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Abstract— This paper describes a novel approach to perform
vehicle trajectory predictions employing graphic representa-
tions. The vehicles are represented using Gaussian distributions
into a Bird Eye View. Then the U-net model is used to perform
sequence to sequence predictions. This deep learning-based
methology has been trained using the HighD dataset, which
contains vehicles’ detection in a highway scenario from aerial
imagery. The problem is faced as an image to image regression
problem training the network to learn the underlying relations
between the traffic participants. This approach generates an
estimation of the future appearance of the input scene, not
trajectories or numeric positions. An extra step is conducted
to extract the positions from the predicted representation with
subpixel resolution. Different network configurations have been
tested, and prediction error up to three seconds ahead is in
the order of the representation resolution. The model has
been tested in highway scenarios with more than 30 vehicles
simultaneously in two opposite traffic flow streams showing
good qualitative and quantitative results.

I. INTRODUCTION AND RELATED WORK

Highways are among the most common driving scenarios
in which autonomous vehicles are starting to develop their
autonomous capabilities. Decision making is one of the most
critical tasks of autonomous vehicles. Current decisions are
based not only on what the vehicle is currently sensing but
also on how it will evolve. Thus, the prediction of surround-
ing vehicles’ trajectories becomes of utmost importance as
underlying support for decision making. In the last years, this
topic took relevance, and some datasets have been released to
develop trajectory prediction models. These datasets are basi-
cally of two types regarding the recording point of view. The
NGSIM datasets [1], [2], and the HighD dataset [3] provided
vehicle trajectories recorded from an exterior point of view
covering a static area over a highway. Other initiatives such
as [4], [5], [6], [7], and [8] uses mobile platforms to record
surround vehicle trajectories. The problem with some of the
in-vehicle dataset is that they are not specifically designed
to develop trajectory predictions. The number of samples
is insufficient, the data rate is insufficient, or their sensors
do not provide the proper detection range. The off-vehicle
datasets have an advantage that their data is not affected by
occlusions, but they need to be adapted to be deployed on
vehicles.

According to [9], vehicle trajectory predictions can be
classified into three levels: physical-based, maneuver-based,
and intention-aware. The first type is based on mathematical
models that fit the vehicle dynamics [10]. The second tries to
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Fig. 1. System overview.

predict the driver’s intention and generates a trajectory corre-
sponding to the predicted maneuver. The third type predicts
trajectories modeling in some manner inter-dependencies
between the traffic agents. Some works such as [11] or [12]
used Artificial Neural Networks to model the underlying
behavior of a vehicle through their lateral positions. Some
times trajectories are used to predict actions, and other
actions are used to predict trajectories[12]. Recently, more
complex approaches that models vehicle interaction [13],
[14]. [14] uses the social pooling layer to create a connection
between the predicted target and other traffic participants.
The intrinsic state of the vehicles is commonly encoded using
a Recurrent Neural Network(RNN).

In this paper, we propose a simple Bird Eye View
representation and state-of-the-art CNN to make trajectory
predictions in crowded highway scenarios. Interactions are
not explicitly modeled, but they are considered included by
itself.

The rest of the paper is organized as follows. Section II
provides a thorough description of the network architecture.
Section III describes how HighD dataset is transformed to be
used as input and output of the proposed network architec-
ture. The training procedure and different training choices
are explained in section IV. Section V presents significant
results of the proposed model in section II. Finally, section
VI concludes the paper, providing some insights into future
developments.



II. SYSTEM OVERVIEW

In this section, the CNN architecture used to perform
trajectories prediction is presented.

The U-net model [15] has been selected as the prediction
core. This network was developed to perform semantic
segmentation in biomedical imagery. This network presents
different levels of features extracted from full image resolu-
tion to lower resolutions. All the features are combined in the
end, adapting their sizes. The U-Net network is defined by
the mainstream blocks that halves the original input image
consecutively, then the same number of blocks doubles the
size of the features block. The features extracted in the
input side are concatenated with the features extracted in
the output side at the corresponding levels. The number
of levels is denoted as depth n. Fig. 2 shows a simplified
representation of the U-net’s architecture. The pre-processing
block generates k features directly from the original image
that will be double after each deep level.

