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Robot and Obstacles Localization and Tracking with an External
Camera Ring

Daniel Pizarro, Marta Marron, Daniel Peon, Manuel Mazo, Juan Carlos Garcia,
Miguel A. Sotelo, Enrique Santiso

Abstract— In this paper a ring of calibrated and synchronized
cameras is used for achieving robot and obstacle localization
inside a common observed area. To avoid complex appearance
matching derived from the wide-baseline arrangement of cam-
eras, a metric occupancy grid is obtained by intersection of
silhouettes projected onto the floor. A particle filter is proposed
for tracking multiple objects by using the grid as observation
data. A clustering algorithm is included in the filter to increase
the robustness and adaptability of the multimodal estimation
task. To preserve identity of the robot from the set of tracked
objects, odometry readings are used to compute a Maximum
Likelihood (ML) global trajectory identification. As a proof of
concept, real results are obtained in a long sequence with a
mobile robot moving in a human-cluttered scene.

I. INTRODUCTION

In this paper a multiple camera ring is used for achieving
robot and obstacle localization. The cameras form up the
observation layer of an “Intelligent Space” [12], where a set
of agents (i.e. robots, ambient conditions, etc.) are directly
controlled by a distributed intelligence. A communication
network is available between agents and the space, allow-
ing its mutual interaction. For the “Intelligent Space”, the
capability of achieving localization of robots and obstacles
represents a primary low level objective. The choice of using
vision sensors guarantees a rich amount of information from
the world to be observed.

To cover the environment with a minimum number of
sensors, each camera is placed far from each other with an
orientation between them that differs substantially. Under
such arrangement, commonly known as ’wide baseline’,
information is hardly correlated between cameras which
usually transfers the difficulties to the vision algorithm.

We propose to combine image information from the set
of cameras to robustly track robots and obstacles in the
common area of observation. To avoid complex appearance
matching derived from the wide baseline arrangement, the
images from the multiple cameras are combined in a planar
visual hull approach. A 2D occupancy grid is obtained by
intersecting image silhouettes of the scene projected onto a
common reference plane (i.e. floor plane). By using the grid
as a measurement, a modified particle filter (PF) is proposed
for sequentially tracking multiple objects. The problem of
preserving identity of the robot is solved by using odometry
readings instead of relying on appearance methods.

This work was supported by the Ministry of Science and Technology
under RESELAI project (reference TIN2006-14896-C02-01)

All Authors are with Dept. of Electronics, University of Alcala, 28805,
Alcala de Henares, Spain pizarro@depeca.uah.es

There are several existing approaches that share similar
objectives with the present paper, however the special treat-
ment of robots in the environment is rarely addressed in
these works, and neither their identification. Most of them are
oriented on tracking objects from which an accurate motion
model is unknown so the identification relies on observation
models or trajectory optimization. In [2] up to six people are
robustly tracked from four cameras by using an occupancy
grid. The authors propose to use global trajectory optimiza-
tion and color appearance to solve ambiguities in tracking.
The global trajectory adds a four seconds delay which makes
it impossible to use in robot navigation. In [10], the same idea
is used by detecting space coherent clusters in sequences of
grid maps. In [4] two occupancy grids are obtained by a set
of cameras and array sound sensors respectively. In [5] and
[16] a multiple hypothesis probabilistic approach is used to
solve ambiguities and occlusions respectively. In [15] and [9]
appearance models are used for solving the identity problem.

Our main contribution can be divided in three main aspects
which differentiate from these state-of-the-art works. Firstly
the occupancy grid is obtained by computing a probabilistic
visual hull where each silhouette is previously weighted
by a prior distribution which assumes a cylindrical model.
Secondly a modified version of the Bootstrap PF is proposed
for tracking multiple objects. The basic PF is enriched by
clustering the measurements extracted from the grid in the
observation process. Finally, by using existing odometry
information a robust robot identification is achieved without
using appearance models for each robot or costly batch
trajectory optimization.

