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Abstract— Advanced Driving Assistance Systems rely on a
very precise sensor-based environmental perception. The qual-
ity of the perception depends on the quality of the calibration
when multiple and/or redundant sensors are used. This work
presents a novel self-calibration method for radars based on
high-definition digital maps and high radar-sensitive structural
elements. The calibration targets are transformed from the
world into the vehicle reference system according to the
estimated vehicle state. Then, the calibration between the radar
and the vehicle frame is split into two phases, alignment and
translation estimation. The alignment is based on the trajectory
described by the calibration targets when the vehicle is moving,
and the translation is based on position differences when is
standing. The uncertainties of the detections are treated in a
scoring fashion. Three radars of two different models have been
calibrated with this method achieving radar alignments below
the angular accuracy and mean range errors below the radar
range accuracy.

I. INTRODUCTION AND RELATED WORKS

Advanced Driving Assistance Systems (ADAS) and au-
tonomous vehicles rely on a very precise sensor-based en-
vironmental perception and ego vehicle state estimation.
To increase the accuracy and robustness of these systems,
multi-modal complementary sensors are used (vision, Li-
dar, RADAR, IMUs, GPS, etc.). Usually, the accuracy of
these sensors depends on extrinsic (position and alignment)
and intrinsic parameters that are obtained through, ideally,
unsupervised calibration procedures. The quality and long-
time stability of these calibrations will establish the quality
of the environmental representation and therefore of the
autonomous driving decisions.

Consequently, there are numerous publications that ad-
dress the problem of semi-supervised calibration of one
or several sensors onboard autonomous vehicles. Vision
systems are probably the most common given the amount
of information they provide and their low-cost [1]. In the
recent years, also laser scanners have become very pop-
ular, due to the rapid development of their technology
and the release of new 360◦ field of view scanners. This
has led to the development of vision-laser extrinsic semi-
supervised calibration methods [2] [3]. However, there are
not that many works devoted to the extrinsic calibration
of RADAR sensors. RADAR sensors are commonly used
in the automotive industry for Collision Warning/Avoidance
(CW/A), Adaptive Cruise Control (ACC) or Parking Assis-
tance systems. Most of these applications are used to monitor
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Fig. 1. Radars configuration and systems of reference framework.

traffic surrounding the vehicle, only needing a conservative
estimation of other road participants position and speed.
Automotive RADARs usually can adjust the elevation plane
through semi-supervised calibration procedures that involve
the use of a known reflective target at a predefined position.
More advanced systems allow for a self-calibration of the
azimuth angle or alignment using static targets tracked during
a calibration sequence. These self-calibration procedures are
intended for maintenance/repair of ADAS such as Adaptive
Cruise Control (ACC).

However, for autonomous driving applications which re-
quire integrating perception information with a digital map
to create a representation of the environment [4] [5], the
extrinsic calibration of the sensors to the vehicle frame is
a significant problem. An alignment error of just 1◦ can
introduce a lateral offset of ∼2 m at 100 m for a RADAR
system. This error will make difficult to associate targets
to its correct lane. In [6] a millimeter-wave RADAR is
mounted on top of a vehicle to scan the surroundings of
the vehicle. The RADAR is calibrated using a Radar-Centric
Ground Detection (RCGD) that allows the system to estimate
the ground elevation and thus reject false detections due to
ground detections. In [7] a RADAR mounted in the front
of a vehicle is calibrated using a sequence of stationary
objects while driving on an approximately straight line. The
alignment is estimated using the average velocity profile of
the targets, compensating the angular movement with an
IMU.

In this paper, we propose an alignment algorithm for
multiple RADARs onboard a vehicle (see fig. 1). The pro-
cedure takes advantage of a high definition digital map used



for autonomous navigation to provide the precise location
of stationary objects (street lamps and traffic signs). Using
the positions of the calibration targets while the vehicle is
moving and standing the calibration procedure computes the
azimuth angle and translation with respect to the vehicle
frame. This method allows online self-calibration of the
RADARs without special tools or needing to take the vehicle
to the Original Equipment Manufacturer (OEM). Our method
would allow the autonomous vehicle to be programmed to
regularly perform auto-calibrations of the RADARs based
on the information of a high definition digital map and the
RADARs acquired targets.

The remainder of the paper is organized as follows: Sec-
tion II describes the propagation of the radar error detections.
The radars calibration procedure is exposed in Section III.
Experimental results are presented and discussed in Section
IV, and finally, conclusions and future works are addressed
in Section V.

II. RADAR ERROR PROPAGATION

The radar detection accuracy is in general provided in a
polar reference system just like the measures are. On many
occasions the positions are transformed to an orthonormal
reference system according to eq. 1, where ρ is the detection
range, α is the direction of the detection and x and y are
the orthonormal coordinates. The error of the orthonormal
coordinates is propagated as follows:

x = ρ cos(α), y = ρ sin(α) (1)

∂x

∂ρ
= cos(α),

∂y

∂ρ
= sin(α) (2)

∂x

∂α
= −ρ sin(α),

∂y

∂α
= ρ cos(α) (3)

Assuming the range error ερ and the direction error εα are
independent variables the errors εx and εy can be computed
as it is shown in eqs. 4 and 5.
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In our case, the position accuracy is limited due to the CAN
bus communication protocol. The position of the objects has
a resolution of 0.1 m, which limits the position error to a
minimum value as it is expressed in eq. 6.

εx = max {0.1, εx} , εy = max {0.1, εy} (6)

When two detections i, j are used to compute the direction
of the vector formed by them by using the arctan function,
the errors of both detections are involved in the error of the
resulted direction. Eqs. from 7 to 11 describe the computation
of the direction error based on the points errors.

θ = arctan (∆y/∆x) (7)

∂θ

∂∆x
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−1
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(8)
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(9)

Assuming ε∆x and ε∆y are independent variables the direc-
tion error εθ can be computed as follows:
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(10)

ε∆x = εxi
+ εxj

, ε∆y = εyi + εyj (11)

III. CALIBRATION PROCEDURE

The calibration procedure tries to estimate the transfor-
mation matrix VTR that transforms points from the radar
reference system SR to the vehicle reference system SV. In
the case of more than one radar, the transformation matrix
allows to transform points from one radar to each other
in a common frame, and thus the generation of continuous
trajectories.

SV =V TRSR (12)

Any transformation matrix T can be splitted in two basic
spatial operations, a rotation R2×2 and a trastlation t2×1.

T =

[
R2x2 t2x1

01x2 1

]
(13)

The calibration procedure splits the estimation of the
transformation matrix in two steps, the first one estimates
the rotation matrix and the second one the translation vector.

A. Calibration Environment Description

The calibration method exploits the detection of high
radar-sensitive structural elements which are static and their
location is fixed in a global reference system. The calibration
environment consists of two ways road with two lanes per
way with a roundabout at each end. There is a sidewalk with
street lights and traffic signs on both sides of the road. The
street lights and the traffic signs positions have been used as
targets in the calibration procedure. Their positions have been
measured with a Differential Global Navigation Satellite
System (DGNSS) with an error lower than 2 cm. The higher
the quality of the elements in the environment the better the
calibration is. The recorded positions are surrounding to the
vertical pole axis, so the pole axis position is estimated as the
centroid of the measures. The latitude-longitude coordinates
are transformed into an easting-northing reference system
according to the transverse Mercator projection in order to
get a flat and orthonormal representation reference system.
Fig. 2 shows the position of some of the street lights and the
traffic signs in a high definition digital map representation
of the environment.



Fig. 2. Calibration targets in a digital map. Red spheres represent the GPS
coordinates of the calibration elements.

B. Ego-Position Estimation

An Extended Kalman Filter (EKF) has been used to fuse
the information from a DGNSS with Real Time Kinematic
(RTK) accuracy, an MPU6050 Inertial Measurement Unit
(IMU) and the Controller Area Network (CAN) bus of the
vehicle. The state vector x̂ is estimated using the measure
vector z, the non linear process model f and the observation
model h according to the eqs. described in [8], where E
and N are the easting and northing (world) coordinates
respectively, φ is the heading or forward direction, v is the
longitudinal speed and v̇ is the longitudinal acceleration.

x =
[
E N φ v φ̇ v̇

]T
(14)

z =
[
E N v φ̇ v̇

]T
(15)

x̂k = f (x̂k−1) + wk, ẑ = h (x̂k) + vk (16)

In order to transform the position of the calibration elements
from the world reference system SW to the vehicle (local)
reference system SV a transformation T is performed ac-
cording to the vehicle state vector.

SV = T−1 · SW (17)

T =

cos (φ) − sin (φ) E
sin (φ) cos (φ) N

0 0 1

 (18)

C. Rotation Estimation

The rotation calibration process estimates the radar rota-
tion angle θR that aligns the vehicle reference system SV

and the radar reference system SR. Matrix R is a two-
dimensional rotation transformation according to eq. 20.

SV = RSR (19)

R =

[
cos (θR) − sin (θR)
sin (θR) cos (θR)

]
(20)

As far as the relation between the radar detections and the
targets is not known the traditional calibration approaches
based on pairs of points cannot be conducted. An alternative

methodology based on the relative movement properties of
static objects has been developed. The trajectory described
by a static object is seen from the sensor reference system
as the opposite of its own trajectory. If the mobile reference
system (vehicle) performs a trajectory in a straight line, the
trajectory of the static object is seen as a straight line in
the opposite direction in the sensor reference system. The
orientation of the trajectory in the sensor reference system
reveals the rotation needed to virtually align both reference
systems.

The trajectories generated by the objects are a sequence of
points in the radar reference system SR. A single trajectory
P is formed by a set of n points p as it is defined in eq. 21,
where the subindex represents the time-order of the points.

P = {p1, p2, . . . , pn} (21)

Assuming that the trajectory represents a straight line the
orientation can be easily computed as the arctan function
of the extreme points. However, due to the radar detection
accuracy, this way is not the best. The endpoints of the
trajectory are commonly in the border of the detection area,
which is where the detection error is higher. A set of tuples
of points TP associated to the trajectory P is defined in eq.
21, which generates all the possible combinations of points
in the trajectory P in a forward time sense.

TP = {(pi, pj) | pi, pj ∈ P, pi 6= pj , i < j} (22)

The trajectory direction θ is computed for each tuple of
points in TP according to eq. 7. The error asociated to each
computed direction εθ depens on the individual point errors.
The orientation error formula is described in section II, eqs.
from 7 to 11.

At this point, many rotations and their associated errors
have been computed for each trajectory P. Now, the tra-
jectories described by many detections must be commonly
evaluated in order to achieve the most reliable value of θ̂.
Four different functions are proposed to evaluate the set of
rotations and errors in a scoring fashion as they are described
below. The shape of the scoring functions is shown in fig. 3.
• The first score function s1 is a normal distribution
N (µ, σ2) with mean value µ = θ and standard deviation
σ = εθ. The 68.27% of the score is concentrated in a
band of 2εθ centered in θ.

s1(θ̂, θ, εθ) = N
(
θ, εθ

2
)

(23)

• The second score function s2 is a truncated version
of s1. This function assigns the same score s2 to the
estimated orientation range in the uncertainty band.

s2(θ̂, θ, εθ) =

{
s2 |θ − θ̂| ≤ εθ
s1(θ̂, θ, εθ) otherwise.

(24)

s2 = s1(εθ, θ, εθ) (25)

• The third score function s3 implements a linear version
of the normal distribution function. The function is
centered in θ and the score decreases with a constant



value K. In order to generate a cumulative score of 1,
the maximum score A and the slope K are computed
according to eqs. 27 and 28.

s3(θ̂, θ, εθ) =

{
A−K|θ − θ̂| |θ − θ̂| ≤ 2εθ

0 otherwise.
(26)

A = 1/4εθ
2 (27)

K = 1/4εθ
2 (28)

• The fourth score function s4 implements a truncated
version of s3. This function assigns the same score s4

to the estimated orientation in the uncertainty band.

s4(θ̂, θ, εθ) =

{
s4 |θ − θ̂| ≤ εθ
s3(θ̂, θ, εθ) otherwise.

(29)

s4 = s3(εθ, θ, εθ) (30)

Fig. 3. Rotation scoring functions. s1 and s2 on top and s3 and s4 on
bottom.

The global score is computed as the sum of each individual
score distribution according to eq. 31, where s is one of the
four scoring functions and n is the total number of scored
angles. The total score distribution is normalized in order to
be treated as a probability density function and to provide a
confidence interval of the estimations.

S(θ̂) =

n∑
i=1

s(θ̂, θi, εθi) (31)

Finally, the radar rotation angle θR is minus the θ̂ value with
the highest cumulative score according to eq. 32 due to the
opposite direction of the relative object’s movement.

−θR = argmax
θ̂ ∈ (−2π,2π]

S(θ̂) (32)

D. Translation Estimation

Once the rotation between the vehicle and the radar
reference systems is known and they are virtually aligned,
the position difference between targets and detections is
the translation which is being looked for. The translation
estimation has three stages, firstly the world points are
transformed to the vehicle reference system, secondly the
radar detections are rotated to be aligned with the vehicles
reference system, and finally, the vehicle-radar translation is

achieved by scoring the individual detection-target transla-
tions.

In a first step, the position of the calibration targets is
transformed from the world reference system to the vehicle
reference system according to eq. 17. In order to avoid time
delays between the radar detection and the ego-estimation
systems, static sequences are used to calibrate the translation.

In the second step, the radar detections and their errors
are rotated to be aligned with the vehicle reference system
according to eq. 19.

A two-dimensional translation vector t defined in eq. 33
is needed to transform calibration targets to detections in
the common vehicle reference system and vice-versa. The
parameters that need to be found are tx and ty which are
the translation along the x and the y axis of the vehicle
respectively.

t =

[
tx
ty

]
(33)

The translation vector t has been limited by using basic
information of the vehicle dimensions. The translation vector
limit tL is defined in equation 34 where W and L are the
width and length of the vehicle and δx and δy a safety gap to
avoid possible exclusions due to the radar detection errors.

tL =

[
L+ δx
W + δy

]
(34)

The set of translation vectors TV is defined in eq. 36 as
all the combination of translation vectors ti,j for each radar
detection di to each calibration target ctj . The translation
vector is computed as it is shown in eq. 35. If ti,j exceeds
tL the pair di and ctj is assumed as a wrong matching
and consequently is excluded from the translation estimation
process.

ti,j = ctj − di (35)

TV = {ti,j | − tL ≤ ti,j ≤ tL, ∀i, j} (36)

The error asociated to each translation ti,j is defined as
the error vector εti = (εxi

, εyi) which is the result of the
detection error rotation.

Equivalently for the radar rotation, four bi-dimensional
scoring functions have been designed to find out the radar
translation. The shape of the scoring functions is shown in
fig. 4.
• The first score function s5 is a normal distribution
N (µ, σ2) with mean value µ = t and standard deviation
σ = εt.

s5(t̂, t, εt) = N
(
t, εt

2
)

(37)

• The second score function s6 is a truncated version of
s5. The same score s6 is assigned to the translations
inside the uncertainty band. In equation 38 operation ./
represents the element-wise division.

s6(t̂, t, εt) =

{
s6 ‖(t− t̂)./εt‖ ≤ 1

s5(t̂, t, εt) otherwise.
(38)

s6 = s5((εtx , 0) + t, t, εt) (39)



• The third score function s7 implements a linear version
of s5. The score decreases according to K around t.
The matrix K and the maximum value A are computed
acording to eqs. 41 and 42 in order to achieve a
cumulative score of 1. The function max is the vectorial
maximum.

s7(t̂, t, εt) =

{
A−max

(
K|t− t̂|

)
|t− t̂| ≤ 2εt

0 otherwise.
(40)

A = 3/16εtxεty (41)

K =
3

32

[
1/ε2

txεty 0
0 1/εtxε

2
ty

]
(42)

• The fourth score function s8 implements a truncated
version of s7. This function assigns the same score s8

to the estimated translation in the uncertainty band like
the score function s6.

s8(t̂, t, εt) =

{
s8 |t− t̂| < εt

s7(t̂, t, εt) otherwise.
(43)

s8 = s7(εt + t, t, εt) (44)

Fig. 4. Translation scoring functions. On top s5 and s6, on bottom s7 and
s8. Inner area of red ellipse has a constant score of s6 in s6, inner area of
the red rectangle has a constant score of s8 in s8.

Finally, the global translation score is computed as the
sum of each single translation score function as it is shown
in eq. 45 where s is one of the four scoring functions and n
is the total number of valid detection-target translations.

S
(
t̂
)

=

n∑
i=1

s
(
t̂, ti, εti

)
(45)

The estimated radar translation vector t is achieved finding
the translation vector t̂ with the highest S score inside the
translation limits tL according to eq. 46.

t = argmax
−tL≤t̂≤tL

S
(
t̂
)

(46)

IV. RESULTS

In this section, the final results are shown and commented.
The radars which have been calibrated with the proposed
method are a long-range radar ARS-308 and two short-range
radar SRR-208 located according to the distribution showed
in fig. 1. Each radar model has a different error configuration
(see table I). The ARS has a range up to 200 m, this fact
makes this radar highly sensitive to alignment errors, on the
top, the angular accuracy is really high in the narrow beam.
In the opposite the SRR has a range up to 50 m, it makes
the radar less sensitive to the alignment errors, however, the
angular accuracy is lower.

TABLE I
RADAR MEASURING PERFORMANCE

Measuring min e er

ARS-308 Distance Accuracy 0.25 1.5% [m]
Angle Accuracy @FoV ±8.5◦ 0.1 [deg]

@FoV ±28◦ 1.0 [deg]

SRR-208 Distance Accuracy 0.2 [m]
Angle Accuracy @FoV ±20◦ 2.0 [deg]

@FoV ±60◦ 4.0 [deg]
@FoV ±75◦ 5.0 [deg]

For the rotation estimation two different sequences have
been recorded, one traveling at 20 km/h and other at 50 km/h.
Table II shows the angle estimation and the value that covers
the 68.27% of the score for the three radars (units expressed
in radians). The recorded sequences have 447 and 301 objects
trajectories for ASR-308, 47 and 53 for the SRR208-L and
56 and 65 for the SRR208-R at 20 and 50 km/h respectively.

TABLE II
RADAR ROTATION RESULTS AT 20 AND 50 KM/H

Scoring fcn. s1 s2 s3 s4

20 km/h
ASR308 1.570±0.036 1.570±0.038 1.569±0.034 1.570±0.036
SRR208-L 0.190±0.057 0.175±0.064 0.194±0.051 0.175±0.058
SRR208-R 2.776±0.054 2.757±0.063 2.777±0.048 2.757±0.056

50 km/h
ASR308 1.572±0.033 1.571±0.034 1.571±0.030 1.571±0.032
SRR208-L 0.198±0.083 0.184±0.087 0.201±0.078 0.181±0.083
SRR208-R 3.005±0.074 3.013±0.079 3.004±0.070 3.014±0.074

Analyzing the rotation estimations, in general, the non-
truncated scoring functions (s1 and s3) generate a narrower
confidence band, being the narrowest one achieved with the
scoring function s3. Analyzing the effect of the speed, higher
speeds produce trajectories with fewer points, this produces
different effects depending on the radar. The effects to the
ASR are beneficial because the points are more apart but
inside the high accuracy detection area, the angle accuracy
rises and produces a narrower confident band. The effects to
the SRR are not beneficial, the points are more apart but in
low accuracy detection areas, generating wider bands.



For the estimation of the translation, 22 static poses have
been recorded. There are a total of 74 valid calibration targets
for the ARS, 35 for the SRR-L and 33 for the SRR-R. For our
particular case, the translation matrix limits tL have been set
according to the vehicle dimensions W = 1.79 m, L = 4.33
m and δx = 2δy = 1.0 m. The Mean Range Error (MRE) and
the Mean Angular Error (MAE) are used as metrics to show
the performance of the overall calibration. The translation
estimations have a strong dependence with the estimated
rotation, therefore a combination of rotation and translation
scoring functions pairs are evaluated independently and the
results are shown in table III, where the MRE is expressed
in percentaje or meters and the MAR is in degrees.

TABLE III
MEAN RANGE ERROR & MEAN ANGULAR ERROR

Scoring fcn s1 s2 s3 s4

ASR308 s5 0.20|0.50 0.20|0.51 0.20|0.52 0.20|0.51
[%]|[deg] s6 0.20|0.48 0.19|0.49 0.19|0.50 0.19|0.49

s7 0.25|0.52 0.24|0.52 0.23|0.53 0.24|0.52
s8 0.60|0.46 0.62|0.46 0.64|0.47 0.62|0.46

SSR208-L s5 0.10|1.17 0.12|1.26 0.10|1.14 0.12|1.26
[m]|[deg] s6 0.11|2.16 0.15|2.34 0.10|2.17 0.15|2.34

s7 0.10|1.18 0.12|1.26 0.10|1.15 0.12|1.26
s8 0.11|2.37 0.15|2.53 0.10|2.40 0.15|2.53

SSR208-R s5 0.13|1.08 0.13|1.05 0.13|1.11 0.13|1.05
[m]|[deg] s6 0.11|2.05 0.12|1.91 0.11|2.07 0.12|1.91

s7 0.13|1.07 0.13|1.05 0.13|1.09 0.13|1.05
s8 0.17|2.32 0.16|2.10 0.17|2.34 0.16|2.10

The ASR achieves an MAE below 0.5◦ which is greater
than the accuracy of the narrow beam but lower than the
accuracy of the wide beam. The SRR achieves an MAE close
to 1◦ which is lower than the accuracy of any beam. The
truncated functions produce worst results for this kind of
radar. It could be caused by the low angular accuracy of
the radar. The alignment in conjunction with the translation
performs MRE values which are below the range uncertainty
for both kinds of radars. Fig. 5 shows an example of the radar
detections reconstruction in the vehicle frame.

V. CONCLUSIONS AND FUTURE WORKS

The presented calibration method allows the calibration
of multiple radars onboard a vehicle by using high sensitive
static structural elements recorded in a high definition digital
map. The method calibrates the alignment of the radars and
the translation with respect to the vehicle reference system in
an automatic and non-supervised way. The sensor alignment
achieved is in the order of the angular radar accuracy
or below and the reprojection errors after the translation
calibration decrease to values lower than the radar detection
range accuracy.

As future works, a time-based synchronization between
the radar detection system and the vehicle state estimation
system would enable the use of moving trajectories as valid
calibration trajectories for rotation and translation estima-
tion.
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detections and green x are SRR208-R detections.
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