
Drowsiness monitoring based on driver and driving data fusion

I. G. Daza, N. Hernandez, L. M. Bergasa, I. Parra, J. J. Yebes, M. Gavilan,

R. Quintero, D. F. Llorca, M. A. Sotelo

Departament of Electronics

University of Alcalá
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Abstract— This paper presents a non-intrusive approach for
monitoring driver drowsiness, based on driver and driving data
fusion. The Percentage of Eye Closure (PERCLOS) is used
to estimate the driver’s state. The PERCLOS is computed
on real time using a stereo vision-based system. The driving
information used is the lateral position, the steering wheel
angle and the heading error provided by the CAN bus. These
three signals have been studied in the time and frequency
domain. A multilayer perceptron neural network has been
trained to fetch an optimal performance score. This system
was installed in a naturalistic driving simulator. For evaluation
purposes, several experiments were designed by psychologists
and carried out with professional drivers. As ground truth,
subjective experts’ manual annotation of the driver video
sequences and driving signals was used. A detection rate of
70% using individual indicators was raised up to 94% with the
combination of indicators. An explanation about these results
and some conclusion are presented.

Index Terms— Intelligent Transportation Systems, Driver
Drowsiness, Confusion Matrix, PERcentage of eye CLOSure
(PERCLOS), Visual Fatigue Behaviour, Artificial Neural Net-
work, Spectral Density Power.

I. INTRODUCTION

Sleepiness during driving has been shown to result in a

greatly increased risk of causing an accident. Specifically,

Klauer et al. [1] have shown that to drive while sleepy

increases the accident risk four to six times compared to

alert driving. Furthermore, the risk of causing an accident

is higher during night driving [2] or in situations with

reduced prior sleep [3]. In fact, at least 15-20% of all vehicle

accidents have been estimated to be sleepiness related [4].

Therefore, it is beneficial to develop a system to monitor

the physical and mental state of the driver and give alerts at

the critical moment when the driver is becoming fatigued,

thereby preventing traffic accidents.

In the last decade, diverse techniques have been used

to develop monitoring systems for a variety of purposes.

Those techniques used to detect driver’s sleepiness can be

generally divided into three main categories [5]. The first

category includes methods based on biomedical signals, like

cerebral, muscular and cardiovascular activity [6], [7] and

[8]. Usually, these methods require electrodes attached to the

driver’s body, which will often cause annoyance to the driver.

Most of them are yet far from being effectively introduced

in the market, according to recent reviews [9].

The second category includes methods based on driver

performance, which evaluate variations in the lateral position

of the vehicle, in the velocity, in the steering wheel angle

and in other controller-area network (CAN) signals [10],

[11] and [12]. The advantage of these approaches is that the

signal is meaningful and the signal acquisition is quite easy.

This is the reason why such systems have indeed entered the

commercial market [13], [14] and [15] but, to the authors’

knowledge, in the open literature there are very few details

available regarding the mechanisms or parameters of these

systems. On the other hand, these systems are subject to

several limitations such as vehicle type, driver experience,

geometric characteristics, condition of the road, etc. Then,

these procedures require a considerable amount of time to

analyse user behaviours and therefore, they do not work with

the so called micro-sleeps—when a drowsy driver falls asleep

for a few seconds on a very straight road section without

changing the vehicle signals.

The third category includes methods based on driver

visual analysis using image processing techniques. Computer

vision can be a natural and non-intrusive technique for

monitoring driver’s sleepiness from the images taken by

cameras placed in front of the user. These approaches are

effective because the occurrence of sleepiness is reflected

through the driver’s face appearance and head/eyes activity.

Different kinds of cameras and analysis algorithms have been

reported in the literature for this approach: methods based on

visible spectrum camera [16] and [17]; methods based on IR

camera [5] and [18]; and methods based on stereo camera

[19] and [20]. Some of them are commercial products as:

Smart Eye [21], Seeing Machines DSS [22], Smart Eye Pro

[19] and Seeing Machines Face API [20]. However, these

commercial products are still limited to some well controlled

environments and they require of hard calibration processes.

