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Abstract— This paper presents the results of a set of extensive
experiments carried out in daytime and nighttime conditions in
real traffic using an enhanced or extended Floating Car Data
system (xFCD) that includes a stereo vision sensor for detecting
the local traffic ahead. The detection component implies the use
of previously monocular approaches developed by our group
in combination with new stereo vision algorithms that add
robustness to the detection and increase the accuracy of the
measurements corresponding to relative distance and speed.
Besides the stereo pair of cameras, the vehicle is equipped with a
low-cost GPS and an electronic device for CAN Bus interfacing.
The xFCD system has been tested in a 198-minutes sequence
recorded in real traffic scenarios with different weather and
illumination conditions, which represents the main contribution
of this paper. The results are promising and demonstrate that
the system is ready for being used as a source of traffic state
information.

I. INTRODUCTION

The so-called Floating Car Data (FCD) refers to tech-

nology that collects traffic state information from a set of

individual vehicles which float in the current traffic. Each

vehicle, which can be seen as a moving sensor that operates

in a distributed network, is equipped with global positioning

and communication systems, transmitting its global location,

speed, and direction to a central control unit that integrates

the information provided by each one of the vehicles. FCD

systems are being increasingly used in a variety of important

applications since they overcome the limitations of fixed

traffic monitoring technologies [1]. If this system achieves

a sufficient penetration rate (1.5% as described in [2]), the

service quality in urban traffic would be sufficient. The most

representative FCD projects in Japan, Europe and the United

States until 2005 are described in [3].

The basic data provided by FCD systems can be extended

(xFCD) using new specific devices and sensors endowed

in modern vehicles [4], [5]. Such data can be exploited to

extend the information horizon including traffic, weather,

road management, and safety applications [3]. A second

generation of xFCD has been recently proposed by including

vision-based sensors in order to estimate the local traffic

conditions. For example in [6] a stereo vision-based detection

module is used as a vehicle ahead checker (excluding lateral

road lanes) in order to validate the traffic alarms generated

by the traffic level analyser.
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Based on our previous works related with vision-based

vehicle detection in the context of intelligent vehicles appli-

cations [7], [8], [9], we have proposed to use the information

provided by the cameras to supply xFCD systems with

a more representative measurements of the traffic condi-

tions [10], [11]. A set of monocular vision-based modules

(forward-rear and side-looking) were used to have a nearly

360 degree field of view. Instead of excluding lateral lanes

[6] the relative distance and speeds of the vehicles detected

in adjacent lanes were incorporated to the xFCD structure

providing variables such as the local traffic load (number

of vehicles, road capacity, etc.) and the average road speed

(not only the floating vehicle speed) of the specific local

area. Thus, a more detailed description (less discrete) of the

traffic state can be obtained (for example, in cases where the

floating vehicle is stopped in a congested lane but adjacent

lanes have different levels of congestion).

In this paper we describe an improved approach of the

vision-based vehicle detection systems described in [10] and

[11], by means of the use of stereo vision. Stereo information

improves both the detection performance and the accuracy

of the measurements (host-to-vehicle -H2V- relative distance

and speed). Previous results [11] were obtained in sequences

of a few seconds (800 frames). Here we provide extensive

results in sequences of a total duration of 198 minutes

(428400 frames, 36 fps) recorded in real traffic scenarios

with different weather (rainy/cloudy) and lighting conditions

(nighttime/daytime), and different levels of congestion.

The remainder of this paper is organised as follows:

Section II provides a global overview of the system. The de-

scription of the stereo vision-based vehicle detection system

is presented in Section III. The experimental results are listed

in Section IV, including sensor accuracy analysis. Finally,

conclusions and future works are discussed in Section V.

II. SYSTEM OVERVIEW

The experimental vehicle used in this work is a car-like

robot (a modified Citröen C4) which can be seen in Figure

1. It has an onboard computer housing the image process-

ing system, a RTK-DGPS which is connected via RS232

serial port, a pair of synchronized low cost digital cameras

connected via FireWire port, a specific electronic device for

CAN Bus interfacing and a cellular communication system.

The stereo vision sensor uses 320 × 240 pixel greyscale

images with a baseline of approximately 300mm and a focal

length of 8.5mm.