In this approach, we use this model to perform image
to image regression. The scene is represented into a Bird’s
Eye View (BEV) with dimensions h× w. In the input side,
d representations of past samples are stacked, creating an
image with d channels. At the output side, an image with d
channels representing future samples is used as the network
target. The idea is that the network core learns the underlying
behavior presented in the input block and generates the same
representation of that vehicles in a particular future point.

It is important to note that this network takes as input a
data block with size at least 2n × 2n and multiples of this
value. Another critical point is to define the receptive filed
from an output pixel. Eq. 1 shows the influence range of a
single input pixel where n is the number of encoder-decoder
blocks. Each encoder block expands the receptive field with
two 3 × 3 convolution layers, and them virtually multiplies
by 2 with a maxPool layer with a kernel size 2×2. A decoder
block has a 2dtranspose layer that increases the features by 2
in the two first dimensions. This block doubles the receptive
field, then two convolution layers with kernel size 3 × 3
increase the contact surface.
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For example, a U-net network with five deep levels would
create a contact surface that links a pixel in the output layer
on the position (0,0) with all the pixels in the input layer
located at coordinate closer than (156,156). It would connect
the output reference pixel to all pixels closer than (316, 316)
for six levels of deep. Note that the output reference pixel is
in the top left corner. The same connections are created to
the left, right, up, and down. This point is critical due to the
nature of vehicle interaction, especially in highway scenarios.
Driver decisions, and consequently, vehicle trajectories are
based on what the driver can see. In highway scenarios,
the influence area of a certain vehicle grows according to
its speed. The proposed architecture cannot ensure that the
vehicle’s computed position takes into account all that the

Fig. 2. U-net architecture based on deep levels.

driver is seeing. However, it takes into account up to 284
meters in both the front and backward directions, which
covers all the study area when the vehicles are in the middle
of the scene and the 75% when the vehicle has just entered
the study area. Table I summarize main features of U-net
model for common deep levels.

TABLE I
U-NET CONTACT SURFACE AREA

Deep levels 4 5 6 7
Contact Area ±76 ±156 ±316 ±636
Minimum input size 16 32 64 128
Parameters 56k 116k 235k 472k



III. DATA TRANSFORMATION

In this section, the procedure followed to transform the
HighD data into images is described in the first subsection.
The reverse procedure to compute positions from images
is detailed in subsection III-B. Finally, the association of
generated positions to provided positions is specified in
subsectionIII-C.

A. Input & Output Representation

The vehicle detections are represented in a BEV grid,
where each pixel represents the probability of being a ve-
hicle. Each vehicle is represented using a bi-dimensional
Gaussian distribution, independently of the vehicle type.
According to eq, the Gaussian distribution represents the
probability of using a specific tile in the BEV. 2. The mean
value of each bi-dimensional Gaussian distribution µ is set
using the center of the rectangle proposed for each detection.
The standard deviation value σ is composed with the half of
the width and height of the detection rectangle. When two
vehicles overlap, the cumulative probability could overflow
the maximum probability allowed. There are two options to
merge the area shared by two vehicles. The first option is
to add both and truncate it to the maximum probability.
The other one is to use the maximum of both probability
distribution functions according to eq. 3. The second option
represents the real scene in a more reliable way, and it
is better for the position extraction algorithm as it will be
exposed in subsection III-B.
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 (2)

p(x, y) = max {pi(x, y)} ∀i (3)

Fig. 3 illustrate a sample of the dataset. The top image
represents the provided detections represented as rectangles
using the original coordinates and dimensions. The bottom
image represents the same scene but representing the vehicle
detection making use of the Gaussian distribution function.
Different vehicles can be observed with different lengths,
corresponding to vehicles and trucks. This image represents
simultaneously two traffic streams, one flowing from right to
left in the upper part of the image and other flowing from
left to right in the bottom.

The BEV representation has been defined as a grid with
512 pixels width and 64 pixels high. This grid represents a
physical space of 512 meters along the x axis and 32 meters
along the y axis according to the definition of the HighD
coordinates. The grid’s size has been established based on
three criteria: memory size when it is allocated in the GPU
for training purposes, a proper resolution to understand
the scene, and compatibility with the proposed network
architecture in II. The y axis resolution is double than the x
resolution. This decision was taken because the longitudinal
movement of vehicles is more stable and constant with
more significant variations than lateral movement. A higher

Fig. 3. Data representation in a BEV using rectangles (top) and Gaussian
distributions (bottom). This representation corresponds to sequence 1, frame
1 of publicly available HighD dataset.

resolution in the y axis allows detecting lateral behaviors
easier.