Then, there is still a long way to go in order to obtain a

robust commercial product in this category.

This paper present a non-intrusive approach for monitoring

driver drowsiness, based on driver and driving data fusion. In

Section II the simulator, the method used to study the fatigue

and drowsiness in drivers and the generation of the ground

truth signal are described. A general algorithm description,

the techniques applied to obtain new indicators and the neural

network designed is explained in Section III. After that,
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experimental results are shown in Section IV. Finally the

conclusion and future work are presented in Section V.

II. EXPERIMENTS AND DATA COLLECTION

The purpose of this section is to show the characteristics

of a naturalistic simulator and to explain the methodology

carried out by psychologists in the analysis task to evaluate

drowsiness in professional drivers.

A. Realistic driving simulator

Simulation methodologies applied to training and research

in the field of road transport have been proven to be both

cost-effective and efficient. Simulation aims to give the driver

an opportunity to immerse himself in his habitual workplace.

The study employed a naturalistic simulator placed at the

CEIT [23], as we can see in Fig. 1.

Fig. 1. Naturalistic simulator

The truck simulator consists of a real truck cab, an instruc-

tor station and a system of screens that cover 180 degrees

of vision. A set of 3 screens with re-configurable positions

cover a large area showing all angles of vision of drivers. The

simulator has 3 scenarios (urban, interurban and mountain)

with more than 250km of roads, it allows driving in adverse

conditions such as rain or snow, and at different times of day

or night. The truck cab is an Iveco Stralis cab mounted on

a Stewart platform 6GDL MOOG Company. The simulator

records driving and driver variables. Concerning the driving

variables the steering wheel angle, truck lateral position over

the lane, heading error, speed, brake, acceleration and more

variables are recorded to 120 samples per second. Within

the driver variables the PERCLOS signal, blink frequency

and others variables are recorded to 30 samples per second.

Thus, this simulator gives the researcher great flexibility to

implement recording systems specifically designed to test the

reactions and behaviour of professional drivers while they are

driving [24].

B. Experimental protocol

The main target of this experimental protocol is to recreate

a suitable environment which would enable researchers to

detect drowsiness during driving. A large amount of informa-

tion about drowsiness clues have been gathered and analysed.

The data were collected for a total of 10 professional

drivers. The protocol was designed such that each user would

carry out driving sessions during two different conditions:

Either after having slept on a regular schedule (from 23:00

to 07:00, with allowance for one hour deviations from the

schedule) for two nights prior to the day of the experiment, or

after having slept only four hours during the night preceding

the experiment, thus being partially sleep deprived. Each user

carried out driving sessions under each of the two conditions

spread over a 24-hour period. Each driving session lasted 60

minutes. The tests subjects that participated in the study were

recruited from the Spanish national register of professional

drivers, by random selection (only private vehicle owners

were included). They had to be frequent drivers, driving at

least 5000 km a year, and not suffering from habitual sleep

disturbances.

C. Drowsiness ground truth

The ground truth was labelled using the Karolinska Sleepi-

ness Scale (KSS) and the video sequences. The test users

were instructed to estimate their level of sleepiness according

to the KSS, which has been proved to have a high correlation

with a deterioration in driving performance which is closely

related to the electroencephalography signal (EEG) [25]. The

KSS level were subjectively generated by the driver every 5

minutes grouping the nine KSS levels into two: awake and

drowsy. Finally this information was mixed with the three

experts’ offline analysis of the videos and the driving signals

to generate the subjective ground truth signal in two levels:

awake and drowsiness.