The global architecture of the system can be seen in Figure

2. The results obtained by the stereo vision module are

combined with the GPS measurements and the data provided
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Fig. 1. Top left: Low cost stereo vision sensor. Top right: RTK-DGPS.
Bottom: Experimental vehicle (modified Citröen C4).

by the CAN bus in order to have globally referenced traffic

state information. Among the variables that are directly (or

indirectly, after some processing) available via CAN Bus

we remark: speed, acceleration, number of stop&go (based

on the speed), outside temperature and humidity, windshield

wiper state, different lights state (fog, emergency, high

beams, indicators, etc.), number of gear changes, number

of lane changes (based on the indicator lights), etc.
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detection
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Fig. 2. Global architecture of the xFCD system.

III. VISION-BASED VEHICLE DETECTION

The global scheme of the proposed vision-based vehicle

detection system is depicted in Figure 3. The first step

consists of reducing the searching space in the image plane

by detecting the road lane markings. The detected lanes are

used as the guidelines that drive the vehicle searching pro-

cess. Lane markings are detected using gradient information

in combination with a local thresholding method which is

adapted to the width of the projected lane markings. Then,

clothoid curves are fitted to the detected markings [11]. Then

several region of interests (ROIs) generation modules are

triggered in parallel.

Monocular ROIs are selected by combining white top-

hat and canny features with different types of symmetries

(grey level, vertical edges and horizontal edges symmetries)

as described in [11]. Stereo processing results in a dense

disparity map which allows the 3D position and the relative

speed of the vehicles ahead to be estimated accurately.

The camera pitch angle is estimated dynamically by means

of the so-called virtual disparity map from which regions

corresponding to the ground-plane can easily be removed

Lanes Detection
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Stereo
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HOG features
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(only overlapped candidates)
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Fig. 3. Global overview of the vision-based vehicle detection algorithm.

[12]. One thus obtains a more precise specification of the

areas of the ground where vehicles are to be expected (see

Figure 4). Stereo ROIs are then computed by counting the

number of depth features corresponding to the filtered dense

disparity map of locations selected by means of perspective

constraints (flat-world assumption) and prior knowledge of

target objects (with tolerances). In particular, the locations

where the number of depth features exceeds a certain fraction

of the window area are passed on to subsequent modules,

thus ensuring that each candidate region corresponds to a

real 3D object.

Fig. 4. From left to right: original image, dense disparity map, and filtered
map (without ground-plane points or points that are very high).

Nighttime ROIs selection mechanism is firstly based

on adaptive thresholding. Candidates are then obtained by

searching pair of clusters (which are usually rear lights)

with similar vertical location, using again the flat-world

assumption, perspective constraints and prior knowledge of

target objects. Although this is a simple method, it is very

effective in practice. It provides a low number of false

positives since the adaptive thresholding mostly highlights

the rear lights of the vehicles (see Figure 5).

Fig. 5. From left to right: original image, individual clusters after adaptive
thresholding and selected ROIs.

The three ROIs selection modules provide different can-

didates, some of them overlapped as they can refer to the

632



same vehicle. All these candidates are classified by means of

linear SVM classifiers [13] in combination with histograms

of oriented gradients (HOG) features [14]. Two specialized

classifiers have been trained depending on the lighting condi-

tions. Candidates selected by monocular and stereo modules

are classified using a daytime SVM classifier. On the other

hand, a nighttime SVM classifier is used for nighttime ROIs

(see Figure 3). Figure 6 shows some of the positive and

negative training samples. The number of samples used

for developing the training test differs depending on the

classifier. Daytime classifier was trained with 19031 negative

and 9248 positive samples. Nighttime classifier was obtained

with 2486 negative and 1847 positive samples. The number

of samples used in nighttime scenarios is lower because

the intra-class variability is much lower than in daytime

conditions.

Fig. 6. Upper row: positive samples. Lower row: negative samples. Left:
daytime samples. Right: nighttime samples.

The three detection modules may generate candidates

related with the same vehicle. Accordingly a kind of non-

maximum suppression technique is used to group multiple

overlapped candidates, trying to generate only one candi-

date per vehicle. In practice, we have observed that good

candidates (candidates that are well fitted to the actual

vehicle contour) usually provide SVM results farther to the

hyperplane that separates the vehicle and non-vehicle classes,

i.e., their classification result has higher confidence. Thus,

we use the distance to the hyperplane as the main variable

to select the best candidate of a set of overlapped candidates

(overlapping has to be larger than 70% of the area of the

smaller candidate).

Finally, the vehicles detected in this single-frame way are

passed to the multi-frame validation and tracking module

(see Figure 3). A predefined number (empirically set to 3) of

consecutive identifications of an object classified as a vehicle

triggers the data association and tracking stages. The data

association problem is addressed by using feature matching

techniques. Harris features are detected and matched between

two consecutive frames, as in [11]. Tracking is implemented

using a Kalman filter with a constant velocity model [11].

