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Abstract— Understanding the behavior of road users is of
vital importance for the development of trajectory prediction
systems. In this context, the latest advances have focused
on recurrent structures, establishing the social interaction
between the agents involved in the scene. More recently, simpler
structures have also been introduced for predicting pedestrian
trajectories, based on Transformer Networks, and using po-
sitional information [1]. They allow the individual modelling
of each agent’s trajectory separately without any complex
interaction terms. Our model exploits these simple structures by
adding augmented data (position and heading), and adapting
their use to the problem of vehicle trajectory prediction in
urban scenarios in prediction horizons up to 5 seconds. In
addition, a cross-performance analysis is performed between
different types of scenarios, including highways, intersections
and roundabouts, using recent datasets (inD, rounD, highD and
INTERACTION). Our model achieves state-of-the-art results
and proves to be flexible and adaptable to different types of
urban contexts.

I. INTRODUCTION

Predicting road users trajectories is essential for au-
tonomous driving. It enables path planning taking into ac-
count future states of dynamic agents, resulting in safer and
more comfortable driving. It is reasonable to think that agents
are affected in their behavior by traffic conditions and road
structure, so any potential solution must be flexible enough to
be applicable to various scene contexts. In addition, although
recent approaches model the behaviors of multiple agent
types within a single model (vehicles, cyclists and pedes-
trians) [2], [3], having specific models for each agent type
simplifies the problem, and facilitates the use of simple and
effective architectures, such as Transformer (TF) networks.
These have been proposed for Natural Language Processing
(NLP) to deal with word sequences, using attention instead
of sequential processing [4].

TF networks have been recently applied to predict pedes-
trians trajectories [1], by using positional information. These
are considered as ”simple” models because each agent is
modelled separately without considering complex interac-
tions such as social recurrent networks [5] and graph neural
networks [6] approaches. In this paper, we explore, for the
first time, the applicability of TF networks to predict vehicles
trajectories in multiple scenarios. We study the effect of aug-
menting the positional information with additional variables
(i.e., velocity and orientation) for the context of vehicles.
We evaluate the proposed model using four recent datasets
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Fig. 1. System overview.

(highD [7], inD [8], rounD [9] and INTERACTION [10])
which include different scenarios of different complexity
(intersections, roundabouts, and straight road segments). In
this way, we validate and assess the flexibility and learning
transferability of the TF networks when dealing with vehicle
trajectory prediction in multiple urban scenarios.

II. RELATED WORK

In the early stages of trajectory prediction, classical ap-
proaches relied essentially on linear regression, Bayesian
filtering or Markov decision process. These methods per-
formed properly, but since they are based on a explicit
physical model of the agents’ behavior, their scaling and gen-
eralization capabilities are limited. Data-driven approaches
have become more predominant to address these limitations.
Recently, Deep Learning based methods have emerged for
vehicle maneuvers [11], [12] and trajectories [13] prediction.
More specifically, Recurrent Neural Networks (RNNs), such
as GRUs and LSTMs, have been widely used in the field.
In order to account for interactions, these approaches were
adapted by including a social pooling layer (Social-LSTM)
for pedestrians [14] and also for vehicles [5]. In order to
overcome some limitations of the social pooling layer, we
can find approaches based on occupancy grids [15], (Scene-
LSTM) [16], message passing (SR-LSTM) [17], Generative
Adversarial Networks (Social GAN) [18], (SoPhie) [19] and
multi-agent tensors [20].

Another interesting approach to model spatial interactions
for trajectory forecast is through Graph Convolutional (GNN)



or Graph Attention (GAT) Networks. They use a graph to
represent each agent (nodes) and their interactions (edges),
and update each node state and implement a weighted
message passing mechanism by using convolutional or feed-
forward layers, or attention mechanisms. They have been
applied for modeling traffic participant interactions [6]. In
order to integrate temporal information, graph representa-
tions are usually combined with recurrent-based ensembles
such as Social-BiGAT [21], Social-STGCNN [22], GRIP++
[23], or adapted to allow learning temporal patterns (ST-
GCN) [24]. Recently, the STAR model [25] proposed to
combine GATs to model spatial interactions, with Trans-
formers to model temporal interactions. Finally, we can
find recent proposals based on the combination of some
encoder-decoder architecture with Conditional Variational
Auto-Encoders (CVAE) such as AMENet [2] or DCENet
[3]. CVAEs are used to encode spatial-temporal information
into a latent space. Future trajectories of the agents are then
predicted by repeatedly sampling from the learned latent
space. Most of the aforementioned approaches focused on
pedestrian trajectories.