III. DATA FUSION ALGORITHM TO DETECT DROWSINESS

The general architecture of the implemented algorithm is

shown in Fig. 2. The initial point is the collection of driver

and driving related signals. The driver signal is the PERC-

LOS, that will be explained in Section III-A. The analysed

driving signals are the lateral position, the steering wheel

angle and the heading error. The driving signals are studied

in the time III-A.1 and frequency III-A.2 domains to obtain

new drowsiness indicators. In the time domain, the mean and

standard deviation are used obtaining six indicators. In the

frequency domain, the spectral density power is evaluated to

find awake and drowsiness patterns. Finally, these indicators

are combined in a multilayer perceptron neural network to

estimate the drowsiness driver level.

A. Input signals

The driver signal employed is the Percentage of Eye

Closure (PERCLOS), the most confident drowsiness indi-

cator using computer vision algorithms [26] [5]. In order to

obtain PERCLOS a NIR stereo rig is placed in front of the

driver. The system works in real-time and does not need a
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Fig. 2. General architecture

calibration process. The system consists in three main stages.

The first one is the pre-processing stage, which includes face

and eye detection based on appearance strategy using the

Viola and Jones algorithm [27], and the equalization of the

eyes using a Hat transformation. An eye tracking strategy

in a sequence of frames is then carried out. The second one

executes the pupil position extraction and its characterization

using integral projection techniques and a Gaussian model.

The final stage executes the PERCLOS estimation [26]. The

PERCLOS is defined as the percentage for a given period

of time (here set to 20 seconds) for which eyes are at least

80% covered by eyelids. This measure has been found to

correlate well with reduced psycho-motor vigilance task and

deteriorating driving performances due to sleepiness.

The driving signals are the lateral position, the steering

wheel and the heading error angle of the truck simulator.

These were obtained from the CAN bus. The lateral position

represents the distance from the centre of the vehicle to

the driving right lane boundary. The steering wheel angle

represents the wheel movements and the heading angle is the

angle between the direction of the vehicle with the tangent

to the path.

The PERCLOS and lateral position parameters without

preprocessing are represented as a function of distance in

Fig. 3 for two different experiments: one in which the driver

was awake and one in which showed drowsiness. A time

representation is the regular form to show the results in this

studies. However, in this paper we choose as a common line

reference for these two variables the distance in km, which

means to take the same stretch trajectory for the same driver

and under different drowsiness condition. On top plot in

Fig. 3, the PERCLOS signal clearly shows higher values for

the drowsiness experiment. Besides, the lower plot represents

the lateral position signal, where it can be observed that the

amplitude and dispersion of its values are greater for the

drowsiness case. Hence, it is very convenient to analyze these

measurements to detect driver sleepiness.

1) Time domain pre-process: Many indicators of driver

sleepiness have been proposed in the literature [28]; regres-
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Fig. 3. Input variables

sion descriptors, class distribution measures, peak amplitudes

and distances, but perhaps the most common indicator is

the standard deviation of the lateral position which simply

measures the average lateral deviation.

In this paper, we compute the standard deviation and mean

over the values of the following signals: lateral position,

steering wheel angle and heading error. These new statis-

tical indicators have been evaluated with different temporal

windowing sizes in order to obtain the best value for this

application.

The mean indicators do not show evidence about drowsi-

ness with different windowing size, but it will be used

to evaluate the neural network performance. However the

standard deviation applied to the lateral position and steering

wheel angle show differences between awake and drowsiness

when the windowing size is 1000 meters, as we depict in

Fig. 4. On top, the standard deviation of lateral position

shows that its values in the drowsiness exercise are higher

than in the awake one. However on the bottom subfigure the

standard deviation of steering wheel angle does not show

large differences between the drowsiness and the awake

exercise. In the drowsiness exercise the values of standard

deviation are a bit larger than in the awake one. These

differences are explained because the driving signals have

more amplitude and the car corrections are less accurate

when the driver is drowsy.

