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Abstract— Driver Assistance Systems have achieved a high
level of maturity in the latest years. As an example of that,
sophisticated pedestrian protection systems are already avail-
able in a number of commercial vehicles from several OEMs.
However, accurate pedestrian path prediction is needed in order
to go a step further in terms of safety and reliability, since it
can make the difference between effective and non-effective
intervention. In this paper, we consider the three-dimensional
pedestrian body language in order to perform path prediction in
a probabilistic framework. For this purpose, the different body
parts and joints are detected using stereo vision. We propose
the use of GPDM (Gaussian Process Dynamical Models) for
reducing the high dimensionality of the input feature vector
(composed by joints and displacement vectors) in the 3D pose
space and for learning the pedestrian dynamics in a latent
space. Experimental results show that accurate path prediction
can be achieved at a time horizon of≈ 0.8 s.

Index Terms— Pedestrian Path Prediction, Prediction of In-
tentions, Pedestrian Protection Systems, ADAS, Vision.

I. INTRODUCTION AND RELATED WORK

Getting to understand the underlying intent of an observed
agent is of paramount interest in a large variety of domains
that involve some sort of collaborative and competitive
scenarios, such as robotics, surveillance, human-machine
interaction, and intelligent vehicles. As a clear example of
that, predicting the path of a pedestrian by means of action
classification can lead to further improvement in state-of-
the-art driver assistance systems. As a matter of fact, an
improvement of 30-50 cm in pedestrians path prediction
accuracy may well signify the difference between effective
and non-effective intervention in emergency braking systems.
Early detection of pedestrians entering a road lane is a current
challenge in order to increase traffic safety. Thus, accident
analysis [1][2] shows that the ability to initiate emergency
braking 0.16 s in advance (with respect to typical human
reaction time of 0.5 s) has the potential to reduce the severity
of accident injuries up to 50%. Similarly, early recognition of
pedestrians stopping actions can lead to much more accurate
active interventions in last second automatic maneuvers. As
a consequence of that, strong gains are expected to be made
in the performance and reliability of pedestrian protection
systems.

A large number of works on pedestrian recognition has
been published in the past. Remarkable surveys on vision-
based state-of-the-art pedestrian detection systems can be
found on [3][4][5][6]. All these systems aim at the detection
and tracking of the bounding box where the pedestrian body

is located in the image plane. In [7] [8], the pedestrian bound-
ing box and the different body parts are detected using dis-
criminatively trained deformable parts-based models, provid-
ing an interesting framework for the analysis of pedestrians’
gait dynamics. However, while being a remarkable milestone
in the domain of pedestrian recognition, the low accuracy and
repetitiveness exhibited in the location of the body parts in
a sequence of images does not allow to robustly use this
method in the tracking of pedestrians joints or limbs. Early
approaches for pedestrian tracking use Kalman Filters in
a trajectory-based framework, including interacting multiple
model filters [9][10] in order to account for different motion
dynamics. Nonetheless, the sole consideration of trajectory
is clearly insufficient for predicting the pedestrian path in
an accurate manner in situations with changing motion
dynamics. Thus, empirical studies [11] have demonstrated
that when only the trajectory of the pedestrian is available, a
higher error rate is produced in drivers judgment regarding
the pedestrians intentions.

In contrast to trajectory-based approaches, the considera-
tion of the whole pedestrian body language has the potential
to provide early indicators of the pedestrian intentions, much
more powerful than those provided by the physical parame-
ters of a trajectory. In this line, vision-based gait recognition
has been undertaken in the literature by using motion history
images and frame difference [12] in an attempt to analyze
human motion. Nonetheless, there is a yawning gap between
gait recognition and pedestrians’ intention or action classifi-
cation. In [13], early indicators of the pedestrian’s intention
to cross the street are divided into those presumably followed
by crossing, e.g. turning the head or catching the vehicle
driver’s eye, and those definitely followed by entering the
lane, e.g. bending the upper body. They propose an IMM-
EKF algorithm for tracking and for detecting pedestrians’
intentions to enter the lane in an intersection monitoring
application using a stationary monocular camera. In addition,
a HOG-like monocular-video-based descriptor is proposed
in combination with SVM classification (MCHOG) in order
to speed up the decision on the start of walking (stopping
actions and bending in behaviors are not considered). The
use of difference of images in their work does not make it
directly applicable to moving vehicles.

