(k) =
n∑

i=1

Q−1
i (k) (6)

In this way, all the measurements are taken into account
in the final estimate, greater weight being given to the
measurements which are the least uncertain.

3. Steering by Artificial Vision

When it is a case of moving the truck in open environ-
ments, the decision may be made to install some type of
element on the routes along which it must move, which
will permit the control system to determine the lim-
its and form of the route. The main inconvenience
in this type of steering lies in the need to install cer-
tain elements on the routes that the truck uses which,
according to the particular case, may involve a large
investment.

An alternative to the above suggestion consists of
providing the truck with an artificial vision system
which will allow it to obtain the path marked on the
various routes (roads) in the industrial environment.

Outline of the Problem

An automated system for following roads has to con-
sider the following problems (Pomerleau, 1993):
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Figure 8. Schematic of vision system functioning.

— Changes in the state of the roads.
— Changes in the lighting conditions.
— Changes in the meteorological conditions.
— The presence of obstacles (other moving objects).

Constructing a system capable of dealing successfully
with all these circumstances is no trivial matter when
it also has to be considered that the processing time for
an image has to be such to permit guiding at speeds
which each application requires. In the case of the
industrial truck, this restriction on the processing time
is not excessive as the maximum speed at which it can
move is 10 m/s.

General Description of the System for Following
a Road for an Autonomous Industrial Vehicle (VIA)

The system for following a road tested in the VIA
project attempts to approach the majority of the prob-
lems described. A basic schematic of its functioning
can be seen in Fig. 8.

The system has various algorithms for following a
road: (a) detection of painted lines, (b) textural differ-
ences between the road and non-road, (c) determination
of the minimum width and (d) training of the neural
networks. A model of the road with three parameters
(a1, a2 anda3) was used in order to establish which

algorithm should be employed at any particular time.
This was updated with the new measurements provided
by the active system for following. When the mea-
surements varied significantly from those predicted by
the model, another algorithm for following was used
and the model was adapted according to this new al-
gorithm for following. As the following of the road
was being carried out, a neural network was trained
in such a way that, while there was no drastic change
in the road conditions, or the paths were repeated, the
neural network directly provided the information nec-
essary for steering the vehicle. In this way, the system
imitated the behaviour of a human driver who, as well
as steering according to the markings that he finds on
the road, memorizes situations, thus decreasing the re-
sponse time when these are repeated.

Generating a Path

Generating a path begins with the schematic in Fig. 9,
whereP is the position of the centre point of the rear
axle of the mobile robot at the present time;P′ indicates
where this point should be situated when the distance
l is covered, by following the road:d is the distance
from P to the edge of the road andd′ is the distance that
there must be between the edge andP′ whenl has been
covered;θ is the angle which must be zero in order to
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Figure 9. Generating a path.

locate the mobile robot in a position parallel to the road
and at the distanced′, after coveringl metres. The dis-
tancel is a parameter of the system for following fixed
at 5 metres;d′ is another parameter that represents the
distance that there must be at all times between the mo-
bile robot and the edge of the road (1 metre at present).
θ is the measurement of the real position of the mobile
robot with respect to the destination position, which
can be calculated by knowingl , d and the equation for
the edge of the road, provided by the vision system.

The control loop that allows the mobile robot to be
positioned in positionP′ has the referenceθ = 0.

Work Previous to Road Following

In general, the projects developed in other research
centres apply artificial vision techniques for detecting
certain characteristics present in the video images taken
of the road in front of the vehicle in order to determine
the path that the vehicle has to follow from its relative
position on the image. Almost all these systems are
centred on detecting some specific characteristic, such
as painted lines on the road (Dickmanns et al., 1994).
Others, detect the regions on the image that represent
the road basing this on characteristics such as colour
(Turk et al., 1988) or texture (Thorpe, 1990). An al-
ternative approach consists of combining vision with
learning techniques (basically neural networks) in such
a way that the learning process is the neural network
itself that establishes the characteristics that define the
path along the road (Pomerleau, 1993).

One of the most important tasks in autonomous
guiding along a road was executed by the group of
Prof. E.D. Dickmanns at the Bundeswehr University
in Munich. In his latest work (Dickmanns et al., 1994),
within the Prometheus III project in the EUREKA pro-
gramme of the European Community, a Mercedes 500
SEI car (VaMoRs-P) was equipped with a complex sen-
sor system (4 colour cameras, three inertial sensors, a
tachometer and angle sensors) and a sophisticated pro-
cessing system (60 transputers and various PC 486’s)
with the object of driving the vehicle along motorways
at speeds of up to 130 km/h.