This paper is mainly inspired by [1] which adapted Trans-
former Networks (TF) to predict pedestrian trajectories in
crowded spaces. They achieved state-of-the-art results in Tra-
jNet benchmark [26], by relying only on self positional infor-
mation without explicitly modeling interactions. TF models
overcome the limitations of RNN-based models which suffer
when modeling data in long temporal sequences, or in cases
in which there is a lack of input data in observations (very
common in real systems involving physical sensors), being
more parallelizable and requiring significantly less time to
train. Moreover, its main weakness, i.e. the absence of
explicit modeling of spatial interactions (which is explicitly
addressed by graphical-based approaches), also represents
its main strength, i.e. the simplicity of the model, which
also facilitates explainability. Spatial interactions and context
can be easily incorporated into the input embedding without
increasing the model complexity.

To the best of our knowledge, this is the first attempt to
use TF models in the specific context of vehicle trajectory
prediction. We evaluate the effect on performance of adding
the heading to positional information, as well as the effect
of the sampling frequency. Another important contribution
is the evaluation of the system on four different datasets,
which include different types of urban environments such
as roundabouts, different types of intersections, straight road
sections, etc. Different cross experiments are performed to
validate the flexibility and generalization capability of this
approach.

III. METHODOLOGY

This section describes the methodology employed to
deploy the model: defining input and output data,
pre-processing BEV datasets and modifying a Vanilla-
Transformer to introduce new inputs and process them ade-
quately.

A. Addressing the problem

As stated before, to predict a trajectory the objective is to
forecast future positions of agent i by observing its current
and previous positions, being defined an observation window
(seen sequence) and a prediction horizon. The objective is
to provide predictions about the position of the agent at the
future κ steps.
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Fig. 2. Architecture overview: adding new inputs.

1) Positional Information and Encoding: Compared to an
LSTM, TF does not process the input sequentially, so it
needs a way to encode the temporal information. For this
it makes use of positional encoding, where each input em-
bedding has its corresponding timestamp, calculated through
sine and cosine functions, as in [4]. The input embedding
is concatenated with the positional encoding vector. This
feature of the TF makes it possible to learn in parallel
from all the time instants, while the LSTM needs to be
processed sequentially, performing back-propagation. If a
certain element is missing from the input, the positional
encoding will consider it, which is not as problematic as
in a LSTM, where this information could be lost. This claim
was proven by the original authors of the model, showing that
the architecture can perform satisfactorily even when missing
data, degrading performance in inverse proportion to the age
of the lost samples. Normalization of the input is vital for
the performance, so the inputs are normalized by subtracting
the mean and dividing by SD of the train set. This model
is not multimodal, although it would be possible to classify
the inputs into different classes by representing the inputs as
vectors (i.e., through classification). According to its original
developers, regression works better than classification-based
approaches, so this approach is the one chosen.

We kept the original architecture of [1], adopting an L2
loss in which position increments (to enhance the indepen-
dence of each given position) and normalized heading are
configured. dmodel = 512, using 6 layers and 8 attention
heads. Warmup have been setup to 10 epochs, using a
decaying learning rate in the subsequent epochs.

The memory of the model is based on the attention
modules, where in the encoding stage a representation for
the observation sequence is produced. Thus, this creates
two vectors to be handed to the decoder stage, as seen
in the figure 2. TF keeps the memory separate from the



decoded sequence, unlike LSTM, which keeps everything in
the hidden state. For this reason, TF is known to work better
with longer prediction horizon.

The additional input to the Transformer is the heading
normalized between 0 and 1. This is then combined with the
training loss calculation to complement the velocity (position
increments) at each time instant.

2) Preprocessing the data: As data contained in every
dataset is enclosed in a different way, as will be detailed in
the corresponding section, it is necessary to preprocess them.
Firstly, it is required to take into consideration the framerate,
even though in this case the input data will be kept in order
to enable possible studies to be carried out, considering this
matter directly in the data loader. The sets are separated
by classes, according to the tests to be performed. After
analyzing part of the recordings of one of the datasets, it was
noticed that there were static cars parked steadily, which data
could affect the result of the inference. Thus, a filtering is
applied to remove this specific information from the datasets,
resulting the structure frame, track, x, y, vx, vy, heading.
Some tests have been developed with vx and vy, but finally
they have not been employed in this work. Increments of
x and y have been calculated directly as velocity value,
considering the time step. Units are expressed in SI. The
sliding window step for each valid full trajectory capture
has been set to 1, in order to analyze all possible trajectories
in each split.

