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ABSTRACT 
This paper describes a new approach for improving the estimation of a vehicle motion 
trajectory in complex urban environments by means of visual odometry. A new strategy for 
compensating the heterodasticity in the 3D input data using a weighted non-linear least 
squares based system is presented. A Matlab simulator is used in order to analyze the error in 
the estimation and validate the new solution. The obtained results are discussed and compared 
to the previous system. The final goal is the autonomous vehicle outdoor navigation in 
large-scale environments and the improvement of current vehicle navigation systems based 
only on standard GPS. This research is oriented to the development of traffic collective 
systems aiming vehicle-infrastructure cooperation to improve dynamic traffic management. 
We provide examples of estimated vehicle trajectories using the proposed method and discuss 
the key issues for further improvement. 

INTRODUCTION 
Accurate global localization has become a key component in vehicle navigation, not only for 
developing useful driver assistance systems, but also for achieving autonomous driving. 
Autonomous vehicle guidance interest has increased in the recent years, thanks to events like 
the Defense Advanced Research Projects Agency (DARPA) Grand Challenge and recently the 
Urban Challenge. Recently, the development of traffic collective systems for 
vehicle-infrastructure cooperation to improve dynamic traffic management has become a hot 
topic in ITS research. 
 
Accordingly, our final goal is the autonomous vehicle outdoor navigation in large-scale 
environments and the improvement of current vehicle navigation systems based only on 
standard GPS. The work proposed in this paper is particularly efficient in areas where GPS 
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signal is not reliable or even not fully available (tunnels, urban areas with tall buildings, 
mountainous forested environments, etc). Our research objective is to develop a robust 
localization system based on a low-cost stereo camera system that assists a standard GPS 
sensor for vehicle navigation tasks. Then, our work is focused on stereovision-based real-time 
localization as the main output of interest.  
 
The idea of estimating displacements from two 3D frames using stereo vision has been 
previously used in [1, 2] and [3]. A common factor of these works is the use of robust 
estimation and outliers rejection using RANSAC [4]. In [2] a so-called firewall mechanism is 
implemented in order to reset the system to remove cumulative error. Both monocular and 
stereo-based versions of visual odometry were developed in [2], although the monocular 
version needs additional improvements to run in real time, and the stereo version is limited to 
a frame rate of 13 images per second. In [5] a stereo system composed of two wide Field of 
View cameras was installed on a mobile robot together with a GPS receiver and classical 
encoders. The system was tested in outdoor scenarios on different runs under 150 m. In [6], 
trajectory estimation is carried out using visual cues for the sake of autonomously driving a 
car in inner-city conditions. 
 
In our previous work [7] the ego-motion of the vehicle relative to the road is computed using 
a stereo-vision system mounted next to the rear view mirror of the car. Feature points are 
matched between pairs of frames and linked into 3D trajectories. Vehicle motion is estimated 
using the non-linear, photogrammetric approach based on RANSAC. In the present work, a 
comprehensive study of the errors in our previous ego motion estimation system has led to an 
improvement of the solution to the non-linear system equations describing the vehicle motion. 
To study the nature of these errors, a simulator was implemented in MatLab where all the 
variables of the system could be controlled. The results suggest heterogeneous variances of 
the input data due to the intrinsic error in 3D estimations. The new solution is based in a 
weighted non-linear least squares algorithm which compensates for the heterodasticity of the 
system input data. Results show a 20 times improvement in the medium distance to the 
ground true data and a better fit to the shape of the trajectory.  
 
The rest of the paper is organized as follows: in section MatLab Simulator the new simulator 
is briefly described and the heterodasticity in the input data is shown; section Non linear least 
squares presents the new solution; section Error in 3D estimation provides a description of 
the intrinsic errors in 3D estimation using a stereo system which will be used for the 
weighting scheme; section Results the improvements achieved are compared to the previous 
system, and finally section Conclusions and future works is devoted to conclusions and 
discussion on how to improve the current system performance in the future. 
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MATLAB SIMULATOR 
Trajectory estimation and global positioning using ego motion is a difficult task from 
computer vision perspective. Large variations in environmental conditions (e.g. lighting, 
moving cars, poor texture scenes, repetitive patterns, etc.) make this problem particularly 
challenging. Understanding the influence of the different errors in the estimation is crucial to 
focus the research. In order to improve results a better understanding of the errors underlying 
our system is needed. 

A mathematical study of the different errors present in the ego motion estimation was carried 
out using MatLab. To do so, the proposed trajectory estimation algorithm was programmed in 
MatLab assuming ideal conditions, and different errors were added one by one allowing us to 
measure their effect on the final trajectory estimation. In Figure 1 a flow diagram of the 
simulator is shown. 
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Figure 1. Flow diagram of the simulator implemented in Matlab 
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The inputs to the simulator are twofold: on the one hand the simulator can be fed with 
synthetic data (synthetic trajectories and synthetic feature points) which will be used to test 
the influence of parameters we cannot control in real data such as the distribution of feature 
points in the images or the length and turnings of a trajectory. On the other hand the simulator 
can process data recorded from real runs on the test vehicle. Trajectories are recorded using 
an RTK-dGPS (Real Time Kinematic- differential GPS) and the detected features are stored to 
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be used as inputs to the simulator.  

The outputs of the simulator are three. Firstly the original (synthetic or real) trajectory is used 
as ground truth for comparison purposes. The first output is the trajectory obtained processing 
the raw input data. The second one is the trajectory estimated using the raw input data 
quantified. The last one is the trajectory estimated using the raw input data quantified and 
adding the noises and outliers. The difference between the ground truth and the estimated 
trajectory from raw input data is due to the loss of information in the linearization step. 

The inputs to the simulator are now briefly described: 

1. Synthetic trajectory module: This module creates a trajectory described by successive 
rotation matrices and translational vectors. The trajectory is created by a queue of 
codified commands such as “move forward 50m at 30km/h” or “turn 45 degrees at 2 
degrees/s”. Also the sampling rate can be chosen (number of samples per second).  

2. Synthetic feature points module: This module creates a cloud of N feature points using 
an statistical distribution inside programmable limits. For example we can create a 
cloud of uniformly distributed feature points between 2 and 20m in depth, -5 and 5m 
wide and 0 to 3m height. This allows us to measure the effect on the trajectory 
estimation of non uniformly distributed feature points such as areas where features are 
only detected on the road surface. 

3. Real GPS trajectories: GPS NMEAS data are recorded with the test vehicle and the 
onboard standard GPS and RTK-dGPS. These data are converted to WGS-84 northing 
and easting and then into rotation and translational matrices for the simulator.  

4. Real 3D feature points: The feature points detected by the real onboard system are 
stored and can be fed to the simulator. Although these points are not real 3D points in 
the sense that they will show errors in the 3D reconstruction, its spatial distribution 
will be more realistic than any random distribution we can create. This helps us to 
improve the algorithm in the simulator using data the real system will have to face. 

Now the added noises and sources of error are described: 

1. Quantization in the 3D-2D transformation: This is the error produced when the 3D 
points are projected into the image plane and transformed into pixel coordinates. The 
resolution of the pixel images is limited and, as a result, some information is lost in the 
projection. The higher the cameras resolution the smaller the error due to quantization. 
The 3D feature points (synthetic or real) passing through this module will be 
transformed according to the following projection equations: 
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(1 ) 

where  are the pixel coordinates for the 3D point u,v( ) X,Y,Z( ) and f ,dx,dy,u0,v0( ) 

the camera intrinsic parameters. The camera intrinsic parameters are real camera 
calibration parameters obtained through a calibration process. This error is the cause 
for the decrease of accuracy in the depth coordinate estimation of stereo systems. The 
further the points selected for the trajectory estimation the higher the uncertainty there 
will be in the depth coordinate of these points.  

2. Noise in the matching process: Given a calibrated rig of cameras and a 
correspondence between two points, one on the left camera ( )ll vu ,  and another one 
on the right  the 3D position P of the point in the world coordinate system is 
given by : 

( rr vu , )

( ) ( )TTT ZYXbAAAPbPA ,,1
=⋅⋅⋅=→=⋅

−  ( 2 )

where A is the matrix containing the equations for the 3D to 2D transformation for 
each one of the cameras and  the independent term of the same equations (see 
Equations 12 and 13). Matrices 

b
A  and  are written as a function of the cameras 

intrinsic parameters and the matching points on the left camera  and the right 
camera  . Random noise is added to the pixel position of the right camera to 
express the uncertainty on the matching process. 

b
( ll vu , )

)( rr v,u

( ) ( )1,0, Nvup rrr +=  ( 3 )

3. Outliers from the matching process: In urban cluttered environments repetitive 
patterns such as zebra crossings, building windows, fences, etc. can be found. As a 
consequence the input data for the ego-motion estimation will be regularly corrupted 
by these bad matches which will decrease the accuracy of the estimation. In this 
module synthetic outliers (points that don’t fit the solution) are added to the initial data. 
The number and nature -how far they are from the solution- of the outliers can be 
programmed in the simulator.  

Finally the outputs of the simulator are described: 

1. Original estimated trajectory: The trajectory estimated by the simulator using the 3D 
matched pairs of points. No quantization or noise is added. This is the equivalent to 
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cameras with infinite resolution and perfect matches. The only error is due to the 
inaccuracies in the trajectory estimation algorithm, mainly because of the linearization 
of a non-linear problem. 

2. Estimated trajectory quantified: The trajectory estimated by the simulator using the 
3D matched pairs of points after the quantization process. This is the equivalent to 
cameras with finite resolution -which can be chosen in the simulator parameters- and 
perfect matches. The main error is due to the loss in accuracy in the quantization.  

3. Estimated trajectory quantified & noise: The trajectory estimated by the simulator 
using the 3D matched pairs of points after the quantization process and adding noises. 
This is the equivalent to cameras with finite resolution, uncertainty in the matches and 
outliers. This is the most similar equivalent to the real system. 

Heterodasticity of the input data 
Analysis of the regression residuals, or some transformation of the residuals, is very useful for 
detecting inadequacies in the model or problems in the data. The true errors in the regression 
model are assumed to be normally and independently distributed random variables with zero 
mean and common variance [8,9]. The plot of the residuals against the fitted values of the 
dependent variable is particularly useful. A random scattering of the points above and below 
e=0 with nearly all the points being in a band is expected if the assumptions are satisfied. Any 
pattern in the magnitude of the dispersion about zero associated with changing estimated 
values ( ) suggest heterogeneous variances of the error ( ). 1̂P ie

In this system the residuals are the difference between the estimated value and the value used 
to solve the system. Given two triplets of 3D points matched in times 0 and 1  we 
solve for the rotation matrix and translational vector that takes  to : 

( 01 , PP )
R T 0P 1P

TPRP +⋅= 01̂  ( 4 )

The residual will be defined as: 

11̂ PPe −=  ( 5 )

In Figure 3 the residuals for the estimations versus the estimated values are shown. The 
fan-shaped pattern in Figure 2 is the typical pattern when the variance increases with the mean 
of the dependent variable. 
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Figure 2. Residuals for the estimated trajectory versus the estimated value 

If the functional relationship between the variance and the mean is known, a transformation 
exists that will make the variance (approximately) constant.  

The linear least squares are based on the implicit assumption that the errors are uncorrelated 
with each other and with the independent variables and have equal variance. If, however, the 
measurements are uncorrelated but have different uncertainties, a modified approach might be 
adopted. When a weighted sum of squared residuals is minimized, the estimation is BLUE 
(Best Linear Unbiased Estimator) if each weight is equal to the reciprocal of the variance of 
the measurement [10]. 

NON-LINEAR WEIGHTED LEAST SQUARES 
Given a calibrated rig of cameras and a correspondence between 2 triplets of 3D reconstructed 
points at time  and  respectively t0 t1 P0 = X0 Y0 Z0[ ] and P1 = X1 Y1 Z1[ ] the system 
to solve for the movement is given by at least 3 of these triplets in the equation given by:  

P1 = P0 ⋅ R+ T  (6) 

where R is the rotational matrix for the movement and T is the translational vector. The 

motion between the two times is represented by vector [ ]zyxzyx tttw θθθ=  where 

 are the pitch yaw and roll angles for the movement and  is the 

translational vector.  

θx θy θz[ ] tx ty tz[ ]
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Using a non-linear weighted least squares scheme the function to minimize is given by the so 
called reprojection error and using the Taylor’s expansion first term:  

  ( ) ( )( ) ( ) ( ) ( )( )∑ ∑
= =

−⋅∇+⋅≈−⋅=
N

i

N

i
iiiiiii bxxfxfWbxfWxE

0 0

22 δ (7) 

where  are the weights associated to each one of the residuals, Wi fi  are Equation (6) for 
each one of the point pairs and  are the 3D coordinates for  given by the 
correspondence matching.  

bi Pi
0

The equation to minimize can be written as:  

 Wi ⋅ ∇fi x( )⋅δ x( )−Wi ⋅ bi − fi x( )( )= 0 (8) 

Writing in matricial form: 

 Wi ⋅ J ⋅ dw =Wi ⋅C  (9) 

where  is the Jacobian matrix and J = ∇f i x( ) C = bi − fi x( )( ) 

Solving using the pseudoinverse: 

 dw = JT ⋅Wi ⋅ J( )−1
⋅ JT ⋅Wi ⋅C  (10)

The weight matrix for each point will be defined by its covariance matrix: 

)cov(
1

i
i P

W =  
(11)

ERROR IN 3D ESTIMATION 
To compensate for the heterodasticity in the input data using weighted non-linear least squares 
we need to calculate an expression for the different variances of the reconstructed 3D points. 
Here, our approach for computing the quantization error covariance for each point is briefly 
described.  

Given a calibrated rig of cameras and a correspondence between two points, one on the left 
camera  and another one on the right ( ll vu , ) ( )rr vu ,  the 3D position of the point in the 
world coordinate system is given by Equation (2) where A is the matrix containing the 
equations for the 3D to 2D transformation for each one of the cameras and b  the 
independent term of the same equations. Matrices A  and b  are written as a function of the 

8 



cameras intrinsic parameters: 
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 Each camera intrinsic parameters M L M R[ ] are estimated using an off-line calibration 

process. The intrinsic parameters describe the 3D to 2D transformation for each one of the 
cameras according to the Equation (1). In order to compute how the different errors in 
quantization in ( )rrll vuvuT =  affect the 3D position the partial derivatives for 
Equation (2) are computed. 

T
b
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PA
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∂

=
∂
⋅∂ )(

 (14)

Applying the product rule for matrices: 
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denoting C as the right term of Equation (15) the expression for how the inaccuracies in the 
pixel position affect the 3D reconstruction is obtained: 
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 (16)

Solving the partial derivatives for Equation (15) and using equations (12) and (13) and 
substituting values from equation (1): 
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Assuming T is a normally distributed random variable with mean 0 and variance: 
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where , , ,  are the uncertainties in pixels on the measure of 2
uσ

l l r r

2
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expression for the quantization error covariance is: 
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RESULTS 
The proposed weighted non-linear least squares solution was tested in the simulator and 
compared to the standard non-linear least squares. The different algorithms were tested using 
a synthetic trajectory of approximately 406 m. with several turns and straight stretches. The 
simulation velocity was 30 km/h and the sampling rate was 6 frames per second. The feature 
points were generated using a uniform distribution ranging [-3 3] meters wide (x axis), [0 2] 
meters in height (y axis) and [1 20] m in depth (z axis). The same trajectory was reconstructed 
using the ideal system, non-linear least squares and the previously explained non-linear 
weighted least squares. 

 

Figure 3. (left) Distance to the real trajectory point per frame for the ideal, non-linear 
least squares and weighted non-linear lest squares methods. (Right) Original, non-linear 

least squares and weighted non-linear least squares estimated trajectories 

The results in Table 1 show an improvement in the mean distance to the real points of about 
20 times the previous ones. All the figures in the table are improved, but the most significant 
improvement is the actual shape of the estimated trajectory, which can be seen in Figure 3 
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(right). The trajectory with the weighted estimation keeps the shape of the original trajectory 
while the heterodasticity in the non weighted solution bends the trajectory drifting it away 
from the real one. 

 Mean/max 

error in tx 

(mm) 

Mean/max 

error in tz 

(mm) 

Mean/max 

error in 

yaw (rad) 

Max distance 

to real point 

(m) 

Mean distance 

to real point (m) 

Length of the 

run (m) 

Estimated length 

(m) 

Ideal System 
0.000001 

0.000022 

-0.000043 

0.000096 

0.000000 

0.000000 

0.137823 

 

0.074141 

 

405.793244 

 

405.793815 

 

non-linear 

LSQ 

-0.465969 

187.853817 

-7.599702 

178.345743 

-0.000021 

0.039577 

14.190766 

 

9.005537 

 

405.793244 

 

404.482130 

 

Non-linear 

WLSQ 

-0.310400 

32.527168 

-7.968557 

155.569126 

-0.000036 

0.007994 

0.746929 

 

0.413442 

 

405.793244 

 

404.199836 

 

Table 1. Performance of the ideal, non-linear least squares and weighted non-linear least 
squares estimated trajectories 

 

CONCLUSIONS AND FUTURE WORK 
We have described a method for improving the estimation of a vehicle's trajectory in urban 
environments by means of visual odometry. An analysis of the errors in the system has been 
presented using a simulator developed in MatLab. The results shown, indicate that the error in 
the 3D reconstruction is heterocedastic, making necessary a weighted non-linear least squares 
solution. Covariance of the 3D reconstruction has been computed to be used as weights for 
the weighted system. The resulting method has developed an error around 20 times smaller 
than the previous one and better fit to the shape of the trajectories.  

We are currently fusing this visual odometry information with a commercial inexpensive GPS 
to produce accurate estimates of the vehicle global position. The final goal is to aid the 
navigation system in areas where GPS signal is not reliable or even not fully available 
(tunnels, urban areas with tall buildings, mountainous forested environments, etc). At the 
same time the ego motion information is being used to navigate, without a GPS receptor 
inside a map (OpenStreetMaps [11]) with the goal of the development of traffic collective 
systems aiming vehicle-infrastructure cooperation to improve dynamic traffic management  
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