In the United States, one of the most outstanding
projects was the NavLab project of Carnegie Mellow
University. Various algorithms were tried out in this
project for the detection of the edges of the road
(Pomerleau, 1993), which was started in 1986. The
one that has given the best results to date is based on
the training of a neural network whose input is a low
resolution 30× 30 image and whose output Xa is the
direct position that the wheels of the vehicle have to
have in order to follow the road. This system, called
ALVINN, managed to drive the test vehicle, NAVLAB
1, for 21.2 miles at speed of up to 55 miles/h. The
neural network functions reasonably well when it is
trained in conditions and on roads similar to those along
which the vehicle is travelling. When changes in the
road conditions are produced on the paths followed by
the mobile robot, it is necessary to switch to another
trained neural network until these new conditions have
passed. In order to solve the problem of how and to
which neural network to switch, a super-connecting
structure—MANIAC—has been proposed which in-
corporates multiple single networks of the ALVINN
type, each one pre-trained for a particular type of
road.

In the PATH programme (Partners for Advanced and
Transit Highways) in the American State of California,
with the participation of the Institute of Transportation
Studies of the University of California in Berkeley, ex-
tensive work has been carried out since 1986 on the
autonomous steering of vehicles along roads. At the
present time, experiments are being carried out with
magnetic sensors located on the road, to facilitate lat-
eral control of the vehicle, and with a Doppler radar for
detecting obstacles and the longitudinal control of the
vehicle. Research is being done on the possibility of
integrating these sensors with visual information. The
vision module is based on stereovision to obtain the
position of the lines on the road (Koller I., 1995).
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4. Algorithms Used for VIA

Area of Interest

An area of interest was established in the image which
contains sufficient information to allow the steering of
the mobile robot with the object of reducing the pro-
cessing time to a minimum. The area under study, on
the other hand, was modified according to the charac-
teristics of the road in question and the steering speed.
In this way, the steering speed on straight stretches can
increase significantly and it is therefore necessary to
be able to detect any possible bends sufficiently in ad-
vance, by locating the area under study in the upper
area of the image. On stretches with bends, the speed
of the vehicle decreases so the study window is centred
near the mobile robot with the object of following the
bend perfectly.

Algorithm for Following Painted Lines

Using three bands of colour (r, g, b) per image, pro-
vided by the image acquisition system, an image with
an intensity,I , is obtained, as follows:

I =
√

1

3
(r 2+ g2+ b2) (7)

A group of equally spaced bands is determined in
the area of interest in imageI on which the possible
existence of painted lines can be analyzed. Taking into
account that the existence of lines can be characterized,
on the majority of Spanish roads, by an increase in

Figure 10. Gray level image (a). Lines detected (b).

the grey level and by a high derivative near the line, the
following function is constructed for each line of the
image under study:

fi ( j ) = α1I (i, j )+ α2(I (i, j )− I (i, j − 1)) (8)

where fi ( j ) is the weighted sum of the grey levels and
of the derivatives at the point(i, j ). The weighting is
carried out on the basis ofα1 andα2, the result being
a study on the grey levels ifα2 = 0 and a study on the
derivatives ifα1 = 0.

The analysis of the image by lines is intended to
minimize the influence of the appearance of transverse
shadows on the image. A study based on the whole
image would make it very difficult to detect the lines
in the dark areas and, at the same time, would increase
the processing time. On the other hand, when shadows
affect a part of the image, the study of the derivative
provides information on the surrounding areas, such
as the painted line itself. Obviously, high derivatives
are also produced on the edge of the shadowed area,
but these edges are eliminated later by the algorithm
for updating the model which predicts an area for the
appearance of the lines.

Once the line functionfi ( j ) has been constructed,
T( j ) is thresholded at a level dynamically estab-
lished as:

T( j ) = max( fi ( j ))− σ/4 (9)

whereσ is the typical deviation of the linefi ( j ). An
example of the edges obtained can be seen in Fig. 10.
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Figure 11. Image with shadows (a). Enhanced road image (b).

Algorithm for Following the Road
According to its Width

When a mobile robot is driven along a road it is only
necessary to have sufficient roadwidth, with the restric-
tions of steering along the right hand lane, at a certain
distance from the edge and without colliding with the
vehicles obstructing the path. For this, another algo-
rithm available in VIA, in the case of it not being pos-
sible to detect painted lines, consists of searching for
sufficient roadwidth for the mobile robot to be able to
move.

