
Experimental validation of lane-change intention prediction

methodologies based on CNN and LSTM

R. Izquierdo, A. Quintanar, I. Parra, D. Fernández-Llorca, and M. A. Sotelo

Abstract— This paper describes preliminary results of two
different methodologies used to predict lane changes of sur-
rounding vehicles. These methodologies are deep learning based
and the training procedure can be easily deployed by making
use of the labeling and data provided by The PREVENTION
dataset. In this case, only visual information (data collected
from the cameras) is used for both methodologies. On the one
hand, visual information is processed using a new multi-channel
representation of the temporal information which is provided
to a CNN model. On the other hand, a CNN-LSTM ensemble
is also used to integrate temporal features. In both cases, the
idea is to encode local and global context features as well as
temporal information as the input of a CNN-based approach to
perform lane change intention prediction. Preliminary results
showed that the dataset proved to be highly versatile to deal
with different vehicle intention prediction approaches.

I. INTRODUCTION AND RELATED WORK

One of the most risky scenarios for autonomous vehicles

in highways are the lane change maneuvers of surrounding

vehicles. Endowing self-driving cars with the ability of

predicting potential hazards due to these type of maneuvers is

of utmost importance. Most of the current approaches to deal

with the lane change prediction problem are learned-based.

Accordingly, a considerable number of labeled samples from

real traffic scenarios is needed. In this paper, we make

use of The PREVENTION dataset [1] which provides a

large number of accurate and detailed annotations of vehi-

cles categories, trajectories and events (including left/right

lane changes, among others). More than 356 minutes, 4M

vehicle detection and 3K trajectories are available, with

data collected from LIDAR, radar and camera sensors, from

surrounding vehicles up to a range of 100 meters.

Two different deep learning based methodologies are pro-

posed using visual information. On the one hand, a new

multi-channel representation of the temporal and context

information is proposed. As can be observed in Fig 1a, the

contours of the detected vehicles (like the motion history) are

temporally integrated at frame t. We use different channels

for the vehicle from which the prediction is inferred, and

the rest of the vehicles. This new representation is fed to

a convolutional neural network (CNN) architecture which is

trained from scratch. On the other hand, as can be observed

in Fig 1b a more standard approach is also used by applying

convolutional operations (from a trained network) to each

Region of interest (ROI) of a temporal sequence for each

vehicle, attempting to include local context information in a
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(a) Motion history representation.

(b) Encoded ROI sequence.

Fig. 1: Temporal image integration.

canonical frame for each vehicle. Sequence folding/unfolding

and a flatten layer are used followed by a Long Short-

Term Memory network (LSTM). Both approaches can be

easily trained thanks to the data and labels included in The

PREVENTION benchmark.

Although a considerable number of works have been

proposed in the literature to deal with the ego vehicle lane-

change prediction problem, we limit our study to approaches

focused on lane-change prediction of other vehicles.

As suggested by [2] vehicle motion modeling and pre-

diction approaches can be classified into three different

levels. First, physical-based, where predictions only depend

on the laws of physics. Second, maneuver-based, where

the future motion of a vehicle depends on the maneuver

that the driver intends to perform. Finally, intention-aware,

where predictions take into consideration inter-dependencies

between surrounding vehicles. Note that, in some kind of

vicious circle, predicting when a lane-change will happen

can be addressed using the estimated trajectory from any

of the three different motion model levels, and predicting

the motion of surrounding vehicles can be more precisely

estimated if lane-change intention prediction is available.

As highlighted in [3], most of the works related to lane-

change intention prediction can be classified as probabilistic-

or deterministic-based. In [4] a Support Vector Machine and

a Bayesian filter are used to predict the lane change taking

into account the lateral position and the heading error of the



vehicle with respect to the road. In [5], a simple classification

approach using a Naive Bayesian Classifier with Gaussian

Mixture as distribution model was proposed using only

three features: lateral speed, the preceding vehicles speed

and the lateral position with respect to the lane center.

The same authors proposed in [3] a probabilistic regression

approach using Random Decision Forest and a Mixture of

Experts. Predicting lateral motion using neural networks

was proposed in [6] and [7], which can be further used to

predict lane-change intentions using deterministic classifiers

such as SVM [7], [8]. The use of vehicle tracks to infer

maneuver classes and future trajectories is a common ap-

proach that can be applied using LSTM neural networks [9]

and convolutional social pooling [10]. The use of simplified

representations of complex interactions and trajectories of

the traffic participants combined with a CNN to infer lane-

change intention was proposed in [11]. A compact, binary

and simplified birds-eye view is used with one channel

for the vehicles and one channel for the lanes. Previous

frames are stacked to account for temporal information. As

in our approach, this is an attempt to generate a simple

representation of complex interactions. However, it does not

innately take into account appearance information that can

be relevant when inferring future maneuvers of surrounding

vehicles (e.g., turn signals).