2) Frequency domain pre-process: This study is per-

formed to find more indicators to determine if the driver is

in an awake or drowsiness state because in the time domain

the mean and standard deviation indicators of steering wheel

angle and heading error do not show evidence of drowsiness,

as explained before.

The idea is that an awake driver performs continuous

corrections on the steering wheel when the vehicle is under

control. On the contrary, a drowsy driver does not perform

continuous corrections, and chaotic movements are detected

on the steering wheel movements. The expected fatigue
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Fig. 4. Indicators obtained with the standard deviation of the lateral position
and steering wheel angle

induced changes in steering wheel behaviour are a pattern

of slow drifting and fast corrective counter steering, too.

The spectral energy distribution has been evaluated with

a Fast Fourier Transform (FFT) and a window size of

500 meters to evaluate the energy from 0.01Hz to 0.03Hz.

Therefore, a concentrated spectral energy is found in the

awake state, while the drowsiness state is characterized by

an extended spectral energy distribution. This is explained

by the chaotic movements and the different frequencies in

the steering wheel movements as shown in Fig. 5.
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Fig. 5. Steering wheel power spectral density

To make the path of the road independent with steering

movements of the route due to curves, the heading error has

been introduced. This variable shows the same effects than

the steering wheel movements: oscillations occur when the

vehicle is being controlled, while oscillations disappear or

are chaotic when the driver loses the control.

B. Neural Network Designed

A combination of several indicators may provide a better

estimate of sleepiness than any individual indicator alone.

The indicators can be combined in several ways, ranging

from simple linear combination of indicator values to much

more complex functional forms. In order to capture as

many functional forms as possible, artificial neural networks

(ANN) have been used here. We have used a two layered

feed-forward ANN as depicted in Fig. 6.

The strategy for training has been to divide the set of

inputs into three separate data sets: training set (used to

guide the parameter search carried out by the optimization

algorithm), validation set (used for determining when to

terminate the optimization) and test set (used to obtain the

performance on previously unseen data). The total number

of samples per user are 30000, equivalent to the total number

of exercise meters. The training, validation and test samples

are grouped in windows of size 100. Hence, considering all

the users there are 3000 total input samples to adjust the

weights in the network. Therefore, the number of inputs to

the neural network is 100 when used only one indicator and

200 inputs for two indicators. Thus, the system will alert the

driver every 100 meters.

The network configuration is based on Tan-Sigmod Trans-

fer Function for hidden neuron layer and a Linear Transfer

Function for output layer neurons. The number of neurons in

the input layer is a function of the input variables used. On

the other hand, the number of neurons in the hidden layer is

set to 20 due to it is recommended for no more than 10%

of the inputs. The target training has been set that the mean

square error will be below of 0.01 or the number of epochs

will be less than 200. The backpropagation algorithm is used

to train the network and the gradient descent is applied to

adjust the weights in the network.

Fig. 6. Neural network designed

IV. EXPERIMENTAL RESULTS

The designed network was discussed in Section III-B

and the inputs and outputs signals used to train the arti-

ficial neural network were specified in Section III-A. The
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detection rate has been evaluated with 12 different input

indicators. The detector rate is evaluated with the expression

1−mean square error(mse). These 12 indicators are used

alone and in combinations of them. The alone indicator

study is done with PERCLOS, lateral position (Lp), mean

lateral position (Avg Lp), standard deviation lateral position

(Std Lp), steering wheel (Wheel), mean steering wheel

(Avg Wheel), standard deviation steering wheel (Std Wheel),

heading error (He), mean heading error (Avg He), standard

deviation heading error (Std He), wheel energy (Wheel Pow)

and heading error energy (He Pow) indicators. The alone

indicators detection rate is shown in Table I.