IV. RESULTS

A. Datasets

The use of bird’s eye view (BEV) datasets has been re-
markably extended in the recent works to develop trajectory
prediction systems, emphasizing the TrajNet [26] for pedes-
trian trajectory prediction. This dataset offers a Challenge
that constitutes a solid multi-scenario forecasting benchmark,
observing 8 values of position ground-truth (3.2 seconds)
and predicting the following 12 positions (4.8 seconds). All
positions are given in world plane coordinates, being the
8-12 protocol a consistent fashion for diverse datasets, as
explained in the following section.

Beyond purely pedestrian-based approaches, NGSIM
datasets [27] [28] pioneered in providing coverage of a high-
way area, offering information taken from cameras mounted
at a skyscraper. Other multi-agent focused datasets have been
developed in the past few years, some focusing on highway
scenarios, such as highD [7] for highway vehicle trajectory
prediction, offering aerial images obtained with a drone
located over various locations of german Autobahn, Vehicle
labeling ensures that the error is below 10 centimeters, pro-
viding a combined total of 147 hours of drive time on more
than 100,000 vehicles. Moreover, the authors of this dataset
went further with the concept, moving to urban scenarios:
inD [8] and rounD [9] record different intersections and
roundabouts, respectively. In addition to previously men-
tioned, the INTERACTION Dataset [10] combines all these
scenarios, including ramp merging, signalized intersections
and roundabouts. This dataset also provides diverse material

in driving behavior, showing multiple critical maneuvers,
including an accident. These are the situations that add value
to a trajectory prediction solution, and should be evaluated
here in a qualitative way. Table I offers an overview of
datasets employed to develop the experiments. Furthermore,
while the use of 2D datasets taken from drones or fixed
locations in bird’s eye view enables a relatively simple
creation and labeling process, the ultimate purpose of such
datasets would be to train models that can later be ported
to vehicles with onboard sensors, which can be tested in
datasets like the PREVENTION Dataset [11].

B. Evaluation metrics

TrajNet performance is measured in terms of Mean Av-
erage Displacement Error (MAD/ADE) and Final Average
Displacement (FAD/FDE). ADE measures the aligned Eu-
clidean distance from the prediction w.r.t. the ground truth,
making an average of the error at every time step. That is,
ADE reports a mean value of the general fit of the forecast
in the predicted trajectory. FDE measures the Euclidean
distance at the very last step, comparing the prediction to
the corresponding ground truth position.

1) inD: Comparative results: In order to make a fair
comparison, the model execution for this section has been
performed with the same data split used by the DCENet
authors to carry out their quantitative analysis. This includes
all types of agents, which are loaded and analyzed globally
in the results without differentiation, which may affect the
results of the TF models.

Beyond this aspect, the data split proposed for the table
II includes in the training recordings of intersections of the
same location that will be analyzed later in the test, but in any
case a recording has been included in both training and test.
In addition, it would be interesting to propose an alternative
that compares temporal horizons, instead of setting the 12
prediction frames (4.8 seconds) as the only horizon.

As we can see, the Vanilla-TF model is behind AMENet
and DCENet in this test, while Oriented-TF improves the
results to some extent, without outperforming those de-
scribed. Thus, in this test it is not possible to conclude
categorically whether the inclusion of heading improves
trajectory forecasting.

For this reason, in the following comparative tests of
generalization of the models, different splits will be selected,
depending on the type of test to be performed, which avoid
the visualization of equivalent scenes by the model in the
training set. Furthermore, from now on only vehicles (cars,
trucks, vans, trailers, etc.) will be evaluated.

C. Testing in different datasets

1) Single dataset tests: The aim of this section is to
perform tests with different data splits within each dataset, in
order to analyze the performance of the model for different
scenes, keeping completely separate the data with which the
model is trained and the test. It is also possible to compare
the performance of the original system and the one that
includes the heading. As shown in Table III, the Oriented-TF



TABLE I
DATASETS USED IN THIS WORK

Dataset Country Locations # Tracks Road User Types Data Frequency Maps
inD Germany urban intersections (4) 11500 pedestrian, bicycle, car, truck, bus 25 Hz yes

rounD Germany
(sub-)urban

roundabouts (3)
13746

pedestrian, bicycle, motorcycle,
car, van, truck, bus, trailer

25 Hz yes

highD Germany highway (6) 110000 car, truck 25 Hz no

INTERACTION
USA

Germany
China

roundabout (5), intersection (4),
highway (2)

40054 pedestrian/bicycle, car, truck 10 Hz yes

TABLE II
GENERAL PERFORMANCE

InD Average
S-LSTM 1.88/4.47
S-GAN 2.38/4.66

AMENet 0.73/1.59
DCENET 0.69/1.52
Vanilla-TF 1.07/2.65

Oriented-TF 1.02/2.57

takes advantage in the INTERACTION recordings, improv-
ing the FDE by more than one meter in all scenarios.