The rest of the paper is organized as follows. Section II

provides a thorough description of the methodology followed

to extract the input-output data from The PREVENTION

dataset. Section III describes a new CNN-based approach

to predict lane changes using image sequences encoded in

single frames. A different time-integration approach based on

GoogleNet, LSTM, and ROI selection method is explained

in section IV. Section V presents significant results of the

models proposed in sections III and IV. Finally, section VI

concludes the paper, providing some insights into future

developments.

II. METHODOLOGY - LABELING

In this section, the methodology employed to prepare

the data and label it is detailed. As said in the previous

section, data used for this work have been extracted from the

PREVENTION dataset, making the most of nearly 6 hours of

front video records conveniently labeled and tracked. First,

the data used and the extraction process are described. Then,

the lane change labeling and ground truth generation are

in-depth handled, followed by the ID association process,

tracking and filtering tasks. Finally, finished and enhanced

lane change structures are provided, which are to be used in

sections III and IV.

A. Data Extraction

Data used for this work have been extracted from the novel

PREVENTION dataset, ready to download from https://

prevention-dataset.uah.es. At the moment only

image information and labels from both CNN and manual

inputs are employed. The image is acquired by a Grasshop-

per3 camera, mounting 12.5 mm fixed focal length lens. The

Fig. 2: Complete lane change labeling: starting and lane

change event points.

Field of View (FOV) covered by the camera is 48◦, featuring

a SONY WUXGA (1920x1200) CMOS Bayer array sensor,

which can be triggered up to 163 Hz. In the dataset, cameras

are triggered at the LiDAR spinning rate, around 10 Hz.

A top-level segmentation is applied to the scene, distin-

guishing between cars, trucks, buses, motorcycles, bicycles,

and pedestrians. For this purpose, it is necessary to focus

only on vehicles, so pedestrians and bicycles detections

have not been used. The labels given in the dataset have

been generated using the Detectron framework [12], tak-

ing advantage of the top-class state-of-the-art Mask-R-CNN

[13] model beside a ResNet-101 [14] backbone used as

instance segmentation engine. Contours and bounding boxes

are provided as raw output detections, as well as a temporal

integration of the detections.

Moreover, these detections are filtered out, featuring only

those with a confidence value over 0.5. After applying that

filter, a non-maximal suppression algorithm is executed.

Before finishing data preprocessing, a Hungarian Matrix

script uses the modified Intersection over Union (mIoU) as

the inverse of the distance (Eq. 1 where A1 and A2 are the

evaluated areas) to time-based associate detections, assigning

coherent IDs to them.

mIoU = A1 ∩A2/min {A1, A2} (1)

B. Data Labeling and Ground Truth Generation

There is a file included in each driving record downloaded

from the dataset called lane change.txt, where each

line has four values [id, type, frame, val] that indicate

various characteristics of the lane change performed by

a vehicle, finishing in that frame and identified with a

defined ID. The parameter val is used for time-lapse events

annotations, rather, it indicates the initial frame of the lane

change. Lane changes can be left (3) or right (4), starting

when it is becoming clearly that the vehicle is making a

lane change maneuver, it does not matter whether the turn

signal is being used or not.

In order to enhance the already labeled data, turn signal

information is now included, indicating whether the turn



signal has been activated at some point during the lane

change or not (1 or 0, respectively). Consequently, the new

file structure of lane change.txt is [id, type, frame,

val, signal].
Figure 2 shows labeling basis: the starting point identified

in frame is the frame where the driver has clearly shown

motivation to begin the lane change: activating the turn signal

or modifying its reasonably straight-shaped trajectory within

the ego-lane to leave it are both indicators of that behavior.

The lane change event in val is labeled as the frame where

the middle of the rear bumper is located just over the lane

pavement markings, rather, the vehicle is half in the side lane:

this fact is important to understand the labels. All the files

mentioned previously are available in The PREVENTION

dataset as it, in the next subsection new filtering tasks are

deployed.