TABLE I

SINGLE DETECTION RATE

Single Mean Std

Lateral Position 66.71 64.10 84.10

Steering Wheel 40.57 58.21 64.10

Heading Error 60.04 61.51 62.92

Energy Wheel 33.51 No data No data

Energy He 62.14 No data No data

PERCLOS 97.61 No data No data

Among the driving signals, in the time domain, the lateral

position indicator provides the higher detection rate values

while the steering wheel angle and heading error provide

similar results. The standard deviation of all these indicators

provide better results than the others and a 84.10% is the

best detection rate obtained with the standard deviation of

the lateral position. On the other hand, in the frequency

domain, the wheel and the energy do not yield high detection

rates, with a 33.52% and 62.14% respectively. The results

obtained are not better than in the time domain. Looking

at the driver signal, the PERCLOS is the best with a

97.61% of detection rate. The improvement is mainly due

to independence of the PERCLOS signal with the trajectory.

These rate results could be higher with a combination of

indicators. The indicators with a detection rate higher than

62% in Table I are selected to be combined two by two. The

new detection rate obtained is represented on table II. The

table represents the combination between the rows and the

columns indicators. More than one input produce generally

higher hit rates than those that use only single inputs. In our

case the combination of energy indicators with other driving

or driver signal produced a decrease of the hit rate due to the

continuous changes in energy distribution frequency during

the exercises. The combination of the PERCLOS with other

indicators obtained the best results and improved its single

detection rate. The combination between the PERCLOS and

standard deviation of the lateral position produced the best

results with a 98.65% of detection rate, that is above the

results obtained in [29] where data collection is similar to

that used in this paper, a total of 14 drivers is used and they

were given the task to drive under two different conditions:

sleep-deprived and after normal sleep. So these two variables

will be very important to design a driver drowsiness detection

system with neural networks or learning algorithms.

TABLE II

COMBINATION DETECTION RATE

Lp Avg Lp Std Lp Std Wheel Std He Ener. He

PERCLOS 98.60 97.34 98.65 97.95 98.60 64.09

Lp 82.91 67.62 59.39 74.68 64.74

Avg Lp 93.51 64.10 74.68 39.39

Std Lp 87.63 75.86 31.15

Std Wheel 67.63 38.21

Std He 46.18

The detailed confusion matrix of the neural networks

classification results for the PERCLOS-standard deviation

lateral position and PERCLOS-lateral position combination

are given in Table III and IV.

TABLE III

CONFUSION MATRIX PERCLOS-STANDARD DEVIATION LATERAL

POSITION

Correct
Awake Drowsiness

Estimated
Awake 100% 6.25%

Drowsiness 0% 93.75%

TABLE IV

CONFUSION MATRIX PERCLOS-LATERAL POSITION

Correct
Awake Drowsiness

Estimated
Awake 100% 9.37%

Drowsiness 0% 90.62%

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a non intrusive approach for moni-

toring driver drowsiness, based on driver and driving infor-

mation and data fusion, and has been tested in a naturalistic

driving simulator. The proposed drowsiness detection method

has shown high accuracy, obtaining 98.65% of drowsiness

detection rate.

In general, PERCLOS can be used in combination with

lateral position and steering wheel angle, as they provide

complementary information, to improve the drowsiness mon-

itoring in drivers. The standard deviation of the lateral

position or steering wheel angle have been proved to be the

best signals to fuse with the PERCLOS obtaining the highest

detection results. The heading error and the energy signals

do not improve the hit rate because they do not present

correlation with the drowsiness pattern.

The results shown in this paper are influenced by the

simulator used. A good way to measure how robust is the

algorithm presented is to apply it under real world conditions.

In addition, generating a ground truth drowsiness signal by

expert psychologists is important to evaluate the hit rate of

any method related with drowsiness detection.

As future work we envision the use of Hidden Markov-

model and Bayesian networks to model temporal aspects and

experts knowledge. Also a multi-level classification to adapt
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varying driving styles and road conditions could improve

the current detection rates. Finally, exhaustive tests in real

conditions with more drivers should be performed to evaluate

the effect of the driving styles and the driving conditions in

the detector performance.
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