In [14], a probabilistic approach is proposed for pedestrian
action classification (walking vs. stopping; starting-to-walk is
not considered) and accurate path prediction from a moving
vehicle, at short intervals. They improve traditional trajectory
matching approaches by augmenting the underlying features



to include motion cues. Dimensionality reduction of the fea-
ture vector is carried out by applying PCA (Principal Com-
ponent Analysis) on the histograms of Orientation Motion
(HoM) features. More recently, in [2] two novel approaches
are proposed based on GPDM (Gaussian Process Dynamical
Models) and probabilistic hierarchical trajectory matching.
Dimensionality reduction of the augmented motion features
derived from dense optical flow is carried out using GPDM,
as originally proposed in [15][16]. The baseline for com-
parison are a Kalman filter and its extension to interacting
multiple model. While similar performance is attained by
the four approaches on walking motion, with near-linear
dynamics, during stopping motion the two newly proposed
approaches achieve a more accurate position prediction of
10-50 cm at a time horizon of 0-0.77 s.

In this paper, we propose a novel approach for improving
the accuracy of pedestrian path prediction in walking and
stopping behaviors based on the pedestrian body language.
The system description is provided in Section II. The pedes-
trian body parts are detected using stereo-vision, as described
in section II-A, and coded in a low-dimensional embedding
as illustrated in section II-B. Predictions are issued on the
grounds of statistical formulation, as detailed in sectionII-C.
Experimental results are presented in section III. Finally, we
discuss our conclusions and future work in section IV.

II. SYSTEM DESCRIPTION

We propose to use pedestrians’ 3D joints and its displace-
ment vectors as the main clue for predicting the pedestrian
path in the short term, given that the pedestrian body
pose encodes relevant information regarding the most likely
movements in a short time horizon. For this purpose, the
pedestrian body parts or joints must be detected in 3D.
Point clouds provided by stereo-vision sensors are used as
input for that. The proposed system builds on an already
existing pedestrian detection function, capable of extracting
the pedestrian 3D points from a point cloud. In a second
step, the pedestrian 3D joints and displacement vectors are
transformed to a low dimensional latent embedding using
probabilistic dimensionality reduction techniques. Pedestrian
tracking and path prediction is then carried out in the latent
space using off-line learned pedestrian behaviors. Finally,
the predicted pedestrian 3D pose and global position are
recovered from the latent space based on the reverse mean of
the trained data. A detailed description of the different parts
of the proposed algorithm is provided in the next sections.

A. Stereo Pedestrian Pose Estimation

1) Preprocessing: In the preprocessing step, a point cloud
is obtained from the stereo images pair with a subsequent
pedestrian extraction step. In our experiments we use the
KITTI data-set [17]. This data-set provides left and right
images from a stereo setup along with the calibration pa-
rameters. Fig. 1 depicts a sequence image example from
KITTI in which a pedestrian is walking towards the car’s
reachable area. A disparity image is calculated using Semi
Global Block Matching (SGBM) algorithm modified from

Fig. 1. Sequence example from KITTI in which a pedestrian walks towards
the curbstone (artificially delimited by white spots on the pavement).

[18]. The disparity image is used to compute a 3D point
cloud. In a first step, a background mask is created using
a background subtraction algorithm in order to extract the
pedestrian body. In a second step, the ground plane is also
detected in the point cloud. These two steps allow to remove
most of the points that do not belong to the pedestrian.
Euclidean point clustering is applied to the resulting cloud
and the largest cluster is assumed to belong to the pedestrian.
This pedestrian extraction scheme works well in the KITTI
data-set used with standing vehicles, but in a more complex
scenario any pedestrian detection algorithm could be used to
extract the pedestrian point cloud [6].

2) Pose estimation: The pose estimation algorithm here
proposed assumes that a input point cloud is comprised only
of points belonging to a single pedestrian that has been
previously extracted from the general point cloud provided
by the stereo images pair. It is also assumed that the
pedestrian is in an upright pose, a common assumption in
the pedestrian detection context.

Let P = {p1, ... , pN} represent the pedestrian point
cloud with N points. The overall bounding box ofP
provides a rough approximation to the pedestrian height.
The height approximation together with the typical human
body proportions allows to estimate the size of the body
parts. This point cloud is sliced horizontally into overlapping
segments corresponding to: the head, shoulders, center torso,
lower torso, upper legs and lower legs, respectively. These
individual point clouds allow the algorithm to search for
each body part in a small subset ofP making the search
simpler and faster. The pose estimation algorithm starts by
the definition of the head center position as the geometric
centroid of all the points in the top sliced point cloud. The
head position will be the start for the rest of the body parts.
The neck is extracted from the head position. All other body
parts are subsequently extracted after that.

The neck position is obtained using a sampling and scoring
method reminiscent of the Monte Carlo techniques. A line
segment is defined starting at the head position with a
predefined length and orientation. This initial line definesthe
preferential orientation of the neck. With the same starting



Fig. 2. Body parts detected with the pose estimation algorithm.

point a set of new lines is created. Let us denote these
lines assamples that correspond to different possible neck
positions. All samples are created by reorientation of the
preferential sample in two perpendicular directions, withthe
first one corresponding to the pedestrian main orientation.
The samples are uniformly distributed within a boundary that
limits the neck movement to account for the human neck
relative position limits. In this specific case, the boundary
has the shape of a ellipse. Different boundaries are used
for different body parts. After creation, the samples are
ranked. LetS = [S1,S2, . . . ,SK ] denote all samples. Each
sample score is calculated as the sum of a scoring function
f (d(),λ ,k) for all points D, in the specific search point
cloud, as expressed in Eq. 1.

Xk = ∑
D

f (d (pd ,Sk) ,λ ,k) (1)

Function d(p,S) denotes the euclidean distance function
from a 3D pointp to a line segment, sampleS. The scoring
function f () provides the individual score for each point
based on the euclidean distance of the point to the sample
and two parameters. The function is defined as the pdf of
the Weibull distribution:

f (x,λ ,k) =
k
λ

( x
λ

)k−1
e−(x/λ )k

(2)

This function provides a degree of control over the location
of the maximum score. For instance, the maximum score
for each point maybe obtained at a specific distance from
the line segment. This allows for the best scoring sample
to be placed at a specific distance from the point cloud.
This method is used because of the cylindrical nature of
body parts. Selecting the sample that best fits the points
based on the distance alone would not take this nature into
consideration and would yield erroneous results. After all
samples are scored the highest scoring sample is selected as
the best description of the body part. The next body part will
be connected to the terminal position of the previous one and

the same method is iteratively applied. Fig. 2 presents all the
body parts that are detected using this method. The arms are
not extracted because the stereo algorithm does not provide
enough resolution for their reliable detection.

The sample and score method is applied to all body
parts but with variations. The shoulders preferential position
is represented by an ellipse centered at the neck bottom
and stretched to best fit the typical human proportions.
In this case, samples are created by rotating the initial
ellipse using only a vertical axis centered at the ellipse
center and the distance function is replaced by a 3D point
representing the ellipse distance function. Because of the
ellipse representation the shoulders are coupled and cannot
move independently. A similar variation is also employed at
the hips.

The body orientation can be extracted from the shoulders
orientation but with ambiguity. Using just the shoulders, the
correct direction cannot be obtained given that both back
and front-looking parts provide the same general orientation.
To solve this problem motion history is used. By using the
consecutive positions of the head, both the direction and
velocity of the motion can be extracted. The final pedestrian
orientation is obtained from both the shoulders and motion
direction. In both the upper and lower legs, the boundary
conditions on the reorientation of the preferential sampleare
modified to best fit the leg motion limitations, for instance:
the lower leg may not curve upward at the front.

Due to the fact that both left and right legs use the same
slice of the original point cloud, they may converge on the
same position, even with different starting positions. This
problem is particularly evident when one leg is partially
or totally occluded by the other. In order to avoid this
problem a sequential search in performed. First, both upper
legs samples are scored with the original point cloud. The
best overall sample of either the left or right upper legs is
selected. All the points that are within a specific range of
the selected sample are removed from the point cloud. The
opposing upper leg is re-scored on the remaining point cloud.
The same procedure is performed in the lower legs.

3) Results on pose estimation: Fig. 3 presents two differ-
ent pedestrian poses. On the left, the original pedestrian point
cloud as extracted by the pre-processing stage is presented.
In the middle, the extracted pose with all the created samples
and the key positions of the pose is depicted. On the right, the
original point cloud is colored based on the corresponding
body part; points are classified based on their distance to
each body part.

The poses are well estimated especially taking into account
the noisy nature of the stereo point cloud. The example poses
were obtained at a range of≈ 14 meters. The recursive
nature of the algorithm limits the accuracy of a body part
on the accuracy of the previous part. If a part is incorrectly
detected all following parts will be affected. The sampling
scheme allows to explore the motion space while imposing
anthropomorphic limits on the movement of the joints, where
a minimization scheme could become stuck in a local mini-
mum. The partial self occlusion of the torso does not affect



Fig. 3. Two different extracted poses. On the left, the segmented
pedestrian point cloud. In the middle, the pose extracted with all the samples
used. Finally, on the right, the original point cloud colored based on the
corresponding body part.

the pose estimation, the head position along with the visible
torso side are typically enough for a correct pose estimation.
In the case of a severe occlusion of one of the legs, the
occluded leg pose cannot be correctly extracted. This case
can be detected by identifying an abnormally low maximum
score of the occluded leg. The presented method is able to
extract correctly the typical pose of a pedestrian walking in
any direction. The method does not require multiple initial
models or poses and the extraction is based on the simple
assumptions of an up-right position and relative body parts
size.

B. Dimensionality Reduction

A major goal in statistics modeling and machine learning
is to reduce the dimensionality of input data. Several ap-
proaches have been followed in the technical literature for
this purpose, such as PCA (Principal Components Analysis)
[19], SGPLVM (Scaled Gaussian Process Latent Variable
Model) [16], and GPDM (Gaussian Process with Dynamic
Model) [20]. In our experiments, we use two data-sets
that contain the 3D coordinates of body joints and its
displacement vectors performing typical pedestrian motions.
The first data-set was created at Carnegie Mellon University
[21] using a motion capture system (CMU mocap). We will
denote it as CMU data-set hereinafter. In CMU data-set each
pose is made up of 41 joints along the body. The second
data-set was created in our lab by means of the algorithm
described in section II-A using the images contained in the
KITTI data-set. We will denote it as K-UAH data-set. In K-
UAH data-set, a skeleton containing 14 relevant body joints

is built from the pedestrian points cloud in 3D. The choice of
the 14 joints, as depicted in Fig. 2, has been made based on
their discriminating capability for learning pedestrian motion.
The use of 3D data and depth information has the potential to
significantly augment the performance of pedestrian tracking
and prediction. Our goal is to transform the 3D pose data
into a low dimensional (3-d) latent space in which tracking
and prediction of the pedestrian movements will be carried
out based on trained data containing pedestrian motions.
Previous works use different kinds of data for learning
pedestrian motions. For example, in [20] the CMU data-set
is used for introducing the GPDM algorithm. Each pose is
defined by 44 Euler angles (joints), three global (torso) pose
angles, and three global (torso) translational velocities. In
[2], the use of GPDM is also proposed for pedestrian path
prediction, although in this case the feature vector contains
dense optical flow and disparity information instead of the
3D joints and displacement vectors.

The use of dynamical information in the training stage
is useful for time-series data modeling, such as pedestrian
motions. GPDM computes the observation and the dynamic
mapping separately in a non-linear form. GPDM marginal-
izes out both mapping parameters and optimizes for the latent
variables and the kernel hyper-parameters. The incorporation
of dynamics can be used for predicting future data. The
definition of the conditional probability ofY given X , θ ,
andW is provided in Eq. 3.

p(Y |X ,θ ,W ) =
|W |N

√

(2π)ND|KY |D
exp(−

1
2

tr(K−1
Y YW 2Y T ))

(3)
where Y is the centered observed data (3D-pose),X

represents the latent positions on the model,KY is the
kernel matrix,θ = [θ1,θ2, ...,θN ] contains the kernel hyper-
parameters,N is the number of samples,D is the dimension
of the data-set, andW is the scaling matrix (to account for
different variances in the different data dimensions). The
elements of the kernel matrix for the observation mapping
are computed using Eq. 4.

k(xi,x j) = θ1exp(
−θ2

2
(xi − x j)

T (xi − x j))+θ3δi, j (4)

whereδi, j is the Kronecker delta function. The dynamic
mapping from the latent coordinates is given in Eq. 5.

p(X |β ) =
p(x1)

√

(2π)(N−1)d |KX |d
exp(−

1
2

tr(K−1
X XoutX

T
out)) (5)

whereXout = [x2, ...,xN ]
T , d is the model dimension, and

KX is the kernel matrix constructed from{x1, ...,xN−1} using
the kernel function provided in Eq. 6.

k(xi,x j) = β1exp(
−β2

2
(xi − x j)

T (xi − x j))+β3xT
i x j +β4δi, j

(6)



where β1 to β4 are kernel hyper-parameters. The
goal is to minimize the negative log-likelihood function
−lnp(X ,θ ,β ,W |Y ) that is given by Eq. 7.

L = LY +LX +∑
j

lnθ j +
1

2κ2 tr(W 2)+∑
j

lnβ j (7)

where

LY =
D
2

ln|KY |+
1
2

tr(K−1
Y YW 2Y T )−Nln|W | (8)

LX =
d
2

ln|KX |+
1
2

tr(K−1
X XoutX

T
out)+

1
2

xT
1 x1 (9)

The optimization procedure is carried in two alterna-
tive steps. In a first step,L is optimized with respect
to W in closed form. In a second step,L is optimized
with respect toX ,θ ,β by using SCG (Scaled Conjugate
Gradient) [22]. The latent coordinates are initialized by
PCA, θ is manually initialized to[1,1,exp(−1)]T , β is set
to [1,1,exp(−1),exp(−1)]T , and W is set to an identity
diagonal matrix. The details of the learning algorithm are
provided in [20].

In order to increase the smoothness of the learned trajec-
tories in the latent space, a modified version of GPDM can
be used by changing the weight ofLX on the likelihood
function by means of aλ element. As proposed in [15], we
use a valueλ = D

d . This modification is known as Balanced
GPDM.

C. Prediction

GPDM provides a framework for transforming the 3D
joints and its displacement vectors into a low dimensional
latent space, as described in the previous section, but it also
provides the grounds for predicting the next position in the
latent space based on the current latent position and the
dynamics of the pedestrian motion, as learned during the
GPDM training stage. Thus, the latent position in the next
frame can be obtained as described in Eq. 10.

µX (x) = XT
outK

−1
X kX (x) (10)

where Xout = [x2, ...,xN ]
T , KX is the kernel matrix con-

structed from{x1, ...,xN−1} using the kernel function pro-
vided in Eq. 6, andkX (x) is a column vector with elements
kX (x,x j) for all other latent positionsx j in the model. Eq.
10 can be iteratively used in order to predict the pedestrian
position in the latent space a number of framesN ahead in
time. The reconstruction of a pedestrian pose and the dis-
placement vectors given the latent position can be obtained
from Eq. 11.

µ = Y T K−1
Y kY (x) (11)

whereY is the centered data set,K−1
Y is the inverse matrix

of the kernel for the observation mapping (see Eq. 4), and
kY (x) is a column vector with elementskY (x,x j) for all other
latent positionsx j in the model. In our approach, the mean

reconstruction errors per joint in the walking test set are 0.60
cm (CMU) and 4.4 cm (K-UAH), while the mean errors per
joint in the stopping test set are 0.47 cm (CMU) and 2.22
cm (K-UAH), respectively.

III. E XPERIMENTAL RESULTS

Two systems trained on the CMU data-set (one for a
walking trajectory and another for a stopping trajectory)
using Balanced GPDM are tested using four test-sets (two
sets extracted from the CMU data-set, 120 fps, and two sets
extracted from the K-UAH data-set, 10 fps). Comparison
between results obtained on the K-UAH data-set and CMU
data-set are intended for quantifying the influence of stereo
noise, differences in frame rate, and errors committed in the
skeleton estimation phase. Two types of pedestrian behaviors
are considered. In the first behavior, the pedestrian walks
along the lateral direction with respect to the ego-vehicle.
This scenario resembles a pedestrian crossing the street. In
the second behavior, the person walks and suddenly stops. In
this scenario, a pedestrian waits for crossing the street when
a vehicle is approaching. Both actions are available in CMU
and K-UAH data-sets. The mean squared error between
the reconstructed pose (from a latent position) and the test
pose (joints and displacement vectors) must be minimized
iteratively in order to obtain the most likely latent position for
a given test pose. A few issues must be considered before the
training stage. The first one is the different number of joints
(points) contained in the CMU and K-UAH data-sets. The
same number of joints (in the same position) are selected in
both data-sets, either in the training and testing steps, aiming
at homogenizing the method. For that purpose, only the 14
body joints considered in the K-UAH data-set, as depicted
in Fig. 2, are considered in the CMU data-set. As a second
consideration, the order of the joints must be the same in the
input data for both data-sets, either for training and testing.
As a third consideration, the displacement vectors must be
scaled due to the different frame-rates in the training and
test sets. Finally, the same reference system and movement
direction are considered between the training and test sets.

Once the latent position has been estimated, a prediction
at a time horizon ofN frames ahead can be done using Eq.
10 iteratively. Fig. 4 depicts the trajectory obtained in the
latent space after training the system with GPDM (blue),
the latent position corresponding to a given test pose (red),
and the predicted trajectory in the latent space (green) for
a time horizon of 1 s. As can be observed, the predicted
trajectory closely resembles the shape of the trajectory used
for training both in the walking and stopping cases. The
pedestrian global lateral position with respect to the camera
can be recovered using the displacement vectors. Tables I
and II show the mean lateral prediction error (in cm) for
different prediction horizons for the CMU and K-UAH data-
sets, respectively. In both cases, the system is trained on the
accurate 3D poses contained in the CMU data-set. As can be
observed, prediction accuracy is higher when using testing
data from the CMU data-set, given that it contains accurate
3D data acquired with a motion capture device. In such a
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Fig. 4. (a) Balanced GPDM trained on CMU database file 0701.c3d
(walking motions) (blue), the latent position for a given test pose (red dot)
and the predicted trajectory on the latent space (green); (b) Balanced GPDM
trained on CMU database file 12019.c3d (stopping motions) (blue), the
latent position of a given test pose (red dot) and the predicted trajectory on
the latent space (green)

case, the mean lateral error at a time horizon of 0.78 s is
around 2 cm, for walking trajectories, and around 3 cm, for
stopping trajectories. In contrast, prediction accuracy gets
slightly decreased when using the K-UAH data-set, reaching
a mean lateral error of 3.82 cm and 12.2 cm in the same
conditions, respectively. This is partially due to the factthat
the input data for the K-UAH data-set are computed automat-
ically using the vision-based skeleton estimation algorithm
previously described. However, the highly accurate results
obtained demonstrate the potential of the proposed method
for accurate pedestrian path prediction when using accurate
3D data as input and as a model for motion learning. It must
be clearly stated that these results have been obtained using a
single type of pedestrian dynamics for walking and stopping
motions. Accordingly, similar motions have been used for
testing in the K-UAH data-set. In any case, the realization
of exhaustive experiments for gathering additional results
involving many different pedestrians and dynamics would
be needed in order to provide the grounds for generalization
of the conclusions drawn in this research.

Figs. 5 and 6 show the predicted 3D pose at time hori-
zons of 0, 0.23, 0.5, and 0.78 s for walking trajectories
extracted from CMU and K-UAH data-sets, respectively.

TABLE I

LATERAL PREDICTION MEAN ERROR (CM) FOR DIFFERENT

PREDICTION HORIZONS (SECONDS) - CMU DATA-SET

0 sec 0.23 sec 0.5 sec 0.78 sec
Walking 0.23 1.99 2.03 2.10
Stopping 0.10 0.27 0.97 3.10

TABLE II

LATERAL PREDICTION MEAN ERROR (CM) FOR DIFFERENT

PREDICTION HORIZONS (SECONDS) - K-UAH DATA-SET

0 sec 0.23 sec 0.5 sec 0.78 sec
Walking 1.91 2.26 3.44 3.82
Stopping 0.62 4.88 11.39 12.2

Reconstructed poses (depicted in blue) are very similar to
the ground-truth poses (depicted in red) when using testing
data containing very accurate 3D inputs, as in the case of the
CMU data-set. Reconstruction results get a bit worse when
using testing data obtained from stereo-vision and skeleton
estimation (specially visible in the prediction of the legs),
as in the case of the K-UAH data-set, although the general
aspect of the body pose is preserved.

IV. CONCLUSIONS ANDFUTURE WORK

We have developed a system for accurate pedestrian path
prediction in a limited time horizon up to≈ 0.8 s. For
such purpose, we propose the use of stereo-vision and
probabilistic techniques, namely GPDM, for dimensionality
reduction. The 3D structure of the pedestrian joints is built
from the point cloud provided by a stereo-vision system
and transformed (with displacement vectors) later on into a
latent space using GPDM. Predictions are then performed
in the latent space using the knowledge learned during
the training of the system dynamics. The method has the
potential to provide accurate path predictions of 2 cm, for
walking trajectories, and 3 cm, for stopping trajectories,at
a time horizon of 0.78 s, as demonstrated with the accurate
3D data-set provided by CMU. Experiments with K-UAH
data-set, built from 3D data provided by a stereo-vision
system, demonstrate that prediction accuracy gets decreased
to 3.8 cm and 12 cm for walking and stopping trajectories,
respectively at a time horizon of 0.78 s.

As future work, we propose to enhance the method for
building the pedestrian skeleton from the point cloud. A more
accurate 3D reconstruction of the pedestrian joints would
definitely increase the pedestrian path prediction accuracy, as
demonstrated in our experiments. In addition, a richer data-
set will be created in order to include a representative number
of sequences containing pedestrians performing differentbe-
haviors, such as walking, stopping, starting and bending-in,
with different dynamics. Finally, a decision making system
will be developed in order to select the most appropriate
tracking system and to provide pedestrian action classifica-
tion as a function of the pedestrian behavior.
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Fig. 5. Predicted pose reconstruction (left, frontal view;right, lateral view) at time horizons of (a) 0 s, (b) 0.23 s, (c)0.5 s, and (d) 0.78 s for walking
trajectories extracted from CMU data-set. The reconstruction is depicted in blue, while the ground-truth is in red.
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Fig. 6. Predicted pose reconstruction (left, frontal view;right, lateral view) at time horizons of (a) 0 s, (b) 0.23 s, (c)0.5 s, and (d) 0.78 s for walking
trajectories extracted from K-UAH data-set. The reconstruction is depicted in red, while the ground-truth is in blue.
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