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Abstract— This paper describes a new approach for estimat-
ing the vehicle motion trajectory in complex urban environ-
ments by means of visual odometry. A new strategy for robust
feature extraction and data post-processing is developed and
tested on-road. Scale-invariant Image Features (SIFT) are used
in order to cope with the complexity of urban environments.
The obtained results are discussed and compared to previous
works. In the prototype system, the ego-motion of the vehicle
is computed using a stereo-vision system mounted next to the
rear view mirror of the car. Feature points are matched between
pairs of frames and linked into 3D trajectories. The distance
between estimations is dynamically adapted based on re-
projection and estimation errors. Vehicle motion is estimated us-
ing the non-linear, photogrametric approach based on RANSAC
(RAndom SAmple Consensus). The obvious application of the
method is to provide on-board driver assistance in navigation
tasks, or to provide a means of autonomously navigating a
vehicle. The method has been tested in real traffic conditions
without using prior knowledge about the scene or the vehicle
motion. An example of how to estimate a vehicle’s trajectory is
provided along with suggestions for possible further improve-
ment of the proposed odometry algorithm.

I. INTRODUCTION

Accurate estimation of the vehicle global position is a

key issue, not only for developing useful driver assistance

systems, but also for achieving autonomous driving. Using

stereo-vision for computing the position of obstacles or esti-

mating road lane markers is a popular technique in intelligent

vehicle applications. The challenge now is to extend stereo-

vision capabilities to also provide accurate estimation of the

vehicle’s ego-motion with respect to the road, and thus to

compute it’s global position. This is becoming more and

more tractable to implement on standard PC-based systems.

In this paper, a new approach for ego-motion computing

based on stereo-vision is proposed. The use of stereo-vision

has the advantage of disambiguating the 3D position of

detected features in the scene at a given frame. Based on

that, feature points are matched between pairs of frames

and linked into 3D trajectories. The idea of estimating

displacements from two 3-D frames using stereo vision has

been previously used in [1] [2] and [3]. A common feature

of these studies is the use of robust estimation and outliers

rejection using RANSAC (RAndom SAmple Consensus)[4].

In [2] a so-called firewall mechanism is implemented in

order to reset the system to remove cumulative error. Both

monocular and stereo-based versions of visual odometry

were developed in [2], although the monocular version needs
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Fig. 1. General layout of the visual odometry method based on RANSAC.

additional improvements to run in real time, and the stereo

version is limited to a frame rate of 13 images per second.

In [5] a stereo system composed of two wide Field of View

cameras was installed on a mobile robot together with a

GPS receiver and classical encoders. The system was tested

in outdoor scenarios on different runs of up to 150 meters

each. In [6], trajectory estimation is carried out using visual

cues for the sake of autonomously driving a car in inner-city

conditions.

In the present work, the solution of the non-linear system

equations describing the vehicle motion at each frame is

computed under the non-linear, photogrametric approach

using RANSAC. The use of RANSAC [2] allows for outliers
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rejection in 2D images corresponding to real traffic scenes,

providing a method for carrying out visual odometry on-

board a road vehicle.

The rest of the paper is organized as follows: in section

II the new feature detection and matching technique is

presented; section III provides a description of the proposed

non-linear method for estimating the vehicle’s ego-motion

and the 3D vehicle trajectory; implementation and results

are provided in section IV; finally, section V is devoted to

conclusions and discussion on how to improve the current

system performance in the future.

II. FEATURES DETECTION AND MATCHING

In most previous research on visual odometry, features are

used for establishing correspondences between consecutive

frames in a video sequence. Some of the most common

choices are Harris corner detector [7] and the Kanadi-Lucas-

Tomasi detector (KLT)[8].

Harris corners have been found to yield detections that are

relatively stable under small to moderate image distortions

[9]. As stated in [2], distortions between consecutive frames

can be regarded as fairly small when using video input.

However, Harris corners are not always the best choice for

landmark matching when the environment is cluttered and

repetitive superimposed objects appear on the images. This

is the situation for urban visual odometry systems. Although

Harris corners can yield distinctive features, they are not

always the best candidates for stereo and temporal matching.

Among the wide spectrum of matching techniques that can

be used to solve the correspondence problem, the Zero Mean

Normalized Cross Correlation [10] is more frequently used

thanks to its robustness.

In order to minimize the number of outliers, a mutual

consistency check is usually employed (as described in [2]).

Accordingly, only pairs of features that yield mutual match-

ing are accepted as a valid match. The accepted matches are

Fig. 2. Correlation response along the epipolar line for a repetitive pattern

used both in 3D feature detection (based on stereo images)

and in feature tracking (between consecutive frames).

In urban cluttered environments repetitive patterns such as

zebra crossings, building windows, fences, etc. can be found.

In Fig. 2 the typical correlation response along the epipolar

line for a repetitive pattern is shown. Multiple maxima or

even higher responses for badly matched points are frequent.

Although some of these correlation mistakes can be detected

using techniques such as the mutual consistency check or the

unique maximum criterion, the input data for the ego-motion

estimation will be regularly corrupted by these outliers which

will decrease the accuracy of the estimation.

Moreover, superimposed objects limit observed from dif-

ferent viewpoints are a source of correlation errors for the

system. In Fig. 3 we can see a typical example of an urban

environment in which a car’s bonnet is superimposed on the

image of the next car’s license plate and bumper. As can

be seen in Fig. 3(a), the Harris corner extractor chooses, as

feature points, the conjuncture in the image between the car’s

bonnet and the next car’s license plate and bumper. In the

plane image these are, apparently, good features to track, but

the different depths of the superimposed objects will cause

a misdetection due to the different viewpoints. In Fig. 3(b)

and 3(c) it can be seen how the conjuncture in the image

between the number 1 on the license plate and the bonnet

is matched but they do not correspond to the same point in

the 3D space. We can see the same kind of misdetection in

the conjuncture between the car’s bonnet and the bumper.

The error in the 3D reconstruction of these points is not big

enough to be rejected by the RANSAC algorithm so they

will corrupt the final solution.

In practice, these errors lead to local minima in the solu-

tion space and thus to inaccurate and unstable estimations. A

more reliable matching technique is needed in order to cope

with the complexity of the urban environments.

In this system we apply a similar approach to [11], in

which scale-invariant image features are used for Simultane-

ous Localization And Map Building (SLAMB) in unmodified

(no artificial landmarks) dynamic environments. To do so

they use a trinocular stereo system [12] to estimate the 3D

position of the landmarks and to build a 3D map where the

robot can be localized simultaneously. Our approach uses a

calibrated stereo rig mounted next to the rear view mirror of

a car to compute the ego-motion of the vehicle.

In our system, at each frame, SIFT features are extracted

from each of the four images (stereo pair at time 1 and

stereo pair at time 2), and stereo matched among the stereo

pairs (Fig. 4). The resulting matches for the stereo pairs are

then, matched again among them. Only the features finding

a matching pair in the three matching processes will be used

for the computation of the ego-motion.

SIFT (Scale Invariant Feature Transform) was developed

by Lowe [13] for image feature generation in object recogni-

tion applications. The features are invariant to image transla-

tion, scaling, rotation, and partially invariant to illumination

changes and affine or 3D projection. These characteristics

make them good feature points for robust visual odometry
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(a) Left image at time 1 Harris
points.

(b) Right image at time 1. Matched
Harris points

(c) Left image at time 2. Harris
points matched with Harris points
from Left image at time 1. Outliers
in orange

(d) Right image at time 2. Harris
points matched with Harris points
from Left image at time 2.

Fig. 3. Examples of matches for superimposed objects

systems, since when mobile vehicles are moving around in

an environment, landmarks are observed over time, but from

different angles and distances.

As described in [14] the best matching candidate for a

SIFT feature is its nearest neighbour, defined as the feature

with the minimum Euclidean distance between descriptor

vectors.

The large number of features generated from images, as

well as the high dimensionality of their descriptors, make an

exhaustive search for closest matches inefficient. Therefore

the Best-Bin-First (BBF) algorithm based on a k-d tree search

[15] is used. This can give speedup by factor of 1000 while

finding the nearest neighbor (of interest) 95% of the time.

As the SIFT best candidate search is not based on epipolar

geometry, the reliability of matches can be improved by

applying an epipolar geometry constraint to remove remain-

ing outliers. This is a great advantage with respect to other

techniques which rely on epipolar geometry for the best

candidate search. For each selected image pair this constraint

can be expressed as:

xT
l ·F · xr = 0 (1)

where F is the Fundamental matrix previously computed in

an off-line calibration process and xT
l , xr are respectively the

homogeneous image coordinates of the matched features in

image le f t transposed and the homogeneous image coordi-

nates of the matched features in image right. Also matches

are only allowed between two disparity limits. Sub-pixel

Fig. 4. Diagram of the features extraction method for the proposed system

horizontal disparity is obtained for each match. This will

improve the 3D reconstruction accuracy and therefore the

ego-motion estimation accuracy.

The resulting stereo matches between the first two stereo

images are then similarly matched with the stereo matches

in the next stereo pair. No epipolar geometry constraint is

applied at this step and an extra vertical disparity constraint

is used. If a feature has more than one match satisfying these

criteria, it is ambiguous and discarded so that the resulting

matching is more consistent and reliable.

From the positions of the matches and knowing the cam-

eras’ parameters, we can compute the 3D world coordinates

(X ,Y,Z) relative to the left camera for each feature in this

final set.

Relaxing some of the constraints above does not neces-

sarily increase the number of final matches (matches in the

two stereo pairs and in time) because some SIFT features

will then have multiple potential matches and therefore be

discarded.

From the 3D coordinates of a SIFT landmark and the

visual odometry estimation, we can compute the expected 3D

relative position and hence the expected image coordinates

and disparity in the new view. This information is used to

search for the appropriate SIFT feature match within a region

in the next frame.

Once the matches are obtained, the ego-motion is deter-

mined by finding the camera movement that would bring

each projected SIFT landmark into the best alignment with

its matching observed feature.

III. VISUAL ODOMETRY USING NON-LINEAR ESTIMATION

The problem of estimating the trajectory followed by a

moving vehicle can be defined as that of determining at frame

i the rotation matrix Ri−1,i and the translational vector Ti−1,i

that characterize the relative vehicle movement between two

consecutive frames. For this purpose a RANSAC based
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on non linear least-squares method was developed for a

previous visual odometry system. A complete description of

this method can be found on [16]. An overview is given in

sections III, III-A and III-B (also see Fig. 1).

The estimation of the rotation angles must be undertaken

by using an iterative, least squares-based algorithm [4]

that yields the solution of the non-linear equations system

that must be solved in this motion estimation application.

Otherwise, the linear approach can lead to a non-realistic

solution where the rotation matrix is not orthonormal.

A. RANSAC

RANSAC (RAndom SAmple Consensus) [17] [18] is an

alternative to modifying the generative model to have heavier

tails to search the collection of data points S for good points

that reject points containing large errors, namely “outliers”.

RANSAC is used in this work to estimate the Rotation

Matrix R and the translational vector T that characterize

the relative movement of a vehicle between two consecutive

frames. The input data to the algorithm are the 3D coordi-

nates of the selected points at times t and t +1.

B. 2D Approximation

Under the assumption that only 2D representations of the

global trajectory are needed, like in a bird’s-eye view, the

system can be dramatically simplified by considering that

the vehicle can only turn around the y axis (strictly true for

planar roads). It implies that angles θx and θz are set to 0,

being θy estimated at each iteration.

A non-linear equation with four unknown variables w =
[θy, tx, ty, tz]

t is obtained where T = [tx, ty, tz] is the transla-

tional vector.

After an iterative process using all the points obtained

from the matching step the algorithm yields the final solution

w = [θy, tx, ty, tz]
t that describes the relative vehicle movement

between two consecutive iterations.

C. Data Post-processing

This is the last stage of the algorithm. In most previous

research on visual odometry, features are used for establish-

ing correspondences between consecutive frames in a video

sequence. However it is a good idea to skip the frames

yielding physically incorrect estimations or with a high mean

square error to get more accurate estimations.

We have found there to be two main sources of errors in

the estimation step:

1) Solutions for small movements (5 centimeters or less)

where the distance between features is also small

(one or two pixels), are prone to yield inaccurate

solutions due to the discretized resolution of the 3D

reconstruction (Fig. 5(b)).

2) Solutions for images where the features are in the

background of the image (Fig. 5(a)) are inaccurate for

the same reason as before: 3D reconstruction resolution

decreases as long as depth increases. Although the fea-

tures extraction algorithm sorts the features depending

(a) Example of matches in the back-
ground

(b) Example of matches for small
movement

(c) Examples of matching, temporal
shift 1

(d) Examples of matches, temporal
shift 10

Fig. 5. Examples of SIFT matches. In green SIFT feature at time t1 in
blue matched feature at time t2, in white the movement of the feature.

on its depth and it uses the closest ones, at some frames

it is not able to find enough features close to the car.

SIFT features have proven to be robust to pose and illu-

mination changes, so they are good candidates for matching,

even if there are some skipped frames between the matching

stereo pairs and thus, the appearance of the features has

changed (Fig. 5(d)). Also the fact that they don’t rely on

the epipolar geometry for the matching process makes its

computational time independent to the disparity between

features. Using a correlation based matching process it would

be necessary to increase the disparity limits in order to find

the features which will probably be further away from each

other.

According to this some ego-motion estimations are dis-

carded using the following criteria.

1) High root mean square error e estimations are dis-

carded.

2) Meaningless rotation angles estimations (non physi-

cally feasible) are discarded.

A maximum value of e has been set to 0.5. Similarly,

a maximum rotation angle threshold is used to discard

meaningless rotation estimations. In such cases, the ego-

motion is computed again using frames ti and t(i+1+shi f t)
where shi f t is an integer which increases by one at every

iteration. This process is repeated until an estimation meets

the criteria explained above or the maximum temporal shift

between frames is reached. The maximum temporal shift has

been fixed to 5 so as the spatial distance between estimations

remains small and thus the estimated trajectory is accurate.

Using this maximum temporal shift the maximum spatial

distance between estimations will be around 0.5-2.5m. If the

system is not able to get a good estimation after 5 iterations

the estimated vehicle motion is maintained according to
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motion estimated in the previous correct frame assuming that

the actual movement of the vehicle can not change abruptly.

The system is working at a video frame rate of 30fps which

allows us to skip some frames without losing precision in the

trajectory estimation.

IV. IMPLEMENTATION AND RESULTS

The visual odometry system described in this paper has

been implemented on a Core II Duo at 2.16 GHz running

Kubuntu GNU/Linux 6.1 with a 2.6.20-16 SMP kernel

version. The algorithm is programmed in C using OpenCV

libraries (version 0.9.9). A stereo vision platform based on

Fire-i cameras (IEEE1394) was installed on a prototype

vehicle. After calibrating the stereo vision system, several

sequences were recorded in different locations including

Alcalá de Henares and Arganda del Rey in Madrid (Spain).

The stereo sequences were recorded using a non-compression

algorithm at 30 frames/s with a resolution of 320x240 pixels.

All sequences correspond to real traffic conditions in urban

environments with pedestrians and other cars in the scene. In

the experiments, the vehicle was driven below the maximum

allowed velocity in cities, i.e., 50 Km/h.

A. 2D Visual Odometry Results

The results of a first experiment are depicted in Fig. 6. The

vehicle starts on a trajectory in which it first turns slightly

to the left. Then, the vehicle runs along a straight street and,

finally, it turns right at a strong curve with some 90 degrees

of variation in yaw. The upper part of Fig. 6 shows an aerial

view of the area of the city (Alcalá de Henares) where the

experiment was conducted (source: http://maps.google.com).

The bottom part of the figure illustrates the 2D trajectory

estimated by the visual odometry algorithm presented in this

paper (no marker) and the previous version of the system

using Harris corners and ZMNCC (triangles) [16].

As can be observed, the system provides reliable estima-

tions of the path run by the vehicle in all the sections. As a

matter of fact, the estimated length run in Fig. 6 is 147.37m,

which is very similar to the ground truth (165.86m). Com-

pared to the previous system the trajectory is more accurate

and closer to the actual length of the run. Taking into

account that 13.84% of the frames were discarded in the

post-processing step, the actual length of the run is quite

close to the real one.

In a second experiment, the car starts turning left and then

runs along an almost straight path for a while. After that, a

sharp right turn is executed. Then the vehicle moves straight

for some meters and turns slightly right until the end of

the street. Fig. 7 illustrates the real trajectory described by

the vehicle (above) and the trajectory estimated by the visual

odometry algorithm (below). The estimated trajectory reflects

the exact shape of the real trajectory executed by the vehicle

quite well. The system estimated a distance of 197.89m in a

real run of 216.33m. Similarly to the first experiment 9.51%

of the estimations were discarded by the post-processing

step, thus the actual length of the run is again very close

to the real one.

Fig. 6. Above, trajectory in the city for experiment 1. Below estimated
trajectory for the previous Harris feature extractor (triangles) and for the
new SIFT strategy (no markers)

V. CONCLUSIONS AND FUTURE WORK

We have described a method for improving the estimation

of a vehicle’s trajectory in a network of roads by means of

visual odometry. To do so, SIFT feature points are extracted

and matched along pairs of frames and linked into 3D trajec-

tories. The resolution of the equations of the system at each

frame is carried out under the non-linear, photogrametric

approach using least squares and RANSAC. This iterative

technique enables the formulation of a robust method that

can ignore large numbers of outliers as encountered in real

traffic scenes. Fine grain outliers rejection methods have been

experimented with, based on the root mean square error

of the estimation and the vehicle dynamics. An adaptive

temporal shift which tries to avoid bad estimations has also

been developed. The resulting method is defined as visual

odometry and can be used in conjunction with other sensors,

such as GPS, to produce accurate estimates of the vehicle

global position.

Real experiments have been conducted in urban environ-

ments in real traffic conditions with no prior knowledge

of the vehicle movement or the environment structure. We

provide examples of estimated vehicle trajectories using the

proposed method. Although preliminary, the first results are

encouraging since it has been demonstrated that the system is

capable of providing approximate vehicle motion estimation.

As part of our future work we envision the development

of a method for discriminating stationary points from those

which are moving in the scene. Moving points can cor-

respond to pedestrians or other vehicles circulating in the
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Fig. 7. Above, trajectory in the city for experiment 2. Below estimated
trajectory for the previous Harris feature extractor (triangles) and for the
new SIFT strategy (no markers)

same area. Vehicle motion estimation will mainly rely on

stationary points. The system can benefit from other vision-

based applications currently under development and refine-

ment in our lab, such as pedestrian detection [19] and ACC

(based on vehicle detection). The output of these systems

can guide the search for stationary points in the 3D scene.

Also a tracking of the features has to be addressed using

the information of the movement estimations and a kalman

filter which will estimate the feature’s next position. This

information will be used to determine a region of interest

for the feature extraction algorithm and also to compute

the features’ probability of being stationary points. This will

allow to better deal with pedestrians, cars and other moving

objects in the scene. This probability will be used for the

resolution of the system using a weighted non-linear least

squares method in which every point in the system will be

weighted by its probability of being a stationary point.

The obvious application of the method is to provide on-

board driver assistance in navigation tasks, or to provide

a means for autonomously navigating a vehicle. For this

purpose, fusion of GPS and vision data will be accomplished.
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