II. OBSERVATION ALGORITHM

Given a set of Nc cameras, the observation algo-
rithm computes frame by frame an occupancy grid ρt =
P (R|B1, · · · , BNc

). The grid represents the conditional dis-
tribution for a finite division R of a planar reference frame
to be occupied, given the set of binary images Bi, · · · , BNc

extracted by a very simple background subtraction algorithm.
The cameras are calibrated and the model assumes that the

distortion effect has been previously compensated. For each
camera an homography 3x3 matrix Hi is obtained, which
relates directly metric coordinates in the reference frame
Y = (x, y)T with image plane coordinates m = (u, v)T .

A basic solution consists on projecting each binary image
Bi, by using the corresponding homography, onto the final
grid. A bilinear interpolation function is used to fill each
grid’s cell according to the projected image. A simple binary

2008 IEEE International Conference on
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intersection of projected images, is proposed as a rough
approximation of the grid distribution. The more the number
of views, the closer is the resulting grid to the convex
projection of the 3D scene. To improve the performance,
where only two or three views are available, it is reasonable
to assume a cylindrical model for the obstacles and the
robot. Each binary image Bi is decomposed in a set of ni

connected blobs B1
i , · · ·Bni

i . For each Bj
i a prior distribution

p(m|θj
i , o

j
i ) function is used to modify the blob in the

corresponding image plane before its projection onto the
grid.

p(m|θ, o) =




1 0 < uc ≤ σy

e
− (uc)2

2σ2
y σy < uc

, (1)

where

(uc, vc)T =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(u, v)T − o

The basic idea is that, given a cylindrical object, there
exists a line segment (angle θ and initial point o) in the
image plane along which the probability of belonging to
the floor decreases. In Fig. 1 it is shown the modified blob
corresponding to a human shape.

Each blob Bj
i has different o and θ parameters. The initial

offset point o must be a point in the image that truly belongs
to the projection plane (floor plane). It is obtained directly by
searching the minimum vertical coordinate u of the points
of Bj

i . This is usually valid for a wide range of camera
orientations similar to those presented in Fig. 2. Given o,
its position in the floor Yo is directly obtained by using the
corresponding homography Hi. To obtain θ, an orthogonal
line l0 to the projection plane which includes Yo is obtained
and it is projected back onto the image. It corresponds to
the line that rules the 3D height of the object in the image
plane. Therefore from point o to the limits of the detected
blob Bj

i the probability of belonging to the floor decreases
in the direction given by θ, being maximum in o.

In Fig. 3 the result of using the proposed distribution
is shown by comparing the grid obtained when only two
cameras are used for detecting two obstacles (human and a
robot shown in Fig. 2.a and Fig. 2.c. It can be observed in
Fig. 3.a that when no prior is applied, each object projection
becomes considerably bigger than the ones shown in Fig.
3.b. This effect is due to the projection uncertainty when
only two cameras are used. By using a prior model, the
grid becomes sharper and closer to the real projection of
the objects. The detection process is thus improved if the
cylindrical assumption holds.

In Fig. 2 three binary images (red blobs) are combined to
form the resulting grid.

III. THE ESTIMATION ALGORITHM

In this paper, the grid ρt computed at each time t, is used
as the probability distribution p(Yt) of the floor’s occupancy
represented as Yt = (xt, yt) in advance. The goal is to infer
from p(Yt), the number No and state Xi

t of the obstacles

Fig. 1. Modified binary blob by using prior distribution p(m|θ, o)

a) Camera 1 b) Camera 2

c) Camera 3 d) Grid ρt

Fig. 2. Occupancy grid from 3 views

and robots present in the room using a modified version of
the Bootstrap Particle Filter (PF) presented in this section.

