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Abstract— Safety-related driver assistance systems are be-
coming mainstream and nowadays many automobile manu-
facturers include them as standard equipment. For example,
pedestrian protection systems are already available in a number
of commercial vehicles. However, there is still work to do in
the improvement of the accuracy of these systems since the
difference between an effective and a non-effective intervention
can depend on a few centimeters or on a fraction of a second.
In this paper, we use the 3D pedestrian body language in order
to perform accurate pedestrian path prediction by means of
action classification. To carry out the prediction, we propose
the use of GPDM (Gaussian Process Dynamical Models) that
reduces the high dimensionality of the input vector in the 3D
pose space and learns the pedestrian dynamics in a latent
space. Instead of combining a reduced number of subjects in a
single model that will have to deal with the stylistic variations,
we propose a much more scalable approach where all the
subjects are separately trained in individual models. These
models will be then hierarchically separated according to their
action (walking, starting, standing, stopping) and direction of
the motion. Finally, for a test sequence, the appropiate model
will be selected by means of an action classification system
based on the similarity of the 3D poses transitions and the joints
velocities. The estimated action will constrain the models to use
for the prediction, taking into account only the ones trained for
that action. Experimental results show that the system has the
potential to provide accurate path predictions with mean errors
of 7 cm, for walking trajectories, 20 cm, for stopping trajectories
and 14 cm for starting trajectories, at a time horizon of 1 s.

I. INTRODUCTION AND RELATED WORK

Pedestrian path prediction is a hot research topic in
different application contexts such as robotics, surveillance
or human-machine interaction, but it is in the Advanced
Driver Assistance Systems (ADAS) context where it is a
matter of the utmost importance. Pedestrian detection, col-
lision avoidance or near collision warning systems require
accurate information about the current and future positions
of the pedestrians. A difference of 30 cm in the estimated
lateral position of a pedestrian can make the difference for
a successful collision avoidance maneuver [1]. Moreover,
accident analysis in [2] showed that initiating an emergency
braking 0.16 s in advance could reduce the severity of
accident injuries up to 50%. Early recognition of pedestrian
intent can lead to much more accurate active interventions in
last second automatic maneuvers. As a consequence, over the
last few years a lot of effort has been put into understanding
the pedestrian intentions.
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Fig. 1. Pedestrian path and pose prediction.

Early approaches for pedestrian detection and tracking
used Kalman Filters in a trajectory-based framework [3],
including interacting multiple model filters [4] [5], in order
to account for different motion dynamics. Nonetheless, the
sole consideration of trajectory is clearly insufficient for
predicting the pedestrian path in an accurate manner in
situations with changing motion dynamics. Empirical studies
[6] have demonstrated that when only the trajectory of the
pedestrian is available, a higher error rate is produced in
drivers judgment regarding the pedestrian intentions. Other
systems use the whole pedestrian body language to provide
an early indicator of the pedestrian intentions [7] [8]. A
common approach is to learn the dynamics for different
actions (walking, running, stopping, starting) using proba-
bilistic frameworks that reduce the dimensionality of the
input data in the so-called latent space [9] [10] [11]. In
[12] a non-linear model with stylistic variation (multiple
people walking) is learned using Local Linear Embedding
[13] by first building individual models and then using non-
linear regression to align the manifold and build a unified
model. However, it is not clear that this combined models
approach can deal with complex motions or with many
subjects. In [14], models for different activities are learned
within a shared latent space, along with transitions between
activities. They proposed a constrained combined model that
learns smooth transitions between models without the need
of including these transitions in the training data. However
these constrains made the training process very complex,
especially with noisy data.

Some of the previous works have focused on learning
activity specific models and try to combine them in a latent
space with natural transitions from one activity to another.
In general, this activity specific models fail to generalize
when there are large stylistic variations and are hard to
adjust for the different activities transitions. To overcome
the problem of combining different activities in the same
model [1] proposed to use separate models (one for walking,
one for stopping) and keeping a continuous estimation of
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their probabilities in an Interacting Multiple Model Filter
framework. This solves the problem of combining different
activities, but it is computationally expensive when the
number of possible activities increases. This approach used
augmented motion features derived from dense optical flow
instead of the pedestrian body language. That can make
their models less sensitive to stylistic variations but also
less accurate in the prediction as there is less information
available in the image optical flow than in the pedestrian 3D
pose time sequence.

In this paper, we propose a novel approach to perform
pedestrian path prediction for walking, starting, stopping and
standing actions based on the pedestrian body language. This
new approach is based on our previous system described in
[15]. In our system, instead of combining a reduced number
of subjects in a single model that will have to deal with
the stylistic variations, we propose a much more scalable
approach where all the subjects are separately trained in
individual models. These models are then hierarchically
divided according to their motion and action (left/right and
walking, starting, stopping, standing). For the selection of
the different actions, a continuous estimation is maintained
based on the similarity of the 3D poses transitions and
the joints velocities. Finally, the appropriate model will be
selected from the detected action sub-set, using a pose-based
hierarchical search in the 3D space that allows us to easily
introduce new subjects in the database. The feasibility of this
new approach has been tested using the publicly available
CMU data-set [16].

The remaining of the paper is organized as follows: Sec-
tion II provides a description of the system. The sequences
of 3D pedestrian poses are used to create individual low-
dimensional embeddings as illustrated in section II-A. The
data-sets used to create the models are presented in section II-
B. Then section II-C describes the naive-Bayes classifier used
to perform the action classification. Finally, the appropriate
model will be selected, among those corresponding to the
detected action, by using a pose-based search in the 3D
space as explained in section II-D. Experimental results are
presented in section III. We discuss our conclusions and
future work in section IV.

II. SYSTEM DESCRIPTION

Our final goal is to develop a pedestrian path prediction
system set up in a moving vehicle equipped with stereo
cameras and LIDAR. In this paper, we will first test the
feasibility and limits of our approach by using the high
frequency and low noise data-sets from CMU [16]. In the
future, we will apply the learnt models to a stereovision-
based pedestrian pose extraction system, as explained in
[15], in order to obtain massive quantitative conclusions for
vision-based systems. So far, in this paper we concentrate
on studying the performance limits of the proposed GPDM-
based pedestrian pose prediction system using quasi noise-
free measurements.

A. GPDM

One of the most important ways of modeling in statistic
and machine learning is to achieve a dimensionality reduc-
tion of a high-dimensional data. Several approaches have
been followed in the technical literature for this purpose,
such as PCA, GPLVM or GPDM. The latter has been applied
in pedestrian path prediction sucessfully in the latest years
using different types of features, i.e. 3D joints and velocity
[9] [12] [15] or dense optical flow [1]. GPDM provides a
framework for transforming a sequence of feature vectors,
which are related in time, into a low dimensional latent space.
In order to apply this transformation, the observation and
the dynamics mapping are computed separately in a non-
linear form, marginalizing out both mappings and optimizing
the latent variables and the hyper-parameters of the kernels.
The conditional probability of Y given X , θ and W for the
observation mapping is defined in (1)

p(Y |X ,θ ,W ) =
|W |N

√

(2π)ND|KY |D
exp(−

1
2

tr (K−1
Y YW 2Y T ))

(1)
where Y is the centred observed data-set, X represents the
latent positions on the model, KY is the kernel matrix, θ =
[θ1,θ2, ...,θN ] contains the kernel hyper-parameters, N is the
number of samples, D is the dimension of the data-set, and
W is the scaling matrix (to account for different variances in
the different data dimension). The elements of kernel matrix
for the observation mapping are computed using (2).

k(xi,x j) = θ1exp(
−θ2

2
(xi − x j)

T (xi − x j))+θ3δi, j (2)

where δi, j is the Kronecher delta function.
The dynamic mapping from the latent coordinates is

defined in (3),

p(X |β ) =
p(x1)

√

(2π)(N−1)d|KX |d
exp(−

1
2

tr (K−1
X XoutX

T
out))

(3)
where Xout = [x2, ...,xN ]

T , d is the model dimension, and KX

is the kernel matrix constructed from {x1, ...,xN−1} using the
kernel function provided in (4)

k(xi,x j) = β1exp(
−β2

2
(xi − x j)

T (xi − x j))+β3xT
i x j +β4δi, j

(4)
where β1 to β4 are the kernel hyper-parameters.

The goal is to minimize the negative log-likelihood func-
tion −ln p(X ,θ ,β ,W |Y ) that is given in (5)

L = LY +LX +∑
j

lnθ j +
1

2κ2 tr (W 2)+∑
j

lnβ j (5)

where

LY =
D
2

ln |KY |+
1
2

tr (K−1
Y YW 2Y T )−N ln |W | (6)

LX =
d
2

ln |KX |+
1
2

tr (K−1
X XoutX

T
out)+

1
2

xT
1 x1 (7)

In order to increase the smoothness of the learned trajec-
tories in the latent space, a modified version of GPDM can
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(a) Walking sequence
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(b) Starting sequence
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(c) Stopping sequence
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(d) Standing sequence

Fig. 2. Difference between consecutive poses (red dash-dot) and sum of absolute joints velocity (blue solid) for walking, starting, stopping and standing
actions.

be used by changing the weight of LX by means of a λ
element. A value for λ of D

d is recommended in [9]. This
modification is known as Balanced GPDM.

Given a latent position the original feature vector can be
recovered as described in (8).

µ = Y T K−1
Y kY (x) (8)

where Y is the centred data-set, K−1
Y the inverse matrix of

the kernel for the observation mapping (see 2) and kY (x) is
a column vector with elements kY (x,x j) for all other latent
position x j in the model.

GPDM also provides the grounds for predicting the next
position in the latent space based on the current latent
position. Thus, the next latent position can be obtained as
described in (9)

µX(x) = XT
outK

−1
X kX (x) (9)

where Xout = [x2, ...,xN ]
T , KX is the kernel matrix constructed

from {x1, ...,xN−1} using the kernel function provided in (4)
and kX(x) is a column vector with elements kX (x,x j) for
all other latent position x j in the model. A prediction at a
time horizon of N latent positions ahead can be obtained
computing (9) iteratively.

B. Data-set description

In our experiments we use the publicly available data-
set from Carnegie Mellon University (CMU) [16]. It is
composed of different pedestrian sequences captured using a
high accuracy and high frequency (120 Hz) motion capture
system (CMU mocap). We learn our individual models using
these high frequency and low noise sequences to get high
quality models. The high frequency will help the GPDM to
properly learn the dynamics of the different actions and will
increase the probability of finding a similar test pose in the
trained data without missing intermediate poses. In addition,
these low noise models will improve the prediction when
working with noisy test samples.

The CMU data-set contains the 3D coordinates of 41 joints
along the body. In our experiments we use a sub-set of
the most relevant joints (shoulders, clavicle, sternum, hips,
knees and anckles). Our feature vector is composed of the
3D pose and the joints velocities, removing the 3D body
translation parameters. The joints velocities are included in
the model because it was observed to increase the accuracy in
the estimation of the reconstructed displacement. We reduce
the dimensionality of the feature vector using the described
GPDM to construct a latent space.

The pedestrian motions from the CMU data-set are hierar-

681



chicaly divided into eight sub-sets. The first division is based
on the direction, left-to-right and right-to-left. The second
one is based on the action (standing, starting, stopping and
walking). To capture the dynamics of the different actions,
the beginning and end of the sequences were cropped manu-
ally trying that all the poses in a sequence were representative
of their action (see Fig.2). This is a key aspect for the
early detection of the pedestrian intentions as the prediction
will be based on the similarity of the pedestrian action with
these training sequences. As shown in Table I our data-set
is composed of 195 sequences from 27 different subjects
divided according to the action and direction.

TABLE I

NUMBER OF SEQUENCES FOR EACH TYPE OF ACTION

Standing Starting Stopping Walking
Left-to-Right 21 26 9 70
Right-to-Left 12 21 9 27

Total 33 47 18 97

C. Action classification

As explained before, the early detection of the transitions
between the different actions is a key point for an ADAS
because it is in the transitions where it is critical getting an
accurate path prediction.

In this paper we propose a naive-Bayes classifier based
on the similarity between consecutive poses and the joints
velocities to classify the pedestrian action into walking,
stopping, standing or starting. Fig. 2 plots an example of
the difference between consecutive poses (red dash-dot) and
the sum of absolute joints velocities (blue solid) for the
four different actions. As can be seen in the Figure, this
information is distinctive, and can be used to estimate the
action. The velocities will help us to distinguish between
actions that at some points are similar in pose but show
different velocity trends such as starting and stopping.

Let pi be the pedestrian 3D pose at time i and ṗi

their velocity. We define a new feature vector C = {|pi −
pi−1|, |ṗi − ṗi−1|} where the first term captures the changes
in the pose and the second term describes how fast these
changes happened.

Then, the mean and variance are computed for all the
actions in the training data-set and a naive-Bayes classifier
is constructed. To estimate the action we use the maximum
a posteriori (MAP) decision rule. Finally, the models of the
action with the highest probability are used to predict the
pedestrian path. Fig. 3 shows the different actions probabili-
ties for a starting sequence. At first, the system is clearly
classifying the action as standing, but as the pedestrian
increases the speed, the action starts to be more similar
to stopping and starting. At this point the velocity local
variation becomes important to decide between starting and
stopping.
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Fig. 3. Probabilities for a starting sequence (standing black dashed, starting
green dot-dash, stopping blue solid and walking red dotted).

D. Model selection

Once we have estimated the pedestrian action we focus
on selecting the appropiate model to deal with the stylistic
variation and the different speeds of the tracked pedestrians.
In our system, all the subjects are separately trained in indi-
vidual models. Then, the appropriate model will be selected
using a pose-based search in the 3D space that allows us
to easily introduce new subjects in the database. With this
approach we avoid the problems of learning a unified model
or learning the transitions between models. However, we
face the problem of selecting the most appropiate model to
perform the path prediction.

To select the model we search for similar 3D poses in
the corresponding action training sub-set, and use the most
similar pose to start the search in the latent space. Once the
latent position has been estimated, a prediction at a time
horizon of N poses ahead can be done using (9) iteratively.

III. EXPERIMENTAL RESULTS

The described system was tested using the CMU data-
set with 27 subjects and 195 sequences. To test the gen-
eralization ability of the system a one vs. all strategy was
adopted. This means that all the models generated by one
test subject were removed from the training data while
performing tests on this subject. All the tests were performed
using the high frequency and low noise sequences from
the CMU data-set to prove the feasibility of this approach.
Therefore we consider this results as the best case scenario
and further experimentation is required to test how this
approach performs with noisy test sequences. A hint of
how low frequency and noisy test samples can affect the
prediction can be seen in [15].

A. Results on action classification

For pedestrian path estimation systems based on action
classification, the sucessful detection of the action is essen-
tial, as the prediction will use only the models of the detected
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Fig. 4. Starting sequence, action classification results

action. Also, an early detection of the transitions between
actions will allow these systems to deliver more accurate
pedestrian path estimations.

To test the performance of the proposed action classifi-
cation algorithm the actions were manually labelled on 6
sequences (3 starting to walk and 3 stopping) by a human
expert. In all, the sequences added up to 3373 pedestrian
poses that were used as input for the action classification
algorithm. Table II summarizes the classification results on
a confusion matrix. The overall detection rate is a 95.20%
for the 4 different actions.

TABLE II

CONFUSION MATRIX FOR ACTION CLASSIFICATION

ALGORITHM

Classification
Standing Starting Stopping Walking

Actual

Standing 950 22 4 10
Starting 0 157 0 60
Stopping 12 0 98 26
Walking 0 27 1 2006

The missclassifications are mainly starting actions clas-
sified as walking actions and the other way around. These
errors are produced when the speed variation in a starting ac-
tion decreases or when during a walking action the pedestrian
increases the speed. However these missclassificatios are not
critical from the point of view of the path estimation as both
actions have similar dynamics and the path predictions will
be also very similar. On the other hand, standing actions
classified as starting (2.23%) and walking actions classified

Fig. 5. Stopping sequence, action classification results

as stopping (0.05%) are due respectively to delays and early
detections between the manually labelled actions and the
action classification system.

Fig. 4 shows an example of the results of the action
classification algorithm for a starting sequence. The output of
the action classification algorithm (Standing black triangles,
starting green squares, stopping blue circles and walking red
diamonds) was overlaid on the difference between consecu-
tive poses (red dashed) and the velocity (blue solid) plots for
the starting sequence. A few 3D poses at significant points
in the sequence were also introduced to get and idea of when
the transitions are detected. For the sake of clarity, only one
out of ten action classification markers have been plotted.

As shown in Fig. 4 the system detects the transition from
standing to starting very early, when the pedestrian starts
leaning and opening their legs. Around second 2.5 there is an
example of missclassification where a reduction in the speed
of the pedestrian action creates a walking classification for
some frames. This is a missclassification that could lead to a
slight underestimation of the velocities in the prediction but
it is not a serious problem, as path predictions for walking
and starting models are very similar. The system is adjusted
to sharply detect standing to starting and walking to stopping
transitions, where missclassifications would lead to serious
errors in the path prediction.

Fig. 5 shows the results of the action classification algo-
rithm for a stopping sequence. As can be seen, the transition
from walking to stopping is detected as the stride gets
reduced and the velocity starts to drop. The algorithm detects
the stopping action approximately 0.83 s prior to the actual
full stop.
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B. Results on model selection and path prediction

Table III shows the mean combined longitudinal and
lateral path prediction error and standard deviation (cm) for
different prediction horizons obtained for the CMU data-
sets described in Table I. As explained before, a one vs. all
strategy was adopted to test the path prediction performance.
The model was first selected from each one of the action
data-sets as explained in section II-D and then a path
prediction estimation is performed using the selected model
as explained in section II-A. Path predictions are not obtained
for standing actions as we assume no motion in this state.

TABLE III

MEAN COMBINED LONGITUDINAL AND LATERAL

PREDICTION ERROR±STD (CM) FOR DIFFERENT

PREDICTION HORIZONS (SECONDS)

0 sec. 0.23 sec. 0.5 sec. 0.78 sec. 1 sec.

Walking 0.56 3.68 4.55 6.15 6.8
±0.15 ±0.94 ±1.24 ±1.67 ±2.01

Stopping 1.55 9.33 14.69 16.92 19.38
±0.81 ±5.3 ±7.6 ±6.74 ±7.94

Starting 0.82 5.77 10.31 12.35 14.04
±0.36 ±3.48 ±6.29 ±6.51 ±6.57

As can be observed, prediction accuracy at 1 s is higher for
walking sequences (6.8 cm) than for stopping (19.38 cm) or
starting (14.04 cm). This could be due to the fact that walking
sequences have a much more regular dynamics, making it
easier for the model to predict the future positions. Also,
the number of sequences for stopping and starting actions is
much lower (see Table I), being more difficult for the system
to cope with the stylistic variations.

IV. CONCLUSIONS AND FUTURE WORK

We have developed a system for accurate pedestrian path
prediction by means of action classification in a limited
time horizon up to 1 s. For such purpose, we propose a
naive-Bayes classifier based on the similarity of transitions
in the 3D space and their velocity. Once the action has
been classified the most similar pose is found on the 3D
space and a prediction at a time horizon of 1 second ahead
can be done using a GPDM model that reduces the high
dimensionality of the input feature vector and learns the
dynamics in a latent space. The system has the potential
to provide accurate path predictions with mean errors of 7
cm, for walking trajectories, 20 cm, for stopping trajectories
and 14 cm for starting trajectories, at a time horizon of
1 s. These results were obtained using the models created
with the high accuracy and high frequency (120 Hz) CMU
data-sets [16]. Our final goal is to develop a pedestrian
path prediction system set up in a moving vehicle equipped
with stereo cameras and LIDAR. The work presented in this
paper can be considered as the best case scenario and further
experimentation will be carried out to test how this approach
performs with noisy test sequences.

As future work we propose to create a bigger data-
set in order to include a signicative number of sequences

for the different actions that will help the system to cope
with the stylistic variations. In addition, experiments with
pedestrian joints extraction systems in real conditions, will
be performed to test the real predictive power of the system
with noisy samples. We plan to continue the work on vision-
based joints extraction using a 3D point cloud and fuse this
information with a LIDAR to increase the accuracy. Finally, a
CPU time profiling for the different algorithms of the system
is needed to evaluate the implementation of some of them
in GPUs or hardware.
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