C. Tracking and Fine-grain Filtering

As raw data was pointless as it to focus in the main

actors in the scene, accurate filtering is needed to erase some

detections, hence a new feature has been included in the

labeling tool [15], helping to erase detections with just a

click. That deletion process is, in fact, just a change in the

stored ID, modifying the sign of the number so that negative

IDs will not be taken into account. If necessary, it would

be easy to recover that erased detections. Analyzing the

recordings, it is clear that there are some problems related to

the automatic tracking based in mIoU and Hungarian Matrix,

especially regarding oncoming traffic. That issue was causing

oncoming IDs to merge with some other detections tracked in

the fast lane, apart from getting bad lane change annotations,

as the vehicle ID differ during the lane change maneuver.

It is necessary to face a trade-off between increasing the

confidence value to improve the precision or lowering it to

raise the recall, the second option has been chosen, alongside

the manual adjustment of faulty annotations. Note that other

lane changes that were irrelevant, far from the recording

car or very tricky to understand because of their label have

been conveniently removed as well. Some statistics about

the number of lane changes and detections after filtering are

provided in table I.

TABLE I: Detections & Lane Change Statistics

Record # 1 2 3 4 5

Left LC 22 34 35 104 97

Right LC 50 43 41 150 138

Unique IDs 2669 4674 4401 13757 15018

IDs changing lanes 2163 2249 3033 8224 7469

Detections while LC 8826 9842 10777 49308 41534

Frames while LC 2222 7467 3107 8417 7781

Mean frames of LC 40.6078

Mean time of LC 3.76 s

III. CNN & MOTION HISTORY

This section proposes a new methodology to predict

vehicle intentions using CNN’s and video data encoded in

Fig. 3: Context and encoded movement histories. Red chan-

nel is used to store the scene appearance as a grayscale

image. Blue channel stores the prediction target movement

history. Green channel stores surrounding vehicles movement

histories.

a single image. Many types of intentions can be predicted

about drivers’ intentions such as left/right lane change,

left/right turn, overtake, cut-in, cut-out, etc. However, these

predictions can be simplified to 3 maneuvers in highway

scenarios; left, none and right lane change. The more relevant

points to take into account when predicting intentions are

context and temporal inter-dependencies. This methodology

includes in a standard three channels image three points:

context, motion history, and prediction target selection.

A. Motion History

Stacking raw images as input for CNN decision or predic-

tion problems is nowadays still computationally unfeasible.

To work around this problem the motion history of the

involved agents in the scene is added to the image preserving

the original size and depth. To generate visual relevant

information the contours of the vehicles are represented in

the image using different intensity values to encode the time

step information. Up to 10 past contours of vehicles are

included in the image as their history. Every contour is

represented with the same intensity value than the contour of

the previous time step incremented by 10. The current time

step contour is represented with an intensity value of 200.

Other of the presented issues is the multi-agent prediction

problem. There can be more than one vehicle in an image,

therefore, intentions must be predicted for each vehicle. The

predictions must but treated as a collective problem due



to the strong interaction between vehicles. To do so, the

prediction target history is encoded in a channel and the

surrounding vehicles histories in other. Fig. 3 shows how

context information and movement histories are combined

to generate time-integrated understandable information. Note

that images in fig. 3 are focused on one vehicle at each time.

First image corresponds with a right lane change, fourth with

a left lane change and all other as none.

B. CNN Architecture

The trained state-of-the-art models do not represent a

good choice to make transfer learning due to the artificial

nature of the input data. Considering this, a CNN has been

designed from scratch. Table II summarizes the architecture

of the CNN, which basically consists of an input layer to

standardize the images removing dataset mean value and

dividing by the standard deviation. Then, five blocks of 2D

Convolution, Batch Normalization, and ReLU layers reduce

the data size and increase the data depth. Finally, the image

is classified by an ending block composed of dropout, fully-

connected and soft-Max layers.

TABLE II: Network Architecture

Layer Parameters

imageInput 600×1920×3, µ = 0, σ = 1

convolution2D + BN + ReLU 31×31×8, stride 0

convolution2D + BN + ReLU 27×27×16, stride 3

convolution2D + BN + ReLU 21×21×32, stride 3

convolution2D + BN + ReLU 15×15×64, stride 3

convolution2D + BN + ReLU 9×9×128, stride 3

dropout p = 0.3

fullyConnected 2×19×128×3

softmax n = 3

classification cross-entropy

C. Training Hyper-Parameters

More than 1.4M detections are provided in the dataset.