An image in grey levels is constructed from three
colour bands (r, g, b), in which the road is empha-
sised and shadow is eliminated as far as possible. In
(Pomerleau, 1993 and Crisman, 1988) it is shown that
by adding standard brilliance to the blue band, a cer-
tain type of shadow can be eliminated. What is more,
the difference between bandsr andg, emphasises the
road. In our algorithm, a grey image is constructed,
both things being achieved simultaneously. To do this
I is constructed, as follows:

I = b+ b− r

r + g+ b
(10)

Figure 11 shows the elimination of shadows and the
relief of the road.

Once imageI has been obtained, it is standardized
and thresholded starting from the fact that the road has
been highlighted and evened out, and that, in these
conditions, a simple thresholding allows the road to
be detected. The choice of the threshold level is made
dynamically. The thresholding process is started at a
certain level, ul, the resulting width of the road is

determined line by line and a check is made to ensure
that it is sufficient for the robot to pass. If it is not, the
threshold level is decreased until the necessary width
is achieved. The points which define the greatest width
that can be achieved on each line are then detected and
a check is made to ensure that they are compatible with
the aforementioned ones for the road model. In the
case of the points on the model not being compatible,
they are rejected and an attempt is made to search the
road using another algorithm. The threshold level for
the following search is initially located as a function of
the value achieved in the previous iteration.

This algorithm functions very well for detecting the
right hand side of the road which, in fact, is more impor-
tant when driving the mobile robot. Figure 12 shows
the result of applying the algorithm to the image in
Fig. 11.

Figure 12. Edge detection by width search.
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Algorithm for Following the Road
According to Different Textures

In certain circumstances, such as the case of roads with
potholes, without painted lines, the algorithm for de-
tecting the width may not be sufficient to detect the
edges of the road. Because of this, an algorithm has
been implemented in VIA along the lines of other re-
search work (Thorpe, 1990), for segmenting the road on
the basis of obtaining a vector of typically textural char-
acteristics, such as the medium, the smoothness and
the contrast, in addition to the two most discriminating

Figure 13. Block diagram of texture discriminating algorithm.

Figure 14. Original image and segmentation obtained.

bands of colour (r, b). Figure 13 shows a general or-
ganigram of the operation of the algorithm.

In our system, the “active area” has been sub-divided
into small windows, which are quicker and easier to
study. On the other hand, it is possible to make the
information discrete from the “active area” into grid
squares with very reduced dimensions from which a
vector of characteristics can be extracted on the basis
of the previously mentioned characteristics. By using
grid squares of 20×20 pixels, a grid of 384 squares can
be acquired, arranged in 12 rows each with 32 columns.

A Bayesian classifier, which discriminates between
two classes, road and non-road, is used to establish the
squares which present the features of the road. The
calculation of the discriminating functions is made by
admitting that the distribution of the vectors of char-
acteristics for both patterns is presented in a Gaussian
form. A density probability function is calculated for
each class, considering all the samples of same that
appear on the scene.

The manner of discriminating is as follows, wherex
is the vector of characteristics of a given sample,f1(x)
is the probability density function for the road class
and f2(x) is the probability density function for the
non-road class:

f1(x) > f2(x)→ road (11)

In the reverse case, the window is assigned to the non-
road class. Figure 14 shows an example of segmenta-
tion of a real image following this algorithm.

Once the image has been segmented, the edges are
extracted and used to update the road model. If the
edges obtained are very different from those predicted
for the model, they are ignored. In order to adopt an
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algorithm, it is necessary to work with a model for each
edge of the road, in order to determine the squares that
belong to each class in the active area. Finally, the
discriminating functions are updated in such a way that,
in the following classification, any possible changes
in the texture of the road will have been taken into
account.

Neural Network.

The neural network is trained at the same time as the
system for following the road is providing the points
necessary for defining the road model (see Section 5),
by inputting the reduced image to the windows and
the value of the parameter that defines the path to be
followed (θ ) as the output. When the network has been
sufficiently trained, its output allows steering by the
system with a response time clearly less than that in
the algorithms already described.

The architecture of the neural network is similar
to that employed by Pomerleau (1993) but, with the
methodology for training being substantially modified.
In (Pomerleau, 1993) the training is carried out while
a driver steers the mobile robot along the road which is
the object of the test. This method has the disadvantage
of the need for previous learning of the autonomous
steering and dependence on the kinetic model of the
mobile robot, as the drive commands depend on this.