Both input and output data are represented in the same
way making no distinctions. The complete input and output
data consist of d consecutive samples stacked, creating an
input/output volume with size 64× 512× d.

When d time samples of data are stacked, a new problem
is generated in the output block. The output block represents
future samples. Consequently, two kinds of vehicles coexist,
ones who were present in the input block and others,
which are new vehicles. The future positions of these new
vehicles cannot be predicted as far as there are no data
in the input block to consider their existence. Future scene
representations contain only vehicles that were present in the
last input representation. Fig. 4 shows a scene representation
three seconds ahead on time. White Gaussian distributions
represent vehicles that were present three seconds back, and
red ones represent new and not predictable vehicles.

Fig. 4. Representation three seconds ahead from the last input represen-
tation. Red Gaussian distribution represents new and unexpected vehicles.
Upper stream flows from right to left and lower from left to right. New
vehicles are focus on both entries to the study area.

B. Vehicle Position Extraction

The codification procedure transforms numeric data into
a representation to make predictions. Once predictions are
made, the representation needs to be transformed into nu-
meric data. For each input image, n different predictions are
generated at different horizon time. The number of vehicles
present in a future scene is a prioiri unknown, so the way
used to extract numeric positions of vehicles from each
output representation must be able to produce a not fixed
amount of positions. It can only consider the vehicles in the
future should be the same or fewer than in the last known
sample.

The algorithm proposed in 1 is used to extract the position
of the vehicles. The output data represents the probability of
being using a tile in a certain future sample. The algorithm
finds the pixel with the highest probability first. This pixel
is denoted as P = (R,C), and it is used as the discrete



location of the vehicle. The discretization procedure used to
represent both input and output data into a grid needs to be
reverted. The proposed algorithm extracts the position with
sub-pixel resolution in a second step. The position of the
vehicle is refined using a scoring function. Each pixel pi
included in the area defined by a rectangle with dimension
R = 2w× 2h around P contribute weighting its probability
by its pixel coordinates according to eq. 4. Note that discrete
positions are conditioned by the resolution used to define the
probability occupancy map, which is set to 1.0 and 0.5 meters
per pixel along the x and y axes.

P̂ (R̂, Ĉ) =

r=R+h∑
r=R−h

c=C+w∑
c=C−w

p(r, c) · (r, c) (4)

After computing the sub-pixel position, the area used to
compute it is cleared, setting the probability in the occupancy
map to zero. This procedure is repeated as many times as tiles
with a probability higher than pmin remain in the occupancy
map. According to the definition of the occupancy map,
where a value of 1 means that the pixel is occupied and
0 means empty, we set the threshold pmin to 0.5. That is the
limit to consider that a pixel represents a possible vehicle.
Fig. 5 shows the codification of an arbitrary vehicle, the
red cross represents the actual center of the vehicle, the
blue plus symbol represents the discrete find position of the
vehicle, and the green one represents the sub-pixel position
of the vehicle. Note that the image has been zoomed by
16 to illustrate the differences between discrete and sub-
pixel detection. Vehicle parameters are: w = 5.0, h = 2.0,
x = 6.63, y = 3.21, and representation parameters: xppm =
yppm = 1.

Algorithm 1 Multi-Vehicle Location Extraction
1: function P = EXTRACTION(p(r, c), pmin, w, h)
2: P = ∅
3: while ∃(r, c) | p(r, c) > pmin do
4: P = (R,C)|p(R,C) > p(r, c)∀(r, c)
5: P̂ (R̂, Ĉ) = SubpixelLocation(p(r, c), w, h, P )
6: P̂ ∈ P
7: ∀(r, c) ∈ P ± (h,w) do p(r, c) = 0
8: end while
9: end function

10: function P̂ = SUBPIXELLOCATION(p(r, c), w, h, P )
11: R̂ = Ĉ = 0
12: for R− h < r < R+ h do
13: for C − w < c < C + w do
14: R̂+ = p(r, c) · r
15: Ĉ+ = p(r, c) · c
16: end for
17: end for
18: P̂ = (R̂/2h, Ĉ/2w)
19: end function