As can be appreciated in the table, the results of split 4
of the inD are notably weaker in all metrics. Analyzing the
recordings, it is possible to think that in this intersection the
network does not have other previous references, since the
only one that could be similar is 3, slightly less complex
and with lower occurrence in the dataset. As expected, the
results in the highD are remarkably favorable, due to the
strong linear component that exists in this highway dataset.
Note that in the highD the authors do not provide the heading
as it, so a careful selection of another included metric, the
minimal distance headway (in meters), is introduced directly
instead of the heading (it is not normalized in this example).

As tested in the comparative analysis against other archi-
tectures, it was also planned to carry out a data split including
similar video sequences, to evaluate the performance of the
two architectures in similar conditions to the ones studied
in the inD. Thus, the results obtained are as expected, with
a decrease of about 4 times the error in the rounD case.
This may be due to the marked imbalance of the data per
scenario in this dataset. In the INTERACTION, the error is
also lower, but to a minor extent, and the results are slightly
better for the Oriented-TF model.

2) Mixing datasets: similar scenarios of different datasets:
In order to assess the generalization potential of the system
in terms of coordinate prediction independently of the inputs,
this analysis will test the model in similar scenarios to those
already known, but from a completely different dataset.

As can be seen in table IV, the results are quite sat-
isfactory for the intersections, obtaining similar figures to
those obtained by performing the train on the dataset itself.
Something specific can be observed in the case of round-
abouts, where a lower error is obtained when testing on
roundabouts of a dataset different from the dataset on which
the model has been trained. In the case of the Oriented-
TF, no improvement is seen here, being marginal only for
the highD. The generalization of the model in this case is

excellent, obtaining results that are even better than its own.
3) Generalization between different scenarios: After test-

ing comparable scenarios, the performance of vehicle dy-
namics learning will now be assessed, independently of the
trajectories observed in the training videos. So, for example,
could it know how a vehicle will act at a junction if it
has been trained with roundabouts? As observed in Table
V, the generalization in this case is also fairly adequate,
highlighting an improvement to the single results in the inD-
rounD and inD-INT-round test. It seems quite significant that
the model has improved the results in roundabouts training
with intersections, and it is also remarkably the performance
improvement of the Oriented-TF in the training and test cases
in the INTERACTION.

4) Changing frame rate of input data - Vanilla TF:
The frequency of data input also seems to be vital in the
performance of a prediction system. In this section, Vanilla-
TF has been tested on the set of inD vehicles, with training
strategy on 3 scenes and test on the remaining one. The tests
have been carried out with the original layout of 2.5 fps (8-
12) and on 5 fps (16-24). For the test sets on scenarios 1 and
2, the choice of doubling the framerate is the winning option,
with FDE improvements of 0.43 m and 0.57 m, respectively.
However, for scenarios 3 and 4, the 2.5 fps framerate is still
the better option, with FDE improvements in favor of 1.49
m and 3.5 m, respectively. Junctions 1 and 2 coincide with
crossroads at perpendicular intersections where the vehicle
dynamics are different to the others, possibly extracting more
information and taking advantage of the additional framerate.

D. Qualitative results

Beyond the quantitative results, it is always convenient
to have an approach closer to reality by directly repre-
senting the input and output data of the system. Figure
3 shows three prediction situations that were observed in
one of the cross experiments, specifically in the rounD -
INTERACTION Roundabouts. In one of them the system
has correctly predicted a linear trajectory, in another it is
forecasting quite correctly a moderately tight turn, while in
the last one it has chosen a turn in the wrong direction,
making a very significant error according to the established
metrics. The selected figures include one of the sections of
the USA EP map, where there is a junction stretch adjacent
to the roundabout. Thus, it is also possible to appreciate
the model’s generalization capacity, which has been solely
trained with European roundabouts from the rounD dataset.
The figure 4 shows the histogram of FDE for various forecast