A. MULTIPLE OBJECTS TRACKER

The task of multiple targets tracking (MTT) appeared with
the first autonomous navigation robot, to overcome the ob-
stacle avoidance problem, and soon probabilistic algorithms,
such as Kalman filters (KFs) ([21]) and PFs ([8], [18], [20],
[11]) were applied to achieve this aim. The objective is in
any case to calculate the posterior probability of the state
vector p(Xt|Yt) in the recursive two steps (prediction and
correction) standard estimation process by means of the
Bayes rule.

The first solution to the MTT application was proposed us-
ing a standard estimator to track each object i = 1, · · · , No,
but such approach could not deal with the interaction of a
dynamic number of objects. An association algorithm was
included in [6] or in [17] to assign the observation data set
Yt to the correct prior density p(Xi

t |Y1:t−1) i = 1, · · · , No

in the correction step of the tracking process.
A different approach consists of an expansion of the state

vector which includes the state of all elements to track
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a) Occupancy grid ρ by intersection b) Occupancy grid ρ using p(m|θ, o) on each blob

Fig. 3. Occupancy grid from 2 views

(XNo
= {X1, · · · ,XNo}) was firstly proposed in [7] and

widely used afterwards as in [8], [18] and [11]. In this case,
the estimator used is usually a Particle Filter which obtains
not only each object’s state vector, but also the number
of them being tracked No. The complexity of the solution
increases exponentially with the state vector size, that is, with
the number of objects to track No.

In any case most of the MTT solutions are based on
the Probabilistic Data Association (PDA) theory [1]. Among
them, the best-known is the Joint Probabilistic Data Associ-
ation Filter (JPDAF) ([17]).

The computational load of the resultant estimator is very
high due to the complexity of the PDA. Besides, the basic
theory of the probabilistic association does not take into
account that the number of objects being tracked No can
change with time. This point is solved in mostly all vision
applications using a gating algorithm supported by the ob-
servation model ([21], [19]).

In this context the authors propose in [14] another solution
to MTT problem based on a single PF whose multimodality
is exploited to perform the tracking task for a variable num-
ber of objects with a simple likelihood model. The algorithm
is called “eXtended Particle Filter with Clustering Process”,
(XPFCP). A clustering algorithm is used to organize the
measurement distribution p(Yt) in Kt clusters (Cj

t j = 1 :
Kt) and insert it wisely in the estimation process. Therefore,
the association task is performed implicitly by a mixture of
probabilistic and deterministic algorithm that increases the
robustness and reliability of the final estimator. This solution
has been tested in complex indoor environments with poor
sonar data sets ([14]) and with a dense set of position points
obtained with a stereo-vision system ([13]) with good results.

In this paper the XPFCP is used as a multimodal tracker
to estimate the position (x, y) and speed (vx, vy), describing
the state vector Xi

t = (xi
t, y

i
t, vx

i
t, vy

i
t)

T i = 1, · · · , No of
the objects detected in the occupancy grid p(Yt).

B. The XPFCP

In the proposal presented here, the multiple modes of
the PF output distribution (p(Xt|Y1, · · · , t)), characterize the

state of a variable number of objects No. As commented
before, this is more efficient than maintaining one estimator
for each hypothesis, or a joint state vector representing all
of them. In order to adapt the Bootstrap PF for its use in
tracking a variable number of elements, some modifications
must be included in the basic algorithm. Here a slight
description of the XPFCP is included in Algorithm 1. A
deeper explanation can be found in [13].

Algorithm 1 XPFCP General Diagram

Require: Initial distribution of particles Si
t−1/i = 1 : Np − Nm

representing the belief p(Xt−1|Y1:t−1) at t − 1
1: for all t > 0 do
2: Re-Initialization
3: Add Nm/Kt particles into the set randomly taken from

each cluster Cj
t−1/j = 1 : Kt to obtain Np particles.

4: end Re-Initialization
5: Prediction
6: Propagate through p(Xt|Xt−1) the set of Np particles

with a constant speed model to obtain Si
t|t−1/i = 1 : Np.

7: end Prediction
8: Clustering
9: Obtain the set of clusters {Cj

t /j = 1 : Kt} from the
measurement grid p(Yt) = ρt.