Table II shows the position extracted from vehicle show
in fig. 5. The vehicle is represented in a BEV using the
same resolution in both axes, equal to 1 meter per pixel. The

Fig. 5. Position extraction from graphic representation. The red cross
represents the actual center of the vehicle, the blue plus symbol the discrete
find position and the green plus symbol the sub-pixel position. Image
augmented 16 times.

position of the vehicle is at coordinates x, y = (6.63, 3.21).
The resolution used to make the representation defines the
error generated when the maximum method is applied to ex-
tract the vehicle’s position. However, the subpixel resolution
method has errors in the order of tens of millimeters, and it
is not related to the resolution used to represent the data.

TABLE II
POSITION EXTRACTION METHODS

Original Maximum SubPixel
X / Y [m]/[m] 6.63 / 3.21 7 / 3 6.615 / 3.216
X / Y Error [m]/[m] - / - 0.37 / 0.21 0.015 / 0.006

C. Association of Extracted Positions

When the positions of all the vehicles are extracted from
an image, they need to be associated with their respective
detection. A simple procedure based on a Hungarian matrix
[16] is used to associate the extracted positions with the
positions given in the dataset. The number of elements
that can be matched is the minimum between the number
of positions extracted from the image of the number of
detections provided for the corresponding scene. The value
used as the distance parameter to associate elements is the
euclidean distance between extracted points and detections.
This method is good enough as predicted positions do not
differ from the actual positions of the prediction targets. Fig.
6 shows predicted positions and associate target prediction.
As can be seen, the association process works well for this
type of problem. An element in the last prediction image
does not make with a target because it has not be predicted
due to a low probability of existence.

IV. TRAINING STRATEGY

The available data in the HighD dataset consists of 60
sequences with lengths starting from 9700 up to 32200
frames recorded at 25 Hz. The number of vehicles present in
these sequences accounts for 110K in a total of 1500K frames
representing more than 16 hours of traffic recordings. The
amount of data is massive and allows us to train models with



various samples and situations. The frame rate is too high to
appreciate differences from one frame to the next with the
resolution used to represent the scene. The original frame
rate was reduced from 25Hz to 5Hz, removing four of each
five samples. The input data stack 15 BEV representations
of past samples. The output stack 15 BEV representations of
the next consecutive samples. The lowered time resolution
allows the input and output data to cover bigger spam of time
using the same number of channels. The time represented in
the input block is from t to t−2.8 seconds. The output block
represents future locations from t+ 0.2 to t+ 3.0 seconds.

A. Training Hyper-Parameters
The training set contains only the samples included in

sequences from 1 to 20 due to the vast amount of data.
Samples from sequences 21 to 25 have been used as a test
set. Table III summarize the main features of the dataset,
training, and test set used to develop the models.

TABLE III
DATASET, TRAINING, & TEST STATS

Samples @ 25Hz Samples @ 5Hz Trajectories
HighD dataset 1500K 300K 110K
Training set 463K 93K 28K
Test set 126K 25K 7K

The influence of high-level parameters such as the net-
work’s deep level and the output topology has been tested,
doing different trainings varying them. The results of each
variation is presented in section V in table V. Regarding the
deep levels of the U-net, it was limited to 5 and 6. Levels
below five cannot be tested because of input size restrictions,
as specified in table I. Level 7 and higher exceeds the GPU
memory size, and the training could not be conducted. The
last layers of the U-net were replaced to fit the regression
problem. Three different output layers were identified as
possible output layers: linerLayer, tanh, clippedReLu. The
linear layer does not apply a transformation to the network’s
output. The tanh layer applies the hyperbolic tangent func-
tion ranging the output into the range of (−1, 1) with a
non-linear transformation. The clippedRelu keeps the output
between 0 and a given value, which is 1 for this purpose.
The last one seems to be perfect to fit the output problem
with its values in the range (0, 1).

The main training hyper-parameters are detailed here:
mini-batch size = 1, epoch = 1, initial learning rate 10−6,
momentum = 0.9, gradient threshold = 1, loss function =
MSE.

V. RESULTS

This section presents and discusses the final results gener-
ated by the proposed model described in sections II and III
to predict the trajectories of vehicles in a group way. For a
better understanding of training times and inference rates, the
details of the computer used to carry out these experiments
are given. PC with Kubuntu 18.04LTS, i7-7700K CPU,
32GB of RAM, and NVIDIA GTX1080Ti GPU using Matlab
2019b.

For trajectory prediction problem evaluation, we used the
two metrics to evaluate the goodness of each configuration.
Longitudinal and lateral absolute errors are computed for
each prediction time. Table V shows the mean values of
these errors at two points: the first prediction sample and
the last one, equivalent 0.2 and 3 seconds. For clarity, we
omitted other prediction intervals. The configuration with
the tanh layer produces output images where any vehicle
position could be extracted.

TABLE IV
PREDICTION ERROR BY NETWORK TOPOLOGY

t = 0.2 t = 3.0
U-net topology εx/εy εx/εy
Deep = 5, fcn = linear 0.52 / 0.17 2.36 / 0.54
Deep = 6, fcn = linear 0.23 / 0.01 1.23 / 0.07
Deep = 5, fcn = tanh - / - - / -
Deep = 6, fcn = tanh - / - - / -
Deep = 5, fcn = clippedRelu 0.74 / 0.38 2.51 / 0.94
Deep = 6, fcn = clippedRelu 0.46 / 0.22 2.06 / 0.62

TABLE V
PREDICTION ERROR BY NETWORK TOPOLOGY

t = 0.25 t = 2.0
U-net topology εx/εy εx/εy
Deep = 5, fcn = linear 0.65 / 0.21 1.57 / 0.36
Deep = 6, fcn = linear 0.29 / 0.01 0.82 / 0.04
Deep = 5, fcn = tanh - / - - / -
Deep = 6, fcn = tanh - / - - / -
Deep = 5, fcn = clippedRelu 0.92 / 0.47 1.67 / 0.63
Deep = 6, fcn = clippedRelu 0.57 / 0.27 1.37 / 0.41

The training evolution reduced the prediction error quickly
and progressively until the last iteration in the best-case-
scenario. This progressive reduction indicates that the model
is generalizing because new and not view by the net samples
produces lower errors than previous ones. The training time
took around 4 and 23 hours for the 5 and 6 deep levels,
respectively. The different output layers do not produce a
significant delay in the training time. Both models can run
at 63 and 16 Hz at deploy time, respectively, accounting only
the inference time.

VI. CONCLUSIONS AND FUTURE WORK

As conclusions, a novel method to predict trajectories
in a group way, including all the involved elements in a
simple BEV representation is presented. Motion histories
and vehicle interactions are included by stacking consecutive
representations of past samples. The U-net is used as a
prediction core, which has shown an impressive capacity to
generate visual representations of future positions. The use
of Gaussian distributions to represent the vehicles allows us
to retrieve subpixel positions from discrete images.

The network at it is only can be used to predict positions
3 seconds ahead. However, the proposed architecture has the
same dimensions in the input and the output sides. The first
channel of the output block can be used as the current sample
in the input block and the new output extends the prediction



Fig. 6. Data representation in a BEV of predicted vehicles. Four top
images represent a input sequence data, four bottom represents predictions
at t = {0.2, 1.0, 2.0, 3.0} seconds ahead. Red crosses represent the position
of the prediction targets, and green plus symbols are the predicted positions
extracted from the image generated by the U-net model.

one step more. This process can be repeated as many times
as desired, but the output quality becomes lower due to the
degradation of the input data. The inference time of this
model does not vary with the number of involved vehicles.

It has been observed that the U-net model with five deep
levels does not perform good quality outputs; the authors
consider that it is related to the receptive field created
by the network. It has been observed that large vehicles
such as trucks produce double detections when the position
extraction method is used. It is caused because the fixed-
sized used to clear the occupancy map does not clear all
the areas occupied by the truck. This problem can be solved
by using the ground truth’s information to set the width and
height of the vehicles, but it cannot be used at deploy time.

As future work, the efforts must be focused on increase the
training data and extend the training time. The vast amount of
data present in the HighD and the number of conducted tests
took many days. The two streams of traffic can be used to
double the samples generating a unique traffic flow direction.
U-net with seven deep levels seems promising, a by-parts
training can be conducted to train models that do not fit in
the GPU memory. Some trainings were conducted using a
mini-batch size different to 1. The output images have less
definition than the same trainings with a single image mini-
batch.
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