There are 120K detections only during the 714 lane change

events. Analyzing the data, 23K (9K left and 14K right) are

detections of lane change maneuver and 97K are detections

of surrounding vehicles which are not performing a lane

change. The images used to train, validate and test the

CNN are only those which occur during the lane change

maneuvers. The number of none samples have been reduced

to be equal as the left or right samples to prevent imbalance

class problems. Training, validation and test subsets are

generated with a rate of 0.6, 0.2 and 0.2 respectively. The

three subsets are disjoint time intervals. Training hyper-

parameters are listed: mini-batch size = 64, epoch = 16,

initial learning rate = 0.001, learning rate after 8th epoch

= 0.0001, gradient threshold = 1 and cross entropy loss

function.

IV. GOOGLENET & LSTM

The LSTM (Long-Short Term Memory) is a kind of

cell specialized to fit and learn temporal patterns in data

sequences. The problem with this kind of networks is that

they can deal with neither images nor videos due to the big

Fig. 4: Vehicle ROI selection. ROIs are generated to be

processed as an independent image for each vehicle.

Fig. 5: Different ROI generation methods. From left to right:

image size based, detection size based, and double detection

size based.

size of input data (more than 1M of values per image in our

case). Trained CNNs can be used to reduce the input data size

while retaining relevant information. To do so, GoogleNet

[16] CNN trained on ImageNet [17] is used as image encoder

obtaining the output of the last pooling layer pool5-7x7 s1.

This layer produces a 1024×1 feature vector which can be

concatenated in a column order with consecutive features

vectors as an encoded video sequence.

A. ROI Generation

One of the problems when trying to recognize maneuvers

in images or video is that could be multiple vehicles per-

forming different actions at the same time. Each agent in the

scene must be analyzed individually. To do so, the image

is split in as many ROIs as vehicle there are in the image.

Figure 4 shows how the image is transformed into different

ROIs to be evaluated as separated elements. Fig. 4 shows

all the vehicle detection in the image represented by a red

rectangle and the generated ROI for each detection.

Three different approaches have been carried out to select

the ROIs. As the GoogleNet input size is square, width and

height of the ROIs are equals in any case to avoid spatial

distortions. Moreover, the ROIs must be resized to fit in

the GoogleNet input size which is 224×224. In the three

methods described below the center of the ROI is set with

the center of the vehicle detection coordinates.

• Image size based: the width and height of the ROI

are set with the original image height (600px). This



method provides a mobile window following the vehicle

movement over the image. As far as the height of the

vehicle bounding box is smaller than the image height

some context information is added in the ROI.

• Detection size based: the ROI size is set with the greater

value between the height or width of the vehicle’s

bounding box. Minimum context information is added

in the ROI, just the area needed to complete the square

around the vehicle.

• Double detection size based: the ROI size is set with

the double of the greater dimension of the vehicle’s

bounding box. If the ROI dimensions exceed the image

size them are limited to the more restrictive value, in

this case, the image height. This approach tries to focus

on the vehicle and add some context information.

Fig. 5 shows these three types of ROI selection methods.

The first method adds a lot of surrounding information. This

could be a problem when vehicles are close ones to each

other. The second one is more clear about where is the focus,

independently if there are vehicles close or not. However,

context information is completely missed. The third one is a

trade-off between the two first methods.

B. Extended Feature vector

The ROI generation process misses the relative image

location and real vehicle size. These values are added to

the features vector in order to provide more complete in-

formation to the LSTM layer. The center (X, Y) and the

dimensions (W, H) of the bounding box are appended to

the features vector generated by the GoogleNet. For an

easier understanding and homogeneous data interpretation,

the values have been ranged between 0 to 1 according to the

values in the feature vector. This process transforms the top-

left corner to (0,0) and the right bottom to (1,1). Indirectly,

movement information is added in the frames, such as speed,

acceleration, and direction.

C. Network Architecture

The network is composed of an input layer which includes

googleNet architecture and the original ROI parameters. The

ROI parameters concatenation is only applied when the

extended feature vector is used. Then, an LSTM layer with

2000 cells performs the ”core” of the classification based

on the feed sequences. Finally, dropout, fullyConnected, and

softmax layers block classify the sequence. This structure is

summarized in table III.

TABLE III: Network Architecture

Layer Parameters

GoogleNet encoder 1024×1

ROI parameters concatenation 4×1

LSTM 2000 cells

dropout p=0.5

fullyConnected 2000×3

softmax n = 3

classification cross-entropy

D. Training Hyper-Parameters

The same parameters used in III were used to establish

the training, validation and test sets, consequently, the same

samples are used in each subset. The LSTM data input for a

single detection is composed concatenating the 10 previous

feature vectors of the detection. Training hyper-parameters

are listed: mini-batch size = 1024, epoch = 16, initial learning

rate = 0.0001, gradient threshold = 1 and cross entropy loss

function.