TABLE III
SINGLE DATASET TESTS

Training // Test Vanilla-TF
ADE / FDE

Oriented-TF
ADE / FDE Training // Test Vanilla-TF

ADE / FDE
Oriented-TF
ADE / FDE

inD: 123 // 4 7.67 / 17.22 7.71 / 16.83 rounD: 01 // 2 6.59 / 16.87 6.62 / 17.09
inD: 124 // 3 1.46 / 3.85 1.56 / 4.08 rounD: 02 // 1 6.64 / 17.04 6.88 / 17.53
inD: 134 // 2 2.80 / 7.46 3.47 / 9.02 rounD: 12 // 0 6.68 / 16.71 7.98 / 19.82
inD: 234 // 1 1.91 / 5.18 1.89 / 5.14 rounD: mixed 1.88 / 4.85 1.94 / 5.10
inD: mixed 1.07 / 2.65 1.02 / 2.57 highD 1.19 / 2.96 2.20 / 3.75

INT - intersection:
EP0-EP1-MA // GL 2.54 / 6.95 2.10 / 5.66 INT - roundabout:

SR-FR-EP-OF // LN 4.46 / 11.65 3.81 / 9.51

INT - intersection:
MA-GL-EP0 // EP1 3.27 / 8.17 2.80 / 7.16 INT - roundabout:

LN-SR-FT-EP // OF 4.27 / 11.63 3.68 / 10.11

INT - intersection:
mixed 2.09 / 5.85 1.81 / 4.98 INT - roundabout:

mixed 2.75 / 7.78 2.31 / 6.38

TABLE IV
EQUIVALENT SCENARIO TESTS (TRAINING ON ENTIRE DATASET)

Training // Test Vanilla-TF
ADE / FDE

Oriented-TF
ADE / FDE

inD // INT-int 3.12 / 8.10 4.89 / 10.87
INT-int // inD 4.04 / 10.10 4.24 / 10.32

rounD // INT-round 3.19 / 8.34 5.18 / 11.72
INT-round // rounD 5.30 / 14.13 6.99 / 16.54
highD // INT-merg 2.45 / 5.14 2.35 / 4.77

TABLE V
DIFFERENT SCENARIOS TESTS (TRAINING ON ENTIRE DATASET)

Training // Test Vanilla-TF
ADE / FDE

Oriented-TF
ADE / FDE

inD // rounD 5.87 / 15.08 5.97 / 15.37
rounD // inD 3.27 / 8.35 3.40 / 8.59

INT-int // INT-round 5.04 / 12.84 4.51 / 11.68
INT-round // INT-int 2.99 / 8.21 2.67 / 7.28

inD // INT-round 3.34 / 8.58 5.26 / 11.46
INT-round // inD 3.36 / 8.83 4.44 / 10.08

horizons in the qualitative scenario, considering in all cases
8 frames observed. It is visible that the errors increase as the
time horizon is extended, showing slopes similar to those of
a normal distribution.

As seen in this section, BEV datasets used with the TF
can deliver surprising results, performing better in some
situations when they have been trained with foreign scenes.
This raises the question of whether these scenarios really
contribute anything to model learning, opening the debate
as to whether it is better to have a large amount of data or
whether more variability in the scenes, coupled with detailed
labeling, is more valuable. An interesting phenomenon has
also been noticed with the inclusion of heading, working
better in the INTERACTION dataset, while in the others it
has hardly improved. This opens the door to a modification
of the normalization method and processing of heading in
these datasets.

V. CONCLUSIONS AND FUTURE WORK

Based on the experiments performed, it is possible to
conclude that the Oriented-TF model, as well as Vanilla-
TF, are fully competent among the state-of-the-art models
for the datasets analyzed in this work, confirming its good
performance in TrajNet by its original authors, considering

that it is a single agent approach, where no context variables
or interaction with other agents are included. Thus, a first
approach to the analysis of its generalization ability has also
been carried out, by conducting multiple cross-tests between
similar scenarios of diverse datasets, analyzing the obtained
results. A novel use of the Transformer is also proposed,
by adding the agent’s orientation as an input variable to
improve the trajectory prediction, observing interesting re-
sults, depending on the dataset analyzed. As future work,
the core task is to further develop the model, measuring its
possibilities for single agent input data processing, as well as
exploring the social architectures already proposed based on
graphs. In addition, the direct use of this model could involve
other datasets that also contain data that can be expressed in
2D, as is the case of the information that we can obtain
from PREVENTION through the radars. This will enable
testing, for example, the inference time in a real situation
by obtaining information from the radars of an instrumented
vehicle.
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