The output provided by the neural network once
functioning allows a confidence level to be established
in such a way that when this is insufficient, another
algorithm for following the road is activated and the
network weightings are stored, in case the previous
steering conditions should be produced again. At the
present time, our system is capable of storing up to 20
different networks following the FIFO principle.

While following the road, without the action of any
network and at the same time as a new network is being
trained, one of the networks already stored is selected
every 5 frames and a check is made on whether its re-
sponse is compatible with that predicted by the model.
If it is, the network is activated and has the task of steer-
ing the mobile robot. In this way, if the mobile robot
moves through an area which has already been crossed
previously, the system will need 100 frames to recover
the network that was trained in this section, in the worst
of cases. 100 frames implies an average steering speed
of 5 m/s with a processing time per frame of 100 ms
and that the robot will cover 50 m as a maximum until
the system is capable of remembering the road.

5. Model of the Road

The correct functioning of the algorithms described
above requires the existence of a prediction of the path
marked on the road, with the object of determining
whether the results obtained by the algorithm are co-
herent. At the same time, two types of uncertainties
are resolved. The first is the uncertainty over the speed
with which the road changes direction as a function
of time (supposing a constant speed). The second is
the uncertainty over whether the characteristics sought
will be found in the following image and, in the case
of finding them, what state they will be in and what
quality they will have.

Model for Representing the Edges of the Road

When it comes to choosing the model to represent
the road, two important alternatives are introduced,
working directly on the flat image in two dimensions
or previously transforming the flat image to three-
dimensional coordinates. The first option has the ad-
vantage of simplifying the calculations and therefore
facilitates real time control of the mobile robot. How-
ever, the model may be less exact than the one that
operates in three-dimensional space. The second op-
tion has the advantage of being able to operate with a
model, the clotoidal model, which is comparable to the
one employed for the projection and routing of roads.
However, it is more costly from the point of view of
calculating and more sensitive to maladjustments of the
camera.

In our case, a model which operates on the image in
two dimensions was chosen to optimize the process-
ing time, the efficiency of which was compared with
other work (Schneiderman and Nashman, 1994). The
edges of the road (or the lines that define the lane for
the truck to pass) are modelled by means of a sec-
ond degree polynomial, one for each edge, on the flat
image.

j = a1 · i 2+ a2 · i + a3 (12)

where j is the column andi is the row,a1,a2 anda3

determine the form and position of the model of the
edge. The final points for each model are determined
by the intersection of the equation that represents the
model and the limits of the window of interest.



P1: NTA/SGR

Autonomous Robots KL569-04-RODRIGUEZ March 12, 1998 13:52

226 Rodríguez, Mazo and Sotelo

Updating the Model

The points on the edge of the road obtained by the al-
gorithm for active following of the road are used to
update the model of the edge. At the time of updating
the model, an attempt must be made to make the result
sufficiently robust. In order to do this, a compromise
must be made between the robustness of the model
(considering a long series of images when calculating
this) and the response capacity faced with changes in
the road (using a short sequence of images). Further-
more, as the number of coherent points on the edge
that can be calculated from one image to another can
vary, depending on the appearance of shadows, pot-
holes, changes in light, etc., an image with a lot of
points on the edge in the model of the road must have
more influence than another image that only has few
points.

Procedure for Updating the Model

The following cost function is minimized for updating
the model:

JR=
t∑

p=0

(
λt−p

Np∑
a=1

[
j p,a−

(
a3+a2i p,a+a1i

2
p,a

)]2)
(13)

wheret corresponds to the current image,Np, in the
number of points achieved in the imagep. Each term
in the cost function represents the points on the edge
obtained at any given moment. The influence of each
term in the final expression will be given by the number
of points on the edge obtained for that image, so that
images with a lot of points will have more influence on
the result that those with fewer points. On the other
hand, images previous to the current one are taken into
account in the cost function in order to achieve a robust
estimate. However, to avoid the algorithm being insen-
sitive to changes in the path on the road, the points in
the previous images cannot be weighted in the same
manner as the current ones. An exponentially decreas-
ing weighting is therefore established, by multiplying
each term by a power ofλ, so that the oldest images
have the least influence on the final model.

The parameterλ, variable between 0 and 1 allows
the influence of past images to be increased or de-
creased. The greater the value ofλ, the greater will

be the influence of the past sequence, eventually arriv-
ing at the case where, withλ = 1, all the images have
an equal influence on the training of the model, result-
ing in a system that is highly insensitive to changes in
the path marked on the road. Small values ofλ mini-
mize the influence of the previous images, decreasing
the robustness of the model and making it more sensi-
tive to changes in the path. In the extreme case ofλ= 0,
only the current image will be taken into account in the
training of the model.

An adjustment ofλ is essential in order to achieve
a robust system which is sensitive to changes in the
path on the road at the same time. In order to avoid
the problem of a saturation of the algorithm on straight
stretches, the value ofλ is dynamically modified while
the road is being followed. On stretches where there
are no significant changes in the path, the case may
occur where the algorithm becomes insensitive to any
possible later changes (e.g., a bend after a long straight
stretch), because of this the value ofλ is governed by
the following expression:

λ = a1 ∗ α + λmin (14)

On straight stretchesa1 is practically 0, for which rea-
son the algorithm is prepared to detect bends. On
stretches with bends,λ increases so that the importance
of past paths also increases.

Recursive Updating of the Model

The minimizing of the cost function employed requires
a great number of calculations which have a negative
effect on the system processing time and, therefore, on
the final qualities of same. Because of this the updat-
ing of the model is expressed again recursively, estab-
lishing a1,a2 and a3 as the current state of the sys-
tem. When new points on the edge are obtained, the
new state is calculated by using these new points to-
gether with the previous state and the covariant matrix
of states, which represent the entire previous history.
To sum up, this updating consists of three consecutive
calculations:

(a) The points on the edge estimated by the model are
calculated:

ẑ(n) = H(n)x(n− 1) (15)
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(b) The estimated covariant of states is updated:

P(n) = 1

λ
[P(n− 1)− K(n)H(n)P(n− 1)]

where

K(n) = P(n− 1)H ′(n)(λI + H(n)

×P(n− 1)H′(n))−1 (16)

(c) The estimated state is updated:

x(n) = x(n− 1)+ K(n)[z(n)− ẑ(n)] (17)

where

z(n) =


jn,1
jn,2
. . .

jn,Nn

 H(n) =


1 i n,1 i 2

n,1

1 i n,2 i 2
n,2

. . . . . . . . .

1 i n,Nn i 2
n,Nn



x(n− 1) =

a3

a2

a1


x(n− 1) represents the estimated state at the moment
n− 1.P(n− 1) represents an estimate of the states co-
variant. This algorithm is known as recursive square
minimums with decreasing exponential weighting
(MCRP).

Determination of the Active Algorithm
and Switching Between Algorithms

The following process is started by locating the truck in
front of the road and manually establishing the initial
position of the road and its model. The algorithms for
following the road are activated as in an inverse func-
tion of their processing time, so that the one responsible
for detecting lines has priority. If the points on the edge
acquired through this algorithm are found to be in the
order of±δ (currently 0.5 m) with respect to those
predicted by the model, they will be considered to be
valid and the model will be updated with these edge
points.

When the points on the edge are not compatible with
those predicted by the model, the path predicted by
the model will be maintained for 10 frames, in the
hope of recovering consistent data. The choice of 10
frames has been made for safety reasons as, in the worst

Figure 15. Right edge detection complete process.

case, this allows the mobile robot to move only 10 m
“blind”, so that the risk of leaving the road is mini-
mal. If no consistent data has been provided at the
end of the 10 frames, another algorithm for following
the road is used, the value ofδ increasing (up to 1 m)
in order to facilitate convergence between the model
and the algorithm. Figure 15 shows an example of
operating.

Figure 15(a) shows the current image, with the
points on the edge predicted by the model. Figure 15(b)
shows the edges extracted from the road. Figure 15(c)
shows the points on the edge that are within the search
margin established for the predicted edges±20 pixels.
Finally, Fig. 15(d) shows the edges once the model has
been updated.

The procedure described is repeated until one of the
algorithms allows the edges to be detected. The speed
of the mobile robot decreases as the processing time
for the algorithms increases or the number of points on
the edge supported by this decreases.

6. Results

In order to check the system for following roads de-
scribed in this article three phases have been completed:
(a) in the first phase each of the different algorithms for
the road images recorded on video was tested individ-
ually under various light, climatic and seasonal condi-
tions; (b) this was followed by testing the system for
integrating algorithms described for the same images
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and (c) finally, tests were made in open environments
using the industrial truck described, over a stretch of
two kilometres on the University of Alcal´a campus.