10: end Clustering
11: Importance Sampling
12: for Each particle Si

t|t−1/i = 1 : Np do
13: Search the closest cluster centroid Cj

t /j = 1 : Kt to
obtain the minimal Euclidean distance di

14: Compute particles’ weight W i
t = W i

t−1 · p(Y |Xi
t|t−1)

where p(Y |Xi
t|t−1) = e

− (di)
2

2σ2
x

15: end for
16: Normalize W i

t = W i
t /

P
Wt where i = 1 : Np

17: end Importance Sampling
18: Resampling
19: Select Np − Nm particles using their related weights

Wt, Ŝt to obtain the set Si
t/i = 1 : Np − Nm that rep-

resents the final belief p(Xt|Y1:t).
20: end Resampling
21: end for

The XPFCP main contribution is the inclusion of a cluster-
ing algorithm to improve the behavior of a PF. In the work
presented here a modified K-Means that adapts itself to a
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variable number of clusters is used. The clustering algorithm
organizes the silhouettes in ρt in Kt sets (Cj

t /j = 1 : Kt)
that are then used in the tracking algorithm. A validation
process is added to the K-Means in order to keep a peak
in the likelihood in situations of temporal occlusions of
the tracked objects. This fact is specially interesting in the
present application to prevent from missing an object due to
shadows.

With the clustered data (Cj
t /j = 1 : Kt) two important

innovations are included in the Bootstrap PF in order to
facilitate the multi-tracking process:

1) Re-initialization step: In this step previous to the
prediction one, Nm from the Np total number of particles
that formed the belief distribution at t − 1 in the PF
(p(Xt−1|Y1:t−1)) are directly taken from the input data
set Yt−1 and included as particles in the set Si

t−1/Np −
Nm =: Np. With this procedure, newly appearing objects in
the scene have a representation in the belief. To improve
the robustness of the estimator, the inserted data are not
selected randomly from the array of blobs ρt, but from
its segmentation (Cj

t /j = 1 : Kt). Choosing points from
all Kt clusters ensures a probable representation of all No

objects in the scene, and therefore, an increased robustness
of the multi-tracker. Thanks to this re-initialization step the
posterior distribution dynamically adapts itself to the variable
number of objects present in the scene.

2) Resampling step: This step is also modified from the
Bootstrap PF. On one hand, only Np − Nm samples of the
prior density (p(Xt|Y1:t−1)) have to be extracted in this step,
as the Nm resting particles would be inserted in the re-
initialization. On the other hand, the clustering process is also
used in this step, because the importance sampling function
p(Yt|Xi

t)/i = 1 : Np used to weight each particle is obtained
from the similarity between each (Si

t|t−1/i = 1 : Np) and the

centroid of the clustered set of blobs (cj
t/j = 1 : Kt). Using

cluster centroids to weight the particles related to the newly
appeared objects, the probability of these last ones in the
belief (p(Xt|Y1:t)) is increased, improving the robustness of
the final estimator. Without the clustering process, particles
related to new objects have low probability at the end of
the resampling step, and are rejected from the belief in the
selection step. Thus, the multimodality of the PF cannot be
exploited.

The robustness problem has been the main reason in the
researching community for not using the PF multimodal
capability. Only a few works can be found in the related
literature with this same idea. In [20] a gaussian mixture is
used to model each target behavior Xi

t/i = 1 : No, and
an unique set of particles Si

t/i = 1 : Np is distributed
among all gaussians in order to propagate their state in time.
Therefore, a set of almost independent PFs is implemented,
and therefore the multimodality is not really exploited. On
the other hand, a clustering is included in this mixture PF,
but it is done over the particle set in order to develop a
merge and split step. The clustering is not used with the aim
of increasing the tracker robustness in a variable number of
targets No application, as described here.