V. RESULTS

This section presents and discuss the results achieved

deploying the approaches described in sections III and IV to

predict lane change maneuvers of surrounding vehicles. For a

better understanding of training times and inference rates the

details of the computer used to carry out this experiments are

given. PC with Kubuntu 18.04LTS, i7-7700K CPU, 32GB of

RAM and NVIDIA GF-1080Ti GPU using Matlab 2019a.

A. CNN & History

The CNN and the movement histories were trained using

22140 images, two subsets of 7380 images were used for

validation and test. The total training process took 27h 56m

in 16 epochs and 5520 iterations using a mini-batch size of

64. Table IV shows the confusion matrix for the test set,

which is completely independent of the training process. As

it can be seen the best classified class is the none lane change

class. It can be explained because it is easier to recognize

the none lane change status. In the other hand, left and right

lane changes are in a high proportion confused with the none

status.

TABLE IV: CNN & Motion History Confusion matrix

Target Class

Output Class none left right Precision

none 2452 888 935 57.4%

left 163 848 179 71.3%

right 145 124 1646 86.0%

Recall 88.8% 45.6% 59.6% 67.0%

B. GoogleNet & LSTM

Results for six experiments using the GoogleNet as image

encoder and LSTM layer topology are presented. Three

ROI generation methods and two features vectors (extended

or not) experiments have been conducted. Table V shows

classification mean accuracy results for the test subset in the

six experiments. The time took in the training process of

these experiments was close to 4 minutes in all of them.

TABLE V: GoogleNet & LSTM Accuracy

Feature vector

ROI method GoogleNet GoogleNet + ROI

Fixed Size 0.5965 0.5721

Vehicle Size 0.7363 0.7448

Double Vehicle Size 0.7441 0.7454



The fixed size selection method results are significantly

lower than the vehicle-based selection methods. The use

of the extended feature vector improves the results slightly

when using vehicle size detection methods. As it can be

seen the best results are achieved by the double vehicle

size ROI selection method using the extended feature vector.

Confusion matrix is presented for the best configuration in

table VI to provide more detailed results.

TABLE VI: GoogleNet & LSTM Confusion Matrix

Target Class
Predicted Class left none right Precision

left 1787 433 461 66.7%
none 102 876 167 76.5%
right 111 111 1372 86.1%

Recall 89.3% 61.7% 68.6% 74.4%

VI. CONCLUSIONS AND FUTURE WORK

As conclusions, two different methodologies have been

applied to predict lane changes using the novel PREVEN-

TION dataset. Preliminary results are presented to validate

the utility of the dataset comparing two lane change pre-

diction algorithms. Prediction for right lane changes are,

generally better than left lane change prediction. This could

be explained because many of the right lane changes are

produced after overtaking the ego-vehicle. Usually, this type

of lane changes are produced in areas close to the ego-

vehicle and better image representations could make easier

the prediction task.

Comparing the two algorithms proposed to predict a lane

change maneuvers, the one using GoogleNet and an LSTM

works better than the trained CNN. Many reasons could

explain it, e.g. the number of samples is not enough to

properly train a CNN from scratch, number and/or size of

convolution layers are not the optimal values, or simply,

GoogleNet is better trained and it can encode the relevant

information in a better way.

The use of the extended feature vector and three different

ROI selection method have been evaluated when using the

GoogleNet plus LSTM algorithm. The double-vehicle-size

ROI selection method reveals to be the best choice. The use

of the extended feature vector which includes the original

ROI parameters slightly increases the classification perfor-

mance.

As future works, more complex analysis of training and

input configuration values can be conducted to improve the

results up to their maximal potential. LiDAR and radar

information, which are available in The PREVENTION

dataset can be included in the prediction algorithms adding

3D positioning to improve their results.
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[7] R. Izquierdo, I. Parra, J. Muñoz-Bulnes, D. Fernández-Llorca, and
M. Sotelo, “Vehicle trajectory and lane change prediction using ann
and svm classifiers,” in 2017 IEEE 20th International Conference on

Intelligent Transportation Systems (ITSC). IEEE, 2017, pp. 1–6.
[8] W. Yao, Q. Zeng, Y. Lin, D. Xu, H. Zhao, F. Guillemard, S. Geronimi,

and F. Aioun, “On-road vehicle trajectory collection and scene-
based lane change analysis: Part ii,” IEEE Transactions on Intelligent

Transportation Systems, vol. 18, no. 1, pp. 206–220, 2017.
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