6.1. Individual Tests of Each Algorithm

Each algorithm was individually tested on images cor-
responding to a previously recorded section of approx-
imately 15 kilometres on various roads under different
circumstances. The measurements taken for establish-
ing the effectiveness of the algorithms were: (a) the
number of points on the edge obtained within the an-
ticipated margin, according to the estimated position on
the road, (b) the average rms error between the points
obtained on the edge and those estimated by the road
model, (c) the index of confidence calculated as the
ratio between the number of points obtained and the
average error and, finally, (d) the standardized error of
states, measured as:

errornorm= (x− xest)
′P−1(x− xest). (18)

Figures 16–18 show the results obtained for each
algorithm, in a sequence of 100 images, with the model
adjustment parameter,λ = 0.5.

Training the Neural Network

The neural network was trained on the basis of a
varied group of images and their corresponding out-
put obtained with the results from guiding using an-
other algorithm. The training group was divided into
9 sub-groups each of 10 images and each correspond-
ing to an arc of 10◦ for the angleθ (variable between

Figure 16. Results obtained with the width search algorithm.λ =
0.5.

Figure 17. Results obtained with the texture algorithm.λ = 0.5.

Figure 18. Results obtained with the detection of painted lines.
λ = 0.5.

−45 and 45◦). In order to maintain the diversity of the
training, every time a new image was processed, the
sub-group to which the output of the new image corre-
sponded was updated, all of these thus being updated
after 18 cycles. If no paths corresponding to any of the
sub-groups appeared during training, they were gener-
ated by means of geometrical transformations, on the
basis of current images.

Figure 19 shows the evolution of the network train-
ing, when the steering algorithm was based on the
detection of lines and Fig. 20 shows the results of fol-
lowing the road, measured in terms of average rms
error, once the network had been trained and the guid-
ing of the mobile robot assumed. On average, network
training required 100 cycles.
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Table 1. Results obtained for various test.

Light conditions Average speed Average deviation Typical deviation Other comments

Sunny, middle hours 5.45 m/s 10.87 cm 3.19 cm

Sunny, sun at sunset 3.32 m/s 17.34 cm 5.47 cm Stopped at 100 m of finish

Cloudy 5.35 m/s 11.03 cm 3.25 cm

Sunny, middle hours 5 m/s 7.16 cm 2.52 cm Constant speed

Figure 19. Evolution of the network training.

Figure 20. Results of following with de neural network.

Tests on the Industrial Truck
in Open Environments

The run designed for checking the efficiency of the
guiding algorithms was on the University of Alcalá
campus and was approximately two kilometres in
length, with two alternate sections of 500 metres with

painted lines and another two without any type of sig-
nalling, so that the system of steering by artificial vision
had to switch between the various algorithms in order
to complete the run. The autonomously guided truck
completed the above run in 6 minutes at an average
speed of 5 m/s under normal ambient conditions (mid-
dle hours of the day and sunny). Figure 21 shows the
truck during the run and the PC used to execute the
algorithms described.

Although there is no existing standard for establish-
ing the qualities of an automatic system for following
roads, the average deviation with respect to the ideal
path was measured (driving at 1 metre from the edge)
and the results obtained for various tests under different
circumstances are shown in Table 1.

The run made at a constant speed of 5 m/s gives
an average deviation of less than that obtained when
the speed is variable due to the fact that, in the latter
case, the speed was calculated using a fuzzy controller
in which small oscillations in its tuning could not be
avoided. Finally, when the light conditions were ad-
verse, the algorithms did not function as well, the av-
erage steering speed being decreased. In the extreme
case of the sun at sunset being in front of the truck,
following could not be completed as the colour camera
became saturated.

To conclude, compared with other systems, the one
presented here permits guiding on almost all types of
roads, with adaptations to changes in the markings on
the road, width and climatic conditions. In compari-
son with learning algorithms such as the one used in
(Pomerleau, 1993), this system has similar advantages,
without the need for previous training as the network
learns at the same time as the system is being steered by
another type of algorithm. When comparing it with the
work in (Dickmanns et al., 1994), this system is more
modest, but is capable of guiding along roads without
painted lines and the cost of the hardware for the sys-
tem is considerably less, which makes it more likely to
be used in the industrial world which, when all is said
and done, is the final objective of this work.
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Figure 21. Truck during the run and the PC used to execute the algorithms.
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