With the XPFCP proposed, the MTT problem is solved
robustly at the same time than the association task, with
a constant and low execution time for a variable number
of objects, which is essential for its real time execution.
Moreover, the algorithm has demonstrated its feasibility in
the tracking application within different observation systems,
and using simple observation models which increases the
flexibility and robustness of the MTT and decreases the
global application execution time. Localizing a specific track
in the environment can be achieved afterwards using its
particular model, as demonstrated in the following paragraph.

IV. IDENTITY OF ROBOTS FROM MOTION

In this section we propose a method to identify which
particles belong to any robot controlled by the “Intelligent
Space” from the rest of obstacles appearing in the grid.

Usually, as was mentioned before, some appearance model
is used in combination with the natural frame-to-frame neigh-
boring, or a costly global trajectory identification. In most
of such state-of-the-art works, a real and confident motion
model of the object tracked is never available. However in
this case, a very accurate one in short trajectories is known
through odometry readings from the robot. Usually encoder
sensors produce an estimation of the trajectory which suffers
from unbound uncertainty with path length. In this case
a simple likelihood will be computed to identify which
particles at the XPFCP output characterize the belief peak
related to the robot in some degree. The likelihood therefore
must show the same uncertainty properties that the real
motion encoders show. In this section a propagated Gaussian
is used for that purpose.

A. Motion model

State vector encoding robot pose at time t is represented
by Xt. It is described by a Markov Process with initial
distribution p(X0) and transition kernel p(Xt|Xt−1).

The transition kernel is derived from a motion model
in which odometry uncertainty is included. For simplicity,
motion model used in this paper corresponds to a simple
wheeled differential robot which moves over a ground plane.
Pose parameters Xt = (rt, φt) will be composed of position
in the ground plane rt with respect a global coordinate origin
O and orientation φt:

Xt = Xt−1 +


(vlt + w1

t ) cos(φt−1 + Ωt + w2
t )

(vlt + w1
t ) sin(φt−1 + Ωt + w2

t )
Ωt + w2

t


 , (2)

Input from odometry is represented by the vector Ut =
(vlt,Ωt) with linear and angular speed components. Noise
from odometry readings is modeled by a Gaussian process
(w1

t , w2
t )t which is statistically independent with respect to

Xt−1.

B. Motion uncertainty

Given the process described by the transition equation (2)
and initial distribution p(X0) we search here for the Gaussian
equivalent of p(X1:t|X0).

519



Gaussian approximation of the distribution p(Xt|X0) =
N(X̂t,Σt) is recovered by using a first order approxima-
tion of (2). By combining as input p(Xt−1|X0) and the
actual noise (w1

t , w2
t )t, the resulting Gaussian for p(Xt|X0)

is a growing covariance process usually present in Dead-
Reckoning [3] processes (See Figure 4).
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Fig. 4. Uncertainty Growing in robot position

C. Trajectory Likelihood

The joint distribution, simply obtained by

p(Xt−Nf :t|X0) =
t∏

i=t−Nf

p(Xi|X0),

is a Gaussian process N(µ,Σ) defined in Nf different poses.
The main proposal of this section is to use p(Xt−Nf :t|X0)

to compute a likelihood, so that given a set of trajectories
from different objects, the one which is closer to the real
motion of the robot obtains a maximum score.

By using the Mahalanobis distance, the likelihood is
converted into a norm, and the ML is converted into a
minimum distance criterion.

Given a set of trajectories {T 1
t−Nf :t, · · · , TNo

t−Nf :t}, the
most probable one generated by the robot is the one which
minimizes the following expression:

dM = (T i − µ)T (Σ)−1(T i − µ) (3)

Here we assume that either T i and µ are column vectors
with 3 · Nf .

The criterion for choosing the size of Nf must be a
combination of the following constraints:

• By using a bound on the uncertainty of the last pose
p(Xt|X0) there exists a maximum number of frames
Nf to choose from the past.

• The minimum distance dM obtained must be confident
with the distribution χ(n)2 derived from the Maha-
lanobis test. A confident ratