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Abstract— Pedestrian protection systems are being included
by many automobile manufacturers in their commercial ve-
hicles. However, improving the accuracy of these systems is
imperative since the difference between an effective and a non-
effective intervention can depend only on a few centimetersor
on a fraction of a second. In this paper, we describe a method
to carry out the prediction of pedestrian locations and poseand
to classify intentions up to 1 s ahead in time applying Balanced
Gaussian Process Dynamical Models (B-GPDM) and naı̈ve-
Bayes classifiers. These classifiers are combined in order to
increase the action classification precision. The system provides
accurate path predictions with mean errors of 24.4 cm, for
walking trajectories, 26.67 cm, for stopping trajectories and
37.36 cm for starting trajectories, at a time horizon of 1 second.

I. I NTRODUCTION AND RELATED WORKS

The effective interaction with other traffic participants is
an open challenge for automated vehicles. This is particularly
true for urban environments that are not primarily dedicated
to traffic and are populated with vulnerable road users like
pedestrians and bicyclists. In order to cope with the wide
variations in traffic situations and behaviour of traffic partic-
ipants scientific progress is required in perception, prediction
and interaction techniques.

In the context of pedestrian protection, Toyota recently de-
veloped the Pre-Collision System with Pedestrian-avoidance
Steer Assist that warns the driver when a pedestrian is in
front of the vehicle and, if the driver does not take action
to avoid the collision, an automatic emergency braking in
addition to automatic steering is activated. Improving the
accuracy of these systems is imperative since the lateral
component of the pedestrian localization could be particu-
larly relevant. Thereby a precise assessment about the current
and future pedestrian locations is required. A difference of
only 30 cm in the estimated lateral position can make the
difference for a successful collision avoidance maneuver [1].
Moreover, accident analysis in [2] demostrated that initiating
an emergency braking 0.16 s in advance reduces the severity
of accident injuries up to 50% given an initial vehicle speed
of 50 km/h. As a consequence, over the last few years, a
lot of effort has been put into understanding the pedestrian
intentions and predicting their trajectories.

Early approaches to perform path prediction and tracking
used Kalman Filters in a trajectory-based framework [3] for
walking motions, applying the current pedestrian position
and velocity to estimate the next location. Nonetheless,
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Fig. 1. Pedestrian intention and pose prediction algorithm.

the sole consideration of using trajectory, assuming entirely
walking intentions, is clearly insufficient to predict the pedes-
trian path due to the highly dynamic behavior of humans,
since changes in their walking direction or intentions can
happen in an instant. For this reason, some intentions such
as start walking could be hard to predict in advance, even
for a human expert.

Moreover, other approaches find similarities between ob-
served and learned pedestrian trajectories in order to predict
future states. These trajectories can be composed of varied
features such as positional information, motion vectors or
dense optical flow. In [4] a trajectory matching algorithm
is applied to measure the similarity between trajectories in
order to classify walking and stopping actions and predict
pedestrian paths at short intervals, combining positionaland
optical flow features.

More advanced methods are based on human motion
features or body language of different actions using a low-
dimensional nonlinear manifold that reduces the dimension-
ality of the input data, considering its dependence over
time, in the so-called latent space. In [1] two Gaussian
process dynamical models (GPDM) [5] are separately trained
using augmented features derived from dense optical flow
of different sequences of stopping and walking pedestrian
motions. A particle filter allows to combine both mod-
els with the purpose of computing the probability of the
pedestrian state. Their proposed method can achieve more
accurate path prediction than basic approaches mostly for
stopping actions. However, learning long sequences with
different actions could result in degenerated GPDMs. To



avoid this problem the perspectives of trajectory-based and
GPDM-based approaches can be mixed. In [6] the action
is classified comparing observed sequences with GPDM-
trained sequences. In [7] a large dataset of typical human
behaviours is learned and the most similar trained sequence
on the dataset to the observed sequence is selected in order
to predict the pedestrian path.

In the latest years, context-based pedestrian behaviour
prediction systems have been developed in a succesful way.
They analyze the current situation infering what the pedes-
trian will do in advance. These approaches have longer
prediction horizons than the above mentioned methods, espe-
cially for walking motions, although they can not deal with
starting or stopping actions correctly because the information
about these actions is extracted better from the pedestrian
pose, not from the context. In [8] a generic context-based
model to predict crossing behaviours of pedestrians in inner-
city and an additional model to the context of zebra crossings
are proposed. Both models are learned computing features
such as the lateral distance between the pedestrian and the
collision point, the time for the pedestrian to reach the
collision point, the distance to curbstone, etc. Finally those
models are hierarchically combined applying a “Context
Model Tree” framework.

This paper describes a method for predicting the pedestrian
locations and pose and classifying intentions up to 1 s
ahead in time applying a novel approach for pedestrian
path and pose prediction for walking, starting, stopping and
standing behaviours based on Balanced Gaussian Process
Dynamical Models (B-GPDM) and naı̈ve-Bayes classifiers.
This approach is described in our previous works [7], [9]. In
[9] a classifier based on the similarity between consecutive
pedestrian poses and the sum of absolute joint velocities
was developed. The drawback of this classifier is that a
history of the previous features have to be taken into account
for distinguishing between starting and stopping behaviours
since those features are noisy and the poses in these actions
are similar each other. However, in this paper, we propose
two new action classifiers, the first one is based on joint
positions in lateral direction and the second one is based on
their displacement in the same direction. The lateral direction
is selected due to all sequences simulate a pedestrian crossing
in front of a vehicle so that longitudinal direction and height
are not discriminative among actions. A prior, computed
from a transition matrix, allows us to solve the drawback of
the previous classifier. Finally, the overall action probability
is chosen depending on the confidence of each classifier in
each instant.

The paper is organized as follows: Section II describes
the goal of our method and the data-sets used for learning
and testing. In section II-A we briefly resume how GPDM
works with the purpose of making easier the understanding
of the next sections. The sections II-B describes the new
naı̈ve-Bayes classifiers that perform the action classification.
Experimental results from long sequences where pedestrians
do different actions are presented in section III. Finally,we
discuss our conclusions and future works in section IV.

II. SYSTEM DESCRIPTION

Our final goal is to develop a pedestrian path and pose
prediction system set up in a moving vehicle equipped with
stereo cameras and LIDAR. In this paper, we will test the
feasibility and limits of our method in an extensive way
by using the high frequency and low noise data-set from
CMU [10]. The CMU data-set contains different pedestrian
sequences captured from a motion capture system. Each
pedestrian pose is composed of the 3D coordinates of 41
joints along the body (see Fig. 2). The accuracy of pedestrian
path and pose prediction and action classification algorithms
will be tested with 129 sequences in which different subjects
are simulating pedestrian behaviours. The processing time
of each step will be analyzed as well. All results have been
obtained in MATLAB 2009 64-bits with a processor Intel
i7-2600K 3.40GHz.

As we mentioned above, we learn high frequency and
low noise sequences to get high quality individual models,
reducing the dimensionality of a feature vector using the B-
GPDM algorithm to construct a latent space. Our feature
vector is composed of the 3D positions and displacement
of the pedestrian joints, removing the 3D body translation
parameters. The displacements are included in the model
because it was observed to increase the accuracy in the pre-
diction of the pedestrian path. The high frequency will help
the B-GPDM to properly learn the dynamics of the different
actions and will increase the probability of finding a similar
test pose in the trained data without missing intermediate
poses. In addition, these low noise models will improve the
prediction when working with noisy test samples.

In the learning step, the pedestrian motions from the CMU
data-set are hierarchically divided into eight sub-sets. The
first division is based on the direction, left-to-right and right-
to-left. The second one is based on the action (standing,
starting, stopping and walking). To capture the dynamics of
the different actions, the beginning and end of the sequences
were cropped manually trying that all the poses in a sequence
were representative of their action.

On the other hand, in the prediction step, the original
sequences are used since variations in the pedestrian be-
haviours were captured. Table I shows the overall number
of poses for the learning models. The data-set is composed
of 187 sequences (29 of standing actions, 45 of starting
actions, 16 of stopping actions and 97 of walking actions)
from 26 different subjects divided according to the action
and direction.

TABLE I

NUMBER OF PEDESTRIAN POSES IN LEARNING STEP.

Standing Starting Stopping Walking
Left-to-Right 16963 1752 1181 25397
Right-to-Left 2512 1877 1147 11056

Total 19475 3629 2328 36453



A. GPDM

GPDM provides a framework for transforming a sequence
of feature vectors, which are related in time, into a low di-
mensional latent space. In order to apply this transformation,
the observation and the dynamics mapping are computed
separately in a non-linear form, marginalizing out both
mappings and optimizing the latent variables and the hyper-
parameters of the kernels. The conditional probability ofY
givenX, θ andW for the observation mapping is defined in
(1)

p(Y|X,θ ,W) =
|W|N

√

(2π)ND|KY|D
exp(−

1
2

tr (K−1
Y YW2YT))

(1)
whereY is the centred observed data-set,X represents the
latent positions on the model,KY is the kernel matrix,θ =
[θ1,θ2, ...,θN] contains the kernel hyper-parameters,N is the
number of samples,D is the dimension of the data-set, and
W is the scaling matrix (to account for different variances in
the different data dimension). The elements of kernel matrix
for the observation mapping are computed using (2).

k(xi ,x j) = θ1exp(
−θ2

2
(xi − x j)

T(xi − x j))+θ3δi, j (2)

whereδi, j is the Kronecher delta function.
The dynamic mapping from the latent coordinates is

defined in (3),
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whereXout = [x2, ...,xN]

T , d is the model dimension, andKX

is the kernel matrix constructed from{x1, ...,xN−1} using the
kernel function provided in (4)

k(xi ,x j) = β1exp(
−β2

2
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T(xi − x j))+β3xT
i x j +β4δi, j

(4)
whereβ1 to β4 are the kernel hyper-parameters.

The goal is to minimize the negative log-likelihood func-
tion −ln p(X,θ ,β ,W|Y) that is given in (5)
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j

lnθ j +
1

2κ2 tr (W2)+∑
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lnβ j (5)
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In order to increase the smoothness of the learned trajec-
tories in the latent space, a modified version of GPDM can
be used by changing the weight ofLX by means of aλ
element. A value forλ of D

d is recommended in [11]. This
modification is known as Balanced GPDM (B-GPDM).

Given a latent position the original feature vector can be
recovered as described in (8).

µ =YTK−1
Y kY(x) (8)
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Fig. 2. Pedestrian joints. Red markers stand for the action classification
joints.

whereY is the centred data-set,K−1
Y the inverse matrix of

the kernel for the observation mapping (see 2) andkY(x) is
a column vector with elementskY(x,x j) for all other latent
positionx j in the model.

GPDM also provides the grounds for predicting the next
position in the latent space based on the current latent
position. Thus, the next latent position can be obtained as
described in (9)

µX(x) = XT
outK

−1
X kX(x) (9)

whereXout = [x2, ...,xN]
T , KX is the kernel matrix constructed

from {x1, ...,xN−1} using the kernel function provided in (4)
and kX(x) is a column vector with elementskX(x,x j) for
all other latent positionx j in the model. A prediction at a
time horizon ofN latent positions ahead can be obtained
computing (9) iteratively.

B. Action classification

In this paper, we propose two new single frame classifiers
to estimate the pedestrian action separately. The first one is
based on 3D joint positions in lateral direction and the second
one is based on their displacements in the same direction. At
this point we should wonder what joints are more relevant
to the action classification algorithm. Some experiments
demostrated that a few joints in the legs are sufficent, so that,
the feature vector for this purpose is composed of 8 points:
hips, knees, anckles and tiptoes. In Fig. 2 it is shown all
pedestrian joints (blue markers) and the selected joints for
action classification (red markers). Other joints in the legs
are correlated with the outlined before, consequently their
information is redundant. On the other hand, adding joints
from the upper body in the feature vector could increase the
error rate of the classifiers since a pedestrian could move the
arms in a similar way when it is walking and standing.

Both classifiers only need to considerer four actions (walk-
ing, stopping, starting and standing). However, during the
learning step, the data-set was hierarchically divided into



eight sub-sets. The first division was based on the direction,
left-to-right and right-to-left, and the second one was based
on the action. Hence, a mirror rotation is applied to all right-
to-left sequences in order to get only pedestrians moving
from left to right and reduce the number of classes to classify
from eight to four.

The classifiers are trained getting the mean and the vari-
ance from the feature vectors of each considered action.
Given a new feature vector, the posterior probability for each
class is computed as:

P(C|X) =
n

∏
j=1

P(Xj |C)P(C) (10)

whereX means the feature vector,C is the class andn is
the feature vector length. For each classifier, a Maximum
A Posteriori (MAP) estimation is computed to obtain the
pedestrian action. The initial priorP(C) is defined in such a
way that all actions probabilities are identical.

The overall action probability is chosen depending on
the confidence of each classifier. If the displacement-based
classifier obtains a high confidence on walking or standing
action then the overall action probability corresponds to the
computed with this classifier, otherwise the overall probabil-
ity is the result from the position-based classifier.

At later instances, a transition matrixM, given the overall
action probabilityP(C|X), allows us to compute the prior
P(C) as:

P(C) = P(C|X)M (11)

This transition matrix takes into account how a pedestrian
can change its intentions, i.e, if a pedestrian is standing,
it will only change to a starting behaviour. Therefore, the
transitions between actions is a Finite Markov chain with
stationary transition probabilities given an initial vector of
probabilities.

Once we have estimated the pedestrian action we focus
on selecting the appropiate model. To select it a search of
the most similar 3D pose (joint positions and displacements)
in the corresponding action training sub-set is computed,
this pose and its latent position is used as starting point
for a more accurate search in the latent space applying a
gradient descent algorithm. Once the latent position has been
estimated, a prediction at a time horizon ofN poses ahead
can be done using (8) and (9) iteratively.

III. E XPERIMENTAL RESULTS

The described method was tested using the CMU data-
set with 129 sequences (63508 poses) from 24 subjects
adopting a one vs. all strategy. This means that all the models
generated by one test subject were removed from the training
data while performing tests on this subject. This strategy was
chosen due to the number of subjects is not enough to divide
them into two sets, one for training and other for testing.

A. Results on action classification

To test the performance of the proposed action classifica-
tion algorithm all pedestrian poses were manually labelled

on the sequences by a human expert. The adopted criteria of
labelling for a starting action is defined as the movement that
begins when the pedestrian moves one knee and ends when
its knee and anckle are aligned in the lateral axis. In addition,
a stopping action is defined as the movement that begins in
the middle of the last step and finishes when the foot treads
the ground. Table II summarizes the classification results on a
confusion matrix for each classifier. The joint-based classifier
and the displacement-based classifier have a precision of
78.89% and 72.90% respectively. The overall precision is
85.90% for the four different actions. Missclassifications
such as standing movements as walking actions and viceversa
or starting movements as stopping behaviours and viceversa
(4.16%) are produced by classification errors at the beginning
of the sequences. Other missclassifications are produced by
delays. However these last missclassificatios are not critical
from the point of view of the path estimation as both actions
have similar dynamics and the path predictions will be also
very similar.

TABLE II

CONFUSION MATRICES FOR ACTION CLASSIFICATION

ALGORITHM

(a) Joint-based classifier
Classification

Standing Starting Stopping Walking

Actual

Standing 21556 2594 384 1320
Starting 705 677 353 977
Stopping 0 49 217 181
Walking 531 1816 4495 27653

(b) Displacement-based classifier

Classification
Standing Starting Stopping Walking

Actual

Standing 21992 2257 1380 295
Starting 188 1231 851 442
Stopping 0 125 142 180
Walking 908 836 9814 22937

(c) Overall classification
Classification

Standing Starting Stopping Walking

Actual

Standing 23596 591 244 1423
Starting 739 633 316 1024
Stopping 0 49 186 212
Walking 935 1395 2092 30073

Figures 3 and 4 show the action probabilities for a stop-
ping and starting sequence respectively. In the top of each
figure, the probabilities from displacement-based classifier
is represented. During the walking actions, some peaks of
stopping probabilities appears due to the pedestrian legs are
opened and the displacement in that instant is lower than
when the legs are closed. In the middle of each figure, the
probabilities from joint-based classifier are shown. In this
case, each peak of stopping probabilities corresponds with
closed legs. Finally, in the bottom, the overall probabilities
are represented. This combination of classifiers allows solv-
ing the peaks of stopping probabilities and missclassifications
and avoiding continuous changes in the transitions between
actions, specially from walking and starting to walking and



Fig. 3. Action classification probabilities for a stopping sequence. Top:
Displacement-based classifier. Middle: Joint-based classifier. Bottom: Over-
all classification.

stopping respectively.

B. Results on pedestrian path prediction

As explained before, once the pedestrian action is esti-
mated, the model is first selected from each one of the
action data-sets and then a path prediction estimation is
performed using the selected model. Accordingly, a good
path prediction strongly depends on a good classification.
Table III shows the mean combined longitudinal and lateral
path prediction error and standard deviation (cm) for different

Fig. 4. Action classification probabilities for a starting sequence. Top:
Displacement-based classifier. Middle: Joint-based classifier. Bottom: Over-
all classification.

prediction horizons. As can be observed, prediction accuracy
at 1 second is higher for walking sequences (24.4 cm) than
for stopping (26.67 cm) or starting (37.36 cm). Compared to
our previous results in [9] mean errors for walking, stopping
and starting are much more similar to each other, probably
due to the fact that one second is a too long time horizon
for our action classifier to anticipate stopping actions from
walking poses. Although a much more detailed analysis of
the classifier is required we estimate that, in average, we
are detecting stopping actions 0.5 seconds in advance, and



this delay in the detection is introducing prediction errors
that close the gap with the ”change” actions (stopping and
starting). This indicates that the predictive power of the B-
GPDM if far larger than that of our action classifiers that are
limiting our prediction time horizon.

TABLE III

MEAN COMBINED LONGITUDINAL AND LATERAL

PREDICTION ERROR±STD (CM) FOR DIFFERENT

PREDICTION HORIZONS (SECONDS)

0 sec. 0.25 sec. 0.5 sec. 0.75 sec. 1 sec.

Walking 2.16 6.95 12.70 18.52 24.40
±2.78 ±7.72 ±13.83 ±19.99 ±26.31

Stopping 2.99 6.34 12.40 19.85 26.67
±3.06 ±5.78 ±9.67 ±14.67 ±19.61

Starting 3.25 7.60 17.75 27.67 37.36
±3.32 ±5.56 ±10.43 ±14.92 ±21.38

C. Processing time

Table IV resumes the processing time of each step. All
the results have been obtained using MATLAB 2009 64-bits
with a processor Intel i7-2600K 3.40GHz. As can be seen, B-
GPDM is the limiting section for a real time implementation
because the most expensive operation is the inversion of
kernel matrices, especially when the number of training
data is large. However, we believe there is great margin
for improvement with a GPU implementation of the Matlab
code.

TABLE IV

PROCESSING TIMES

Milliseconds
Action Classification 0.23

Model Selection 42.70
Latent Position Search 3672.54

Path and Pose Prediction 1252.27

IV. CONCLUSIONS AND FUTURE WORKS

We have developed a system for accurate pedestrian path
and pose prediction by means of action classification in a
limited time horizon up to 1 second. For such purpose,
we propose two naı̈ve-Bayes classifiers based on 3D joint
positions and joint displacement respectively. This approach
allows us to reduce the missclassifications and avoid continu-
ous changes in the transitions between actions, specially from
walking and starting to walking and stopping respectively.
Once the action has been classified, the most similar pose
is found on the 3D space in the sub-set of that action and
the latent position on the corresponding B-GPDM model is
estimated. Finally, a prediction at a time horizon of 1 second
ahead is done. The system provides accurate path predictions
with mean errors of 24.4 cm, for walking trajectories, 26.67
cm, for stopping trajectories and 37.36 cm for starting
trajectories, at a time horizon of 1 second. These results
were obtained using dynamical models created with the high

accuracy and high frequency (120 Hz) CMU data-set [10] in
which 41 joints are on the pedestrian body. According to
our previous results, we believe accuracy can be increased
at 1 second time horizons with better performance of the
action classifiers. In this line, we plan to introduce contextual
information to support the pose information of our classifiers.
Our final goal is to develop a pedestrian path and pose
prediction system set up in a moving vehicle equipped with
stereo cameras and LIDAR. The work presented in this paper
can be considered as the best case scenario and further
experimentation will be carried out to test how this approach
performs with noisy test sequences.

As future work we propose to create a bigger data-set in
order to include a signicative number of sequences for the
different actions that will help to train definite classifiers.
We propose to include sequences where pedestrians are
making a turn or even sequences with children. In addition,
experiments with pedestrian joint extraction systems in real
conditions will be performed to test the real predictive power
of the system with noisy samples.
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