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Abstract— This paper addresses a framework for road curb
and lanes detection in the context of urban autonomous driving,
with particular emphasis on unmarked roads. Based on a 3D
point cloud, the 3D parameters of several curb models are
computed using curvature features and Conditional Random
Fields (CRF). Information regarding obstacles is also computed
based on the 3D point cloud, including vehicles and urban
elements such as lampposts, fences, walls, etc. In addition,
a gray-scale image provides the input for computing lane
markings whenever they are present and visible in the scene. A
high level decision-making system yields accurate information
regarding the number and location of drivable lanes, based
on curbs, lane markings, and obstacles. Our algorithm can
deal with curbs of different curvature and heights, from as
low as 3 cm, in a range up to 20 m. The system has been
successfully tested on images from the KITTI data-set in real
traffic conditions, containing different number of lanes, marked
and unmarked roads, as well as curbs of quite different height.
Although preliminary results are promising, further research
is needed in order to deal with intersection scenes where no
curbs are present and lane markings are absent or misleading.

I. INTRODUCTION AND RELATED WORK

Road detection and tracking has traditionally been an
exhaustive topic of research in the fields of Advanced Driver
Assistance Systems (ADAS) and Autonomous Driving. On
the one hand, ADAS have mainly focused on increasing
the safety of drivers and road users by means of warnings
to drivers and assisted interventions. On the other hand, it
is undebatable that autonomous driving has become a high
priority issue on the research and commercial agendas of
major car makers in the latest years, aiming at producing
fully autonomous vehicles by 2020. The deployment of
autonomous cars will bring a number of clear benefits in
terms of increased traffic efficiency and reduced accident
toll, deriving in unquestionable higher energy efficiency and
enhanced road safety. For such purpose, available technolo-
gies, such as vision sensors, have been exhaustively used
by the automotive industry in their mass-produced units.
As an example, the use of cameras has made possible the
development of lane departure warning and lane keeping
systems. These are largely consolidated ADAS functions that
can be easily found in a good deal of today’s cars. However,
the use of these functions is frequently limited to highways
and roads with clearly visible lane markers. Safe operation
on roads where lane markings are poorly visible or where
no lane markers exist at all remains still an open challenge
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for researchers. Urban scenarios are particularly challenging
in this aspect given the large variety of configurations and
different situations that can be encountered, such as illumi-
nation conditions strongly affected by surrounding vehicles
and buildings, interaction with other vehicles and vulnerable
road users, etc. All these factors cause a great impact on the
accuracy and reliability of vision-based systems.

In order to overcome these difficulties, research efforts
must be oriented to developing algorithmic solutions for
the reliable detection of road edges and curbs. A review
of related literature reveals that color and texture are po-
tential features to characterize the road. In [1] [2], the
hue-saturation-intensity (HSI) color space is used together
with road shape restrictions and ad hoc post processing in
order to recover undetected shadowed areas in a network of
unmarked roads. Other authors [3] use the red-green-blue
(RGB) color space and put more emphasis on the classifi-
cation process using a mixture of Gaussians (MoG). In [4]
a shadow-invariant feature space is combined with a model-
based classifier in an attempt to develop a system robust to
shadows. For such purpose, the authors propose to use the
illuminant invariant image introduced in [5]. A hierarchical
two-stage approach for learning the spatial layout of road
scenes is developed in [6]. In the first stage, base classifiers
analyze the local visual properties of patches extracted from
monocular camera images and provide metric confidence
maps. In a second stage, the so-called SPatial RAY (SPRAY)
features are computed from each metric confidence map.
The ego-lane is extracted afterwards following a semantic
segmentation approach. In other cases [7], vision is used for
road boundary detection but it is further enhanced by radar
in order to detect static barriers along the road side such
as guardrails. The use of stereo-vision for recovering the
road structure is generally more robust than monocular-based
solutions, at least in the presence of road curbs. Accordingly,
a stereo-based homography associated with a semantic graph
is proposed in [8], where the Viterbi algorithm is used to find
the most likely road edges. As an extension of the previous
work [9], the authors propose to solve the homography
as a maximum a posteriori (MAP) problem in a Markov
Random Field (MRF) that alternates between computing the
binary labels for the road/non road regions and learning the
optimal parameters for the probabilistic algorithm. In [10]
a 2D/3D approach is applied to road detection in urban
environments. The 2D layer provides a number of pixel’s
clusters based on the Watershed transform while the 3D
layer classifies the clusters using the V-Disparity technique.
A remarkable approach for classifying the different road
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surfaces and obstacles in urban environments is proposed in
[11] using digital elevation maps (DEM). Two classifiers are
used for obstacles and road classification, based on density
and road surface, respectively. In [12], the authors propose a
generic framework for curb detection and reconstruction us-
ing Conditional Random Fields (CRF). Points extracted from
the 3D point cloud are assigned to curb adjacent surfaces,
i.e. street and sidewalk using Loopy Belief Propagation. As
a result, curbs can be reconstructed even of low height up
to a distance of 20 meters. The proposed system was further
enhanced in [13] by including a temporal filter that improves
the robustness and accuracy, particularly in case of low-
height curbs and missing measurements.

In this paper we propose a framework for road curb and
lanes detection in the context of urban autonomous driving,
with particular emphasis on unmarked roads. Based on a
3D point cloud, curbs are computed using curvature features
and Condition Random Fields (CRF). Information regarding
obstacles is also computed based on the 3D point cloud,
including vehicles and urban elements such as lampposts,
fences, walls, etc. In addition, a gray-scale image provides
the input for computing lane markings whenever they are
present and visible in the scene. A high level decision-
making system yields accurate information regarding the
number and location of drivable lanes, based on curbs, lane
markings, and obstacles. Our algorithm can deal with curbs
of different curvature and heights, from as low as 3 cm,
in a range up to 20 m. The rest of the paper is structured
as follows: section II presents a general description of the
system, including the methods for curb reconstruction, obsta-
cle detection, road marking extraction, free space estimation,
curb height measurement, and number of lanes computation.
Results and discussion are presented in section III. Finally,
we analyze our conclusions and future work in section IV.

II. SYSTEM DESCRIPTION

A. Sensors Description

All input data to our system is provided by the KITTI
Vision Benchmark Suite [14]. This public database contains
road scenes information obtained with different types of
sensors: INS (OXTS RT 3003), LIDAR (Velodyne HDL
64E), 2 grayscale and 2 color cameras 1.4 Mpx (Point Grey
Flea 2) and 4 Varifocal lenses 4-8 mm (Edmund Optics
NT59-917). LIDARs are very useful because they provide
low noise measurements at long range distance. However,
the goal of this paper is to understand the road scene by
using only stereo vision.

B. General Description

As mentioned in section I, precise understanding of urban
scenarios is crucial for autonomous driving. In the proposed
method, we estimate the number of drivable lanes as well
as its location w.r.t. the ego-vehicle. As shown in Figure 1,
the free space or drivable area is computed based on the
outputs provided by three independent modules in charge of
detecting road markings, curbs, and obstacles, respectively.

In addition, the curb detection module also provides an
estimate of the curb height.

Fig. 1. Functional relationship between the different modules

The proposed curb and obstacle detection methods are
based on surface curvatures and surface normals. In a first
step, a 3D point cloud is obtained using the well known
Semi-Global Matching (SGM) method [15]. This method
is based on the idea of pixelwise matching of Mutual
Information and approximation of a global, 2D smoothness
constraint by combining many 1D constraints. The camera
axes is translated to the ground so that axis are renamed with
respect to the world coordinate axes as follows:

xworld = zcam

yworld =−xcam (1)
zworld =−ycam +1.65

C. Curb Detection Method

The proposed curb detection method is based on surface
curvature estimation [16]. For each point p, we select the
nearest neighbors (NN) pi in a surrounding area defined by
a radius of 0.25 meters. These points are used to create a
weighted covariance matrix, where k denotes the number of
NN.
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1
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i=1

pi ; µ =
1
k
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|p̄− pi| (2)

wi = exp
(
− (p− pi)
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)
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C =
k

∑
i=1

wi · (pi− p̄)T · (pi− p̄) (4)

The eigenvector V and eigenvalue λ are computed as C ·
V = λ ·V . Curvature γp is defined by equation 5, where λ0 ≤
λ1 ≤ λ2 are the eigenvalues of the covariance matrix C.

γp =
λ0

λ0 +λ1 +λ2
(5)

Only curvature in the Z axis (in the 3D world coordinates)
is taken into account given that it provides a very discrimi-
nant description of road curvature changes. Curvature values
vary between 0 and 1. After thorough observation of urban
scenes in the KITTI dataset, road curbs can be clustered into
three groups, see Table I:

Curb curvature is different in each scene. For example, if
the curb is a regular one, most of the points exhibit curvature
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TABLE I
CURB CURVATURE VALUES

DESCRIPTION CURVATURE COLOR
Very Small Curbs (∼3 cm) 0.12 . . . 0.17 yellow
Small Curbs (∼5 cm) 0.17 . . . 0.22 orange
Regular Curbs (∼10 cm) 0.22 . . . 0.50 red
Big Obstacles 0.50 . . . 1.0 purple

values between 0.22 and 0.50, but there are also some curb
points yielding significantly different values. These measure-
ment outliers are removed by means of a filtering process.
A binary mask is processed for each curvature range using
morphological operations and contour analysis. The resulting
masks are merged and refiltered in order to get an image like
the one shown in Figure 2. The use of fixed or empirical
thresholds is then avoided given that the proposed function
is adapted automatically for different scenes. The result
obtained is used as an input to a Conditional Random Field
(CRF) in order to enhance the result. Ordinary classifiers
predict a label for a single sample without taking into account
its neighbors. Contrary to that, the use of a 4-connected
neighborhood and efficient loopy belief propagation in a
CRF [17] [18] enhances significantly the quality of the curb
detection stage. The CRF has 2 labels (curb/not curb). At
time t, the prior is considered as the result of the CRF at
time t−1, while the likelihood is modeled from the output
of the curb detection function. An example of the process is
shown in Figure 2.

(a) Input image

(b) Curvature values

(c) Curb detection result filtered with the CRF

Fig. 2. Curvatures are computed and drawn in different colors on the input
image. Pixels detected as curbs are depicted in blue in 2(c).

D. Obstacles detection

There are many types of obstacles in urban environments:
vehicles, curbs, traffic lights, traffic signs, walls, etc. An
specialized algorithm has been described in Section II-C
for road curb detection. Other obstacles are labeled as “big
obstacles” because their height is significantly higher than
that of curbs. Accordingly, all these obstacles are treated
using the same method. For each point p in the 3D point
cloud, the nearest neighbors are computed and the normal
vectors are estimated by fitting the points to a plane.

In the world reference frame, a point p is considered
an obstacle if 0.50 ≤ α ≤ 1.0, where α =

{
nx,ny,cz

}
and

nx, ny are the components of the normal vector and cz is
the curvature in Z axes. The precision of the method is
conditioned by the quality of the stereo sensor. In some
occasions, the quality of the disparity image is not good
enough in general, as can be observed in the reconstructed
3D cloud, but in areas with correct disparity values the results
are acceptable for obstacle detection. See Figure 3.

Fig. 3. Points labeled as obstacles using normal vectors

E. Road Marking Detection

The proposed road marking detection method is based
on state of the art techniques. However, we provide a brief
description for completeness purpose. As explained in [19], a
median filter is applied to the input image. The window size
of the median filter needs to be twice larger than the road
marking. If the road marking is larger than the window, for
example in a zebra crossing, the border is well detected but
the areas inside the zebra crossing are not. In order to keep
the window size constant, a bird-eye view of the scene is
reconstructed. An adaptable threshold is then applied to the
input image. After that, both images are subtracted and the
final result is filtered based on area features, rectangularity
and 3D height.

A temporal filter is then applied using an EKF and a
clothoid model for the road lines [20]. A region of interest of
0.5 m around the clothoid model has been used for validation
in the tracking stage. The state vector of the clothoid model
is composed of

[
C0 C1 x0 ψ w

]T , where C0 is the
initial curvature, C1 is the curvature variation, x0 is the
lateral displacement with respect to the world coordinate
system, ψ is the angular displacement with respect to the
lane orientation, and w is the lane width.

F. Free Space Estimation

The drivable road area is obtained based on the outputs
of the curb, obstacles, and road marking detection modules.
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(a) Input Image (b) Unfiltered result

(c) Road marking detected

Fig. 4. In 4(b) the unfiltered result is shown for the method described
above. In 4(c), the area of interest is displayed in transparent blue and
clothoid models are shown in solid green.

Depending on the scene type, road limits can be defined
by curbs, by a curb and a parked car, or by multiple
combinations of them. In most cases, the free space is limited
by the first obstacle on the left and the first obstacle on the
right. In some cases, there are not any obstacles on the road,
and the road limits are defined by road markings.

Besides, a curb mask (Figure 2(c)) is used to find candidate
lines in the point cloud using RANSAC. In addition to those
lines, the same method is applied to the obstacles mask
(Figure 3). The algorithm is applied to the point cloud so
that the result is a line in 3D. A line L is defined by a 3D
point p and a direction vector ~d. Using the line with the
largest number of inliers as the main line L0, other parallel
lines to L0 are computed. The k lines obtained Lk are divided
into two groups depending on their position, left (Ll

k) or right
(Lr

k). The lines obtained from curbs and obstacles are merged
so that the road limits satisfy equations 6 and 7 in world
coordinates.

roadl = miny(pl
k) (6)

roadr = maxy(pr
k) (7)

If lines from obstacles or curbs are not detected, the lines
obtained in Section II-E are used as input to the free space
algorithm. In Figure 5, lines detected from curb points and
obstacle points are displayed in blue and red respectively.

Fig. 5. Lines detected using RANSAC in the point cloud. The yellow
line indicates the direction for other parallel lines, the blue ones are curbs
candidates, and the red ones represent bigger obstacles.

G. Curb Height Estimation

The curb height is calculated using the lines extracted
from curb points in Section II-F. Only lines labeled as road
limits are taken into account. These lines are divided in slots
of 0.3 m. The NN of the middle point p of each slot are
computed and separated into two groups (NNl , NNr) using
the vertical plane Πv defined by the line. For each group, the
estimated planes (Πl , Πr) are intersected with Πv, yielding
two different lines (rl , rr). The point height is obtained by
evaluating both lines in the px and py coordinates.

rl = Πl ∩Πv (8)
rr = Πr ∩Πv (9)

Road curb location is accurately detected in most cases.
However, curb height estimation is more sensitive to mis-
matching errors in the disparity image. In general, height is
constant along the curb. Therefore height variations between
slots are smoothed out by a filtering process. Curb points
with height ranging in

[
h̄−2σ , h̄+2σ

]
are considered in-

liers. The curb height is computed as the mean value of all
inliers.

(a) Planes estimation

(b) Unfiltered result

(c) Filtered result

Fig. 6. Curb height estimation steps.

H. Estimation of the Number of Lanes

A neural network-based module is trained to provide the
probability that the road has 1, 2 or 3 lanes based on road
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curbs, road markings and obstacles. In the training stage,
a total of 138 different road scenes have been processed
manually to label the road width and the number of lanes.
The neural network provides a hit rate of 93.47%. The values
to separate the free space into lanes are the following: if the
free space is less than 4.06 meters, it is considered as a one
lane road. If the road width is between 4.06 and 8.57 it is
regarded as a two lanes road. For values greater than 8.57
meters it is considered as a three lanes road.

III. RESULTS

Figure 7, shows some representative results in different
urban scenarios. The first row shows a road in which the
drivable area is restricted by lane markings and regular curbs.
The road is affected by shadows and is surrounded by grass.
The grass surface is irregular and is not parallel to the road
plane. Therefore, accurate curb height estimation becomes a
challenge. The free space is limited by the left and right curbs
and the number of lanes is detected using road markings.
Detection of small curbs is complex given that, in some
occasions, the measurement noise is even greater than the
curb height. Despite these difficulties, our method is able
to detect very small curbs (3 cm), as shown in the second
row. The third row shows a very complex scene: the road
is limited by a small curb on the left and a regular curb on
the right. In addition, a car is parked on the drivable area
and there is not any road marking. Although the scene is
affected by shadows, the contrast is good enough to obtain
valid disparity values. The fourth row shows a scene with an
intersection on the right. As a consequence, there is not any
road curb limiting the free space. Instead, the road limits are
given by the road markings. Road markings are also used to
estimate the number of lanes. On the left hand side, the road
has a regular curb. Finally, the fifth row shows an urban
street made of bricks and affected by shadows. The road
is limited by regular curbs on the left and right sides but
only the right one is properly detected because the shadows
decrease the quality of the disparity image in a significant
way. In addition, the street has no road markings. Therefore
the number of lanes is estimated using the free space width.
In this case, the system successfully estimates two lanes in
the scene, although the accuracy of the curb detector should
be further improved. For results evaluation, 38 curbs have
been manually labelled in different scenes in order to be
compared against the automatic values obtained from our
method. The final estimated curb height in our experiments
exhibits a RMSE of 0.014 meters.

The method described in [12] fits the measurements to a
sigmoid function in order to estimate both the curb position
and the curb height. Our method proposes a solution from
a different viewpoint. We accomplish curb detection using
curvature values in a first step. After that, surface reconstruc-
tion is applied only for height computation. In [21] and [13]
the authors use temporal integration of curb measurements
using egomotion data to improve the estimation, reaching
a detection range of 20 meters. By using the method pro-
posed in this paper, we can detect curbs up to 20 meters

without temporal integration. However, the use of temporal
integration is proposed as part of our future work in order to
further enhance the robustness of the curb detection module
in cluttered environments.

IV. CONCLUSIONS AND FUTURE WORKS

We have developed a system for curb detection and free
space estimation for autonomous driving in urban scenarios.
The curb detection system is able to detect a wide range of
curbs with varying heights from 2-3 cm up to 10 cm or higher
in a range of up to 20 meters. The accuracy of the method is
very much dependent on the quality of the disparity images.
In road scenes exhibiting dense disparity image, road curb
detection is robust and curb height is estimated accurately.
Curb height is estimated separating the curb points into two
groups: sidewalk and road. The height difference between
both sides define the curb height. Obstacles like cars, traffic
lights, pedestrians or cyclists are detected using surface
normal vectors estimation. Furthermore, the road marking
detection system used in this work is based on state of the
art techniques. Lines are detected are filtered using an EKF
and a clothoid model. The free space computation module
estimates the road width and the number of drivable lanes
based on inputs received from the curb, obstacles and road
marking detection methods.

The current method for curb segmentation is based on
lines fitting using RANSAC. Therefore, although the method
is valid for straight roads, which is the usual case, a more
advanced method that takes into account corners and lateral
curb curvature will be developed as part of our future work.
Cutting-edge matching algorithms will be tested in order to
improve the quality of the 3D reconstructed point cloud.
The presence of shadows on the road surface affects the
performance of the road marking and road curb detection
methods. Accordingly, a vision-based method to remove
shadows and obtain an homogeneous road surface will be
developed.
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