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Abstract— Driver Assistance Systems have achieved a high
level of maturity in the latest years. As an example of that,
sophisticated pedestrian protection systems are already avail-
able in a number of commercial vehicles from several OEMs.
However, accurate pedestrian path prediction is needed in order
to go a step further in terms of safety and reliability, since it
can make the difference between effective and non-effective
intervention. In this paper, we consider the three-dimensional
pedestrian body language in order to perform path prediction in
a probabilistic framework. For this purpose, the different body
parts and joints are detected using stereo vision. We propose
the use of GPDM (Gaussian Process Dynamical Models) for
reducing the high dimensionality of the input feature vector
(composed by joints and displacement vectors) in the 3D pose
space and for learning the pedestrian dynamics in a latent
space. Experimental results show that accurate path prediction
can be achieved at a time horizon ok 0.8 s.

Index Terms— Pedestrian Path Prediction, Prediction of In-
tentions, Pedestrian Protection Systems, ADAS, Vision.

I. INTRODUCTION AND RELATED WORK

is located in the image plane. In [7] [8], the pedestrian labun
ing box and the different body parts are detected using dis-
criminatively trained deformable parts-based modelsyidro
ing an interesting framework for the analysis of pedestian
gait dynamics. However, while being a remarkable milestone
in the domain of pedestrian recognition, the low accurady an
repetitiveness exhibited in the location of the body pants i
a sequence of images does not allow to robustly use this
method in the tracking of pedestrians joints or limbs. Early
approaches for pedestrian tracking use Kalman Filters in
a trajectory-based framework, including interacting rnplet
model filters [9][10] in order to account for different matio
dynamics. Nonetheless, the sole consideration of trajecto
is clearly insufficient for predicting the pedestrian path i
an accurate manner in situations with changing motion
dynamics. Thus, empirical studies [11] have demonstrated
that when only the trajectory of the pedestrian is available
higher error rate is produced in drivers judgment regarding
the pedestrians intentions.

In contrast to trajectory-based approaches, the considera

Getting to understand the underlying intent of an observegbn of the whole pedestrian body language has the potential
agent is of paramount interest in a large variety of domairn® provide early indicators of the pedestrian intentionacm
that involve some sort of collaborative and competitivanore powerful than those provided by the physical parame-
scenarios, such as robotics, surveillance, human-machitegs of a trajectory. In this line, vision-based gait redtign
interaction, and intelligent vehicles. As a clear examie chas been undertaken in the literature by using motion lyistor
that, predicting the path of a pedestrian by means of actiamages and frame difference [12] in an attempt to analyze
classification can lead to further improvement in state-ofauman motion. Nonetheless, there is a yawning gap between
the-art driver assistance systems. As a matter of fact, gait recognition and pedestrians’ intention or action sifas
improvement of 30-50 cm in pedestrians path predictiopation. In [13], early indicators of the pedestrian’s irtten
accuracy may well signify the difference between effectivéo cross the street are divided into those presumably feitbw

and non-effective intervention in emergency braking syste

by crossing, e.g. turning the head or catching the vehicle

Early detection of pedestrians entering a road lane is @otrr driver's eye, and those definitely followed by entering the
challenge in order to increase traffic safety. Thus, actidetane, e.g. bending the upper body. They propose an IMM-
analysis [1][2] shows that the ability to initiate emerggnc EKF algorithm for tracking and for detecting pedestrians’
braking 0.16 s in advance (with respect to typical humaintentions to enter the lane in an intersection monitoring
reaction time of 0.5 s) has the potential to reduce the ggveriapplication using a stationary monocular camera. In aiuliti

of accident injuries up to 50%. Similarly, early recognitiof

a HOG-like monocular-video-based descriptor is proposed

pedestrians stopping actions can lead to much more accuraiieccombination with SVM classification (MCHOG) in order
active interventions in last second automatic maneuvess. Ao speed up the decision on the start of walking (stopping
a consequence of that, strong gains are expected to be madéions and bending in behaviors are not considered). The
in the performance and reliability of pedestrian protettiouse of difference of images in their work does not make it

systems.

directly applicable to moving vehicles.

A large number of works on pedestrian recognition has In [14], a probabilistic approach is proposed for pedestria
been published in the past. Remarkable surveys on visioaetion classification (walking vs. stopping; startingwalk is
based state-of-the-art pedestrian detection systems ean ot considered) and accurate path prediction from a moving

found on [3][4][5][6]. All these systems aim at the deteantio

vehicle, at short intervals. They improve traditional étpry

and tracking of the bounding box where the pedestrian bodyatching approaches by augmenting the underlying features



to include motion cues. Dimensionality reduction of the-fea
ture vector is carried out by applying PCA (Principal Com-
ponent Analysis) on the histograms of Orientation Motion
(HoM) features. More recently, in [2] two novel approaches
are proposed based on GPDM (Gaussian Process Dynamica®=
Models) and probabilistic hierarchical trajectory matahi
Dimensionality reduction of the augmented motion features
derived from dense optical flow is carried out using GPDM,
as originally proposed in [15][16]. The baseline for com-
parison are a Kalman filter and its extension to interacting
multiple model. While similar performance is attained by
the four approaches on walking motion, with near-linear
dynamics, during stopping motion the two newly proposed
approaches achieve a more accurate position prediction . 1. sequence example from KITT! in which a pedestrian watkvards
10-50 cm at a time horizon of 0-0.77 s. the curbstone (artificially delimited by white spots on thegqraent).

In this paper, we propose a novel approach for improving
the accuracy of pedestrian path prediction in walking and
stopping behaviors based on the pedestrian body langua{8]. The disparity image is used to compute a 3D point
The system description is provided in Section Il. The pede&loud. In a first step, a background mask is created using
trian body parts are detected using stereo-vision, asibescr @ background subtraction algorithm in order to extract the
in section II-A, and coded in a low-dimensional embeddingedestrian body. In a second step, the ground plane is also
as illustrated in section 1I-B. Predictions are issued om thdetected in the point cloud. These two steps allow to remove
grounds of statistical formulation, as detailed in sectie@. ~most of the points that do not belong to the pedestrian.

Experimental results are presented in section Il Finally ~ Euclidean point clustering is applied to the resulting diou
discuss our conclusions and future work in section IV.  and the largest cluster is assumed to belong to the pedestria

This pedestrian extraction scheme works well in the KITTI
Il. SYSTEM DESCRIPTION data-set used with standing vehicles, but in a more complex

We propose to use pedestrians’ 3D joints and its displac&cenario any pedestrian detection algorithm could be used t
ment vectors as the main clue for predicting the pedestrig@xtract the pedestrian point cloud [6].
path in the short term, given that the pedestrian body 2) Pose estimation: The pose estimation algorithm here
pose encodes relevant information regarding the mostylikeproposed assumes that a input point cloud is comprised only
movements in a short time horizon. For this purpose, thef points belonging to a single pedestrian that has been
pedestrian body parts or joints must be detected in 3[reviously extracted from the general point cloud provided
Point clouds provided by stereo-vision sensors are used g the stereo images pair. It is also assumed that the
input for that. The proposed system builds on an alreadyedestrian is in an upright pose, a common assumption in
existing pedestrian detection function, capable of exitigc the pedestrian detection context.
the pedestrian 3D points from a point cloud. In a second Let & = {pi, ..., pn} represent the pedestrian point
step, the pedestrian 3D joints and displacement vectors aioud with N points. The overall bounding box of”
transformed to a low dimensional latent embedding usingrovides a rough approximation to the pedestrian height.
probabilistic dimensionality reduction techniques. B#iddan  The height approximation together with the typical human
tracking and path prediction is then carried out in the faterbody proportions allows to estimate the size of the body
space using off-line learned pedestrian behaviors. Finallparts. This point cloud is sliced horizontally into overbéapy
the predicted pedestrian 3D pose and global position asegments corresponding to: the head, shoulders, censer, tor
recovered from the latent space based on the reverse meanogfer torso, upper legs and lower legs, respectively. These
the trained data. A detailed description of the differentpa individual point clouds allow the algorithm to search for
of the proposed algorithm is provided in the next sectionseach body part in a small subset & making the search

. o simpler and faster. The pose estimation algorithm starts by

A. Sereo Pedestrian Pose Estimation the definition of the head center position as the geometric

1) Preprocessing: In the preprocessing step, a point cloudcentroid of all the points in the top sliced point cloud. The
is obtained from the stereo images pair with a subseque¢ad position will be the start for the rest of the body parts.
pedestrian extraction step. In our experiments we use tfAde neck is extracted from the head position. All other body
KITTI data-set [17]. This data-set provides left and righparts are subsequently extracted after that.
images from a stereo setup along with the calibration pa- The neck position is obtained using a sampling and scoring
rameters. Fig. 1 depicts a sequence image example framethod reminiscent of the Monte Carlo techniques. A line
KITTI in which a pedestrian is walking towards the car'ssegment is defined starting at the head position with a
reachable area. A disparity image is calculated using Semiedefined length and orientation. This initial line defittes
Global Block Matching (SGBM) algorithm modified from preferential orientation of the neck. With the same stgrtin




® head the same method is iteratively applied. Fig. 2 presentsall t

neck body parts that are detected using this method. The arms are
: * shoulders not extracted because the stereo algorithm does not provide
upper torso enough resolution for their reliable detection.
e b e contertorso The sample and score method is applied to all body
ower torso parts but with variations. The shoulders preferential {pmsi
hips is represented by an ellipse centered at the neck bottom

and stretched to best fit the typical human proportions.
upper legs In this case, samples are created by rotating the initial
ellipse using only a vertical axis centered at the ellipse
! center and the distance function is replaced by a 3D point
representing the ellipse distance function. Because of the
lower legs ellipse representation the shoulders are coupled and tanno
move independently. A similar variation is also employed at
< the hips.
The body orientation can be extracted from the shoulders
orientation but with ambiguity. Using just the shouldetws t
correct direction cannot be obtained given that both back

and front-looking parts provide the same general oriemtati

point a set of new lines is created. Let us denote thesl% solve this problem motion history is used. By using the

lin mples th rr n ifferen ible neck . I >
€s assa ples that correspond to differe t.poss'be e consecutive positions of the head, both the direction and
positions. All samples are created by reorientation of thé

preferential sample in two perpendicular directions, with velocity of the motion can be extracted. The final pedestrian

first one corresponding to the pedestrian main orientatioﬁirrlzgtt?ot:]onlr']sb%?;]a'tr;;dufrorgr b;r:z tlz\?vesrh(I)eljlgerti:nbdom%t;n
The samples are uniformly distributed within a boundary tha ' PP gs, y

- onditions on the reorientation of the preferential sangpée
limits the neck movement to account for the human nec o : ST . )

. . - . o modified to best fit the leg motion limitations, for instance:
relative position limits. In this specific case, the boundar

. . : tf(]le lower leg may not curve upward at the front.
has the shape of a ellipse. Different boundaries are use Due to the fact that both left and right leas use the same
for different body parts. After creation, the samples are 9 9

anked Lats (5., S denot al samples. Eacn 12 e 0197 PO < ey ey o on e
sample score is calculated as the sum of a scoring functiofg e P ' gp :

: ; . . problem is particularly evident when one leg is partially
;(:u(()j’)‘a{:)e;grrezlslezo;ztsé(?’1m the specific search point or totally occluded by the other. In order to avoid this

problem a sequential search in performed. First, both upper

legs samples are scored with the original point cloud. The

K= g F(d(pa;Sd),A.K) (1) best overall sample of either the left or right upper legs is

selected. All the points that are within a specific range of

Functiond(p,S) denotes the euclidean distance functionhe selected sample are removed from the point cloud. The

from a 3D pointp to a line segment, sampt& The scoring opposing upper leg is re-scored on the remaining point cloud

function f() provides the individual score for each pointThe same procedure is performed in the lower legs.

based on the euclidean distance of the point to the sample3) Results on pose estimation: Fig. 3 presents two differ-
and two parameters. The function is defined as the pdf eht pedestrian poses. On the left, the original pedestoant p

Fig. 2. Body parts detected with the pose estimation algorith

the Weibull distribution: cloud as extracted by the pre-processing stage is presented
K 1 In the middle, the extracted pose with all the created sasnple
f(x,A,K) = h (;) e—(></)\>k (2) and the key positions of the pose is depicted. On the rigét, th

original point cloud is colored based on the corresponding
This function provides a degree of control over the locatiobody part; points are classified based on their distance to
of the maximum score. For instance, the maximum scomach body part.
for each point maybe obtained at a specific distance from The poses are well estimated especially taking into account
the line segment. This allows for the best scoring samplie noisy nature of the stereo point cloud. The example poses
to be placed at a specific distance from the point cloudvere obtained at a range of 14 meters. The recursive
This method is used because of the cylindrical nature afature of the algorithm limits the accuracy of a body part
body parts. Selecting the sample that best fits the points the accuracy of the previous part. If a part is incorrectly
based on the distance alone would not take this nature indetected all following parts will be affected. The sampling
consideration and would yield erroneous results. After abcheme allows to explore the motion space while imposing
samples are scored the highest scoring sample is selectecaathropomorphic limits on the movement of the joints, where
the best description of the body part. The next body part wikh minimization scheme could become stuck in a local mini-
be connected to the terminal position of the previous one amdum. The partial self occlusion of the torso does not affect



is built from the pedestrian points cloud in 3D. The choice of
the 14 joints, as depicted in Fig. 2, has been made based on
their discriminating capability for learning pedestriantion.

The use of 3D data and depth information has the potential to
significantly augment the performance of pedestrian tragki
and prediction. Our goal is to transform the 3D pose data
into a low dimensional (3-d) latent space in which tracking
and prediction of the pedestrian movements will be carried
out based on trained data containing pedestrian motions.
Previous works use different kinds of data for learning
pedestrian motions. For example, in [20] the CMU data-set
is used for introducing the GPDM algorithm. Each pose is
defined by 44 Euler angles (joints), three global (torsokpos
angles, and three global (torso) translational velocitlas

[2], the use of GPDM is also proposed for pedestrian path
prediction, although in this case the feature vector costai
dense optical flow and disparity information instead of the
3D joints and displacement vectors.

The use of dynamical information in the training stage
is useful for time-series data modeling, such as pedestrian
motions. GPDM computes the observation and the dynamic
mapping separately in a non-linear form. GPDM marginal-
Fig. 3. ~ Two different extracted poses. On the left, the segeitn j a5 oyt both mapping parameters and optimizes for thetlaten
pedestrian point cloud. In the middle, the pose extracteld alithe samples . . .
used. Finally, on the right, the original point cloud colbreased on the Variables and the kernel hyper-parameters. The incorporat
corresponding body part. of dynamics can be used for predicting future data. The
definition of the conditional probability o¥ given X, 6,

andW is provided in Eq. 3.
the pose estimation, the head position along with the \@sibl

torso side are typically enough for a correct pose estimatio

N
In the case of a severe occlusion of one of the legs, thep(y|X, 6,W) = Lexp(—}tr(K;lYWZYT))
occluded leg pose cannot be correctly extracted. This case (2mNP[Ky [P 2

can be detected by identifying an abnormally low maximum @)

score of the occluded leg. The presented method is able toWhere Y is the centered observed data (3D-posk),
extract correctly the typical pose of a pedestrian walkimg i"€Presents the latent positions on the mode, is the

any direction. The method does not require multiple initiak€el matrix,6 = (61, 6,,..., 6] contains the kernel hyper-
models or poses and the extraction is based on the simjiarametersN is the number of sample) is the dimension

assumptions of an up-right position and relative body parf%f the data—get, anw is the scaling matrix (_to account for
size. different variances in the different data dimensions). The

elements of the kernel matrix for the observation mapping
B. Dimensionality Reduction are computed using Eq. 4.

A major goal in statistics modeling and machine learning
is to reduce the dimensionality of input data. Several ap-
proaches have been followed in the technical literature for
this purpose, such as PCA (Principal Components Analysis) : : .
[19], SGPLVM (Scaled Gaussian Process Latent Variable Whe_rede 'S :Ee IK{onfckerdQeltf fu_nct|_on. Thelzzdygamlc
Model) [16], and GPDM (Gaussian Process with Dynamkr:mJIIOIOIng rom the fatent coordinates Is given in £q. 5.
Model) [20]. In our experiments, we use two data-sets
that contain the 3D coordinates of body joints and its p(x1) 1, .1 T
displacement vectors performing typical pedestrian nmstio P(XIB) = (Zn)(N—l)d|Kx|d@(p(_étr(Kx XouXou)) (5)
The first data-set was created at Carnegie Mellon University
[21] using a motion capture system (CMU mocap). We will WhereXoyx = [Xo,...,xn]", d is the model dimension, and
denote it as CMU data-set hereinafter. In CMU data-set ead$x is the kernel matrix constructed frofxy,...,xny—1} using
pose is made up of 41 joints along the body. The secoritie kernel function provided in Eq. 6.
data-set was created in our lab by means of the algorithm
described in section II-A using the images contained in the B
KITTI data-set. We will denote it as K-UAH data-set. In K- K(X,Xj) = Biexp(—=( —X)T (% —Xj)) + BaX X} + Badh
UAH data-set, a skeleton containing 14 relevant body joints (6)

K06, %5) = Buexp(— 206 X)) (6 X)) + 6385 (4)




where B; to B, are kernel hyper-parameters. Thereconstruction errors per joint in the walking test set a6®0
goal is to minimize the negative log-likelihood functioncm (CMU) and 4.4 cm (K-UAH), while the mean errors per
—Inp(X, 6, B,W|Y) that is given by Eq. 7. joint in the stopping test set are 0.47 cm (CMU) and 2.22
cm (K-UAH), respectively.

1
f:fy-l—gx-‘ernej-‘rﬁtr(wz)—‘ernﬁj @) I1l. EXPERIMENTAL RESULTS
J J Two systems trained on the CMU data-set (one for a
where walking trajectory and another for a stopping trajectory)

using Balanced GPDM are tested using four test-sets (two
R = Bln\Ky| + }tr(KY*lYWZYT) —NInw| (8) sets extracted from the CMU data-set, 120 fps, and two sets
2 2 extracted from the K-UAH data-set, 10 fps). Comparison
d 1 1 between results obtained on the K-UAH data-set and CMU
Z = EIn|Kx| + Etr(KglxoutXJut) + EXIXl (9) data-set are intended for quantifying the influence of stere
o ) oo noise, differences in frame rate, and errors committed én th
~ The optimization procedure is carried in two alternagyeleton estimation phase. Two types of pedestrian betsavio
tive steps. In a first step,Z’ is optimized with respect gre considered. In the first behavior, the pedestrian walks
to W in closed form. In a second stepy is optimized gjong the lateral direction with respect to the ego-vehicle
with respect toX, 0, by using SCG (Scaled ConjugateThis scenario resembles a pedestrian crossing the street. |
Gradient) [22]. The latent coordinates are initialized byhe second behavior, the person walks and suddenly stops. In
PCA, 6 is manually initialized to[1, 1',exp(—1)]T, B is set  his scenario, a pedestrian waits for crossing the streetiwh
to [1,1,exp(—1),exp(—1)]", and W is set to an identity 5 yehicle is approaching. Both actions are available in CMU
diagonal matrix. The details of the learning algorithm argnq k-UAH data-sets. The mean squared error between
provided in [20]. _the reconstructed pose (from a latent position) and the test
In order to increase the smoothness of the learned traj§Gase (joints and displacement vectors) must be minimized
tories in the latent space, a modified version of GPDM Cajieratively in order to obtain the most likely latent positifor
be used by changing the weight ofx on the likelihood g given test pose. A few issues must be considered before the
function by means of @ element. As proposed in [15], We training stage. The first one is the different number of int
use a value\ = %. This modification is known as Balanced (points) contained in the CMU and K-UAH data-sets. The
GPDM. same number of joints (in the same position) are selected in
C. Prediction both data-sets, either in the training and testing stepsngi
' _ ) at homogenizing the method. For that purpose, only the 14
~ GPDM provides a framework for transforming the 3Dpqqy joints considered in the K-UAH data-set, as depicted
joints and its displacement vectors into a low dimensiong}, Fig. 2, are considered in the CMU data-set. As a second
latent space, as described in the previous section, bugdt alyongigeration, the order of the joints must be the same in the
provides the grounds for predicting the next po's.mon in th?nput data for both data-sets, either for training and resti
latent space based on the current latent position and 3¢ 5 third consideration, the displacement vectors must be
dynamics of the pedestrian motion, as learned during th&gied due to the different frame-rates in the training and
GPDM training stage. Thus, the latent position in the nexkg; sets. Finally, the same reference system and movement
frame can be obtained as described in Eg. 10. direction are considered between the training and test sets
T Once the latent position has been estimated, a prediction
pix (%) = XourKx "kx (X) (10)  at a time horizon oN frames ahead can be done using Eq.

where Xt = [Xo,...,xn]T, Kx is the kernel matrix con- 10 iteratively. Fig. 4 c_ie_picts the trajectory obtained i th
structed from{x,...,xy_1} using the kernel function pro- 'atent space after training the system with GPDM (blue),
vided in Eq. 6, and(X) is a column vector with elements the latent position cor_responc_ilng to a given test pose (red)
kx(x,xj) for all other latent positions; in the model. Eq. anq the predlcted trajectory in the latent space (green) for
10 can be iteratively used in order to predict the pedestrigh ime horizon of 1 s. As can be observed, the predicted
position in the latent space a number of frarheshead in Tajectory closely resembles the shape of the trajectoegl us
time. The reconstruction of a pedestrian pose and the di@r training both in the walking and stopping cases. The

placement vectors given the latent position can be obtain@§destrian global lateral position with respect to the came
from Eq. 11. can be recovered using the displacement vectors. Tables |

and Il show the mean lateral prediction error (in cm) for
p=yT K;lkY (X) (11) different pred_iction horizons for the CMU and_K-UAH data-
sets, respectively. In both cases, the system is trainetieon t
whereY is the centered data sét, ! is the inverse matrix accurate 3D poses contained in the CMU data-set. As can be
of the kernel for the observation mapping (see Eq. 4), ambserved, prediction accuracy is higher when using testing
ky (x) is a column vector with elemenks (x,x;) for all other data from the CMU data-set, given that it contains accurate
latent positionsx; in the model. In our approach, the mean3D data acquired with a motion capture device. In such a



TABLE |
LATERAL PREDICTION MEAN ERROR ¢M) FOR DIFFERENT
PREDICTION HORIZONS $ECONDS - CMU DATA-SET

0 sec|| 0.23 sec|| 0.5sec|| 0.78 sec
Walking 0.23 1.99 2.03 2.10
Stopping 0.10 0.27 0.97 3.10
TABLE Il

LATERAL PREDICTION MEAN ERROR €M) FOR DIFFERENT
PREDICTION HORIZONS $econD9g - K-UAH DATA-SET

0 sec|| 0.23 sec|| 0.5sec|| 0.78 sec
Walking 1.91 2.26 3.44 3.82
Stopping 0.62 4.88 11.39 12.2

Reconstructed poses (depicted in blue) are very similar to
the ground-truth poses (depicted in red) when using testing
data containing very accurate 3D inputs, as in the case of the
CMU data-set. Reconstruction results get a bit worse when
using testing data obtained from stereo-vision and skeleto
estimation (specially visible in the prediction of the Iggs
as in the case of the K-UAH data-set, although the general
aspect of the body pose is preserved.

(b)

IV. CONCLUSIONS ANDFUTURE WORK

Fig. 4. (a) Balanced GPDM trained on CMU database fileOQZ&3d We h d | d t f t destri th
(walking motions) (blue), the latent position for a giventtpese (red dot) € have developed a system lor accurate pedestrian pa

and the predicted trajectory on the latent space (greenBdlanced GPDM  prediction in a limited time horizon up tez 0.8 s. For
trained OI"! .CMU dat_abase file 12M.c3d (stopping motio_ns)‘(blue), the such purpose, we propose the use of stereo-vision and
iﬁf?;tgﬁf'gsgczfég\éi? test pose (red dot) and the prediugjectory on  Jhilistic techniques, namely GPDM, for dimensionyalit
reduction. The 3D structure of the pedestrian joints istbuil
from the point cloud provided by a stereo-vision system
and transformed (with displacement vectors) later on into a
case, the mean lateral error at a time horizon of 0.78 s jgtent space using GPDM. Predictions are then performed
around 2 cm, for walking trajectories, and around 3 cm, fojy the latent space using the knowledge learned during
stopping trajectories. In contrast, prediction accuraeysg the training of the system dynamics. The method has the
slightly decreased when using the K-UAH data-set, reachingptential to provide accurate path predictions of 2 cm, for
a mean lateral error of 3.82 cm and 12.2 cm in the samgalking trajectories, and 3 cm, for stopping trajectorias,
conditions, respectively. This is partially due to the fw@t 5 time horizon of 0.78 s, as demonstrated with the accurate
the input data for the K-UAH data-set are computed automagp data-set provided by CMU. Experiments with K-UAH
ically using the vision-based skeleton estimation al@anit gata-set, built from 3D data provided by a stereo-vision
previously described. However, the highly accurate resulystem, demonstrate that prediction accuracy gets decteas
obtained demonstrate the potential of the proposed methgdi3 .8 cm and 12 cm for walking and stopping trajectories,
for accurate pedestrian path prediction when using aceuraispectively at a time horizon of 0.78 s.
3D data as input and as a model for motion learning. It must as future work, we propose to enhance the method for
be clearly stated that these results have been obtaineg @isinyyilding the pedestrian skeleton from the point cloud. A enor
single type of pedestrian dynamics for walking and stoppingccurate 3D reconstruction of the pedestrian joints would
motions. Accordingly, similar motions have been used fogefinitely increase the pedestrian path prediction acgyuesc
testing in the K-UAH data-set. In any case, the realizatioBemonstrated in our experiments. In addition, a richer-data
of exhaustive experiments for gathering additional resuliset will be created in order to include a representative rermb
involving many different pedestrians and dynamics woulgf sequences containing pedestrians performing diffesent
be needed in order to provide the grounds for generalizatiQfayiors, such as walking, stopping, starting and bending-i
of the conclusions drawn in this research. with different dynamics. Finally, a decision making system
Figs. 5 and 6 show the predicted 3D pose at time horwill be developed in order to select the most appropriate
zons of 0, 0.23, 0.5, and 0.78 s for walking trajectoriesracking system and to provide pedestrian action classifica
extracted from CMU and K-UAH data-sets, respectivelytion as a function of the pedestrian behavior.
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Fig. 5.

i

(@) (b)

(© (d)

Predicted pose reconstruction (left, frontal vieight, lateral view) at time horizons of (a) 0 s, (b) 0.23 s, @c) s, and (d) 0.78 s for walking

trajectories extracted from CMU data-set. The reconstnds depicted in blue, while the ground-truth is in red.

Fig. 6.

[ire

(@ (b)

A0

(©) (d)

Predicted pose reconstruction (left, frontal vigight, lateral view) at time horizons of (a) 0 s, (b) 0.23 s, @) s, and (d) 0.78 s for walking

trajectories extracted from K-UAH data-set. The recortdion is depicted in red, while the ground-truth is in blue.
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