IV. EXPERIMENTAL RESULTS

A. System validation

In a first experiment, we evaluated the different parameters

provided by the vision sensor, i.e., H2V relative distance

and speed, together with their corresponding errors. A set

of sequences was recorded in which a driver was requested

to perform an overtaking manoeuvre in a two-lane road at

approximately 25km/h. A vehicle was parked in the right-

hand (non-overtaking) lane, so that the host vehicle overtakes

it at a relative speed of around 25km/h. Besides the stereo

vision sensor, two DGPSs are used, one placed at the lead

vehicle’s position and the other on board the host vehicle (see

Figure 7). The measurements supplied by these DGPSs (after

linear interpolation due to their low sampling frequency -

5Hz) are taken to be the ground truth.

RTK-DGPS

Ground truth
Vehicle Position

RTK-DGPS
Ground truth

Host Position Overtaking
trajectory

Stereo
sensor

Host-to-vehicle
TIme-to-Collision

Fig. 7. Scheme of the manual driving experiment.

Figure 8 plots the stereo and the DGPS distance estimates,

including the absolute error and the stereo depth estimation

uncertainties [15]. The DGPS H2V, which is taken to be the

ground truth, lies mostly within the limits of the stereo depth

estimate including their corresponding uncertainties. As can

be observed, the greater the depth the greater the absolute

error. Depth estimates may not be reliable at long distances

(absolute errors). However, the absolute error decreases as

the H2V distance decreases.
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Fig. 8. Stereo and DGPS H2V relative distance including absolute and
depth estimation errors in the experiment in which the car is overtaken.

Although the depth estimation errors are sufficiently small

for the precision required in the present application, those of

the discrete estimate of the relative speed from the Kalman

state variable are not. As demonstrated in [16] discrete differ-

ence between two noisy depth estimation values introduces a

considerable error in the relative speed computation for non-

infinitesimal ∆t, and this clearly limits the vision system’s

precision. Those authors propose an optimal value for ∆t

which is directly proportional to depth. In the present case,

we define a practical value of ∆t = 1seg and compute

the average speed of the last 25 frames. This approach is

very effective in practice. Figure 9 depicts the relative speed

obtained from the CAN bus (recall that the leading vehicle is

parked in this experiment), that computed by means of DGPS

H2V distance values, the discrete relative speed provided by

the Kalman filter, and the relative speed computed at each

second. One observes that the discrete values of the stereo

relative speed are not at all useful. However, the proposed

approach described above provides relative speed estimates

that are accurate enough for the application’s requirements -

the root-mean-squared-error (RMSE) is around 3km/h.
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Fig. 9. H2V relative speed (km/h) taken from the CAN bus (the leading
vehicle is parked), and from the DGPS depth values and the discrete stereo
measurements, and estimated by averaging the discrete stereo values at each
second, in the experiment where the car is overtaken.

B. SVM Classifier

As described in Section III, the candidates are classified by

means of two linear SVM classifiers (daytime and nighttime).

In order to define the SVM decision thresholds we use

the ROC curves defining the work points in terms of the

relationship between the Detection Rate (DR) and the False

Positive Rate (FPR). In these experiments 2/3 of the samples

were used for training and 1/3 for test. The ROC curves

are showed in Figure 10. On the one hand, the decision

threshold for the daytime classifier is fixed to 0.03 with a

DR of 96.1% and a FPR of 6.4%. On the other hand the

decision threshold for the nighttime classifier is fixed to 0.07

with a DR of 91.4% and FPR of 7.8%. We have to consider

that these results are single-frame results, so they will be

improved in multi-frame validation and tracking stages. The

final classifier is trained with all the available samples.
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Fig. 10. ROC curves for both daytime and nighttime linear SVM classifiers.

C. xFCD results

The proposed system was tested on data from real traffic

conditions. A set of video sequences were recorded on

the same route through the Madrid (Spain) M-30 highway

(see Figure 11). The route distance is approximately 15

kilometres and it was driven up to 4 times, going and

returning from the A and B points highlighted in Figure 11.

Accordingly, a total of 150 kilometres were driven approxi-

mately. The video sequences were recorded during the same

day, from 7:20 AM to 10:38 AM, including different lighting

(nighttime/daytime) and weather (rainy/cloudy) conditions,

as well as different levels of congestion.

Fig. 11. Route through the Madrid (Spain) M-30 highway followed during
the experiments.

Global results are presented in Table I. We have la-

belled the total amount of vehicles in range in all the

sequences (ground truth). Note that we distinguish between

true positives and vehicles that are detected from a previously

detected vehicle (identifier exchanged). In both cases we

consider the vehicle as detected, assuming that some errors

will appear in the relative distance computation when a new

vehicle is associated with a previously tracked one. Accord-

ingly, we obtain a detection rate of 88.44% and 90.99%

in nighttime and daytime conditions respectively. 0.84 false

positives per minute are obtained in nighttime conditions

whereas 0.69 false positives per minute are detected in

daytime conditions. In addition, the 6.67% and the 5.82%

of the vehicles are counted more than one time in nighttime

and daytime conditions respectively (i.e. a new identifier is

generated).

Figures 12 and 13 depict some of the variables provided

by the system in two sequences (daytime and nighttime

respectively) with different levels of traffic congestion. The

following variables are drawn: host speed (via CAN bus

interface), the average road speed, the distance between

the host vehicle and the vehicle ahead, and the number of

vehicles detected per each frame. As can be observed, there

is a strong relationship between the road speed and the H2V

distance. In fact we consider this variable as one of the most

relevant in terms of traffic congestion. The maximum number

of vehicles detected per frame is 6 (note that the minimum

number is 1 since we always count the host vehicle). The

number of vehicles detected does not seem to affect to

the average road speed computation which implies that the

relative distances of the vehicles detected in adjacent lanes

and the proposed method for computing the relative speed

are coherent up to a point (extensive ground truth data will be

needed to assure the actual goodness of the relative distance

and speed measures).

The average difference between the host speed and the

average road speed is around 0.4km/h. This can be explained

by the fact that the host vehicle is driving in the middle
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TABLE I

GLOBAL XFCD RESULTS

# frames # vehicles in range True Identifier Missed False Multiple
(ground truth) Positives exchanged vehicles Positives counts

Nighttime (from 7:20am to 8:35am) 161907 727 625 18 84 63 50

Daytime (from 8:35am to 10:38am) 266493 1133 1007 24 102 86 66

Total (198 minutes) 428400 1860 1632 42 186 149 116

Fig. 12. Results in daytime, cloudy and rainy conditions with different levels of traffic congestion.

Fig. 13. Results in nighttime, cloudy and rainy conditions with different levels of traffic congestion.
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lane of a three lane highway most of the time, so the higher

speed of the vehicles located on the left lane is compensated

somehow with the lower speed of vehicles located on the

right lane. However we have detected some cases where the

host vehicle is stopped (host speed equal to 0 km/h) whereas

the vehicles located on the left lane are moving at speeds up

to 10km/h. This effect can be observed in Figure 14. In some

cases the difference between the host speed and the average

road speed achieves more than 3km/h.

Fig. 14. Specific situation: host vehicle is stopped whereas the vehicles
located on the left lane are moving.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented the results of an xFCD system

equipped with a stereo vision-based local traffic detector in

a set of extensive experiments (198 minutes) carried out in

real traffic conditions with different lighting and weather

conditions as well as different levels of traffic congestion.

The vision-based vehicle detection system combines different

approaches (monocular, stereo and nighttime) to supply

generic obstacles that are classified by means of two lin-

ear SVM classifiers (daytime/nighttime) and HOG features.

The vehicles are then validated in a multi-frame fashion

and tracked using a Kalman filter. The proposed approach

provides data, not only from the host vehicle, but from the

vehicles located in the field of view of the host, including

the vehicle ahead and the vehicles located in adjacent lanes

(when available). Thus, standard variables such as the host

vehicle speed (via CAN bus) can be enriched and supported

with new variables such as the distance to the vehicle ahead,

the average road speed, the number of vehicles in range,

etc. Although the use of stereo vision implies to manage

some errors when estimating the relative distance (errors that

are squared proportional to the depth), it allows us to have

an accurate estimation of the relative speed by integrating

relative distance values during 1 second. The global results

show that the proposed approach produces good results in

different traffic conditions, succeeding when detecting the

traffic congestion.

Although the results are promising, new advances have to

be developed to improve the detection rate and reduce the

number of false positives. A more sophisticated ensemble

classifier will be introduced using different classifiers de-

pending on the lane, and including a new class for trucks

since most of the missed vehicles are trucks.

Finally, a set of experiments have to be addressed to

clearly define the limits of the proposed system. We will

compare the xFCD results with data provided by fixed loops

that are installed throughout the same highway used in the

experiments. New vehicles (fleet) will be used, and xFCD

will be combined with data from fixed loops to assess

applications in the context of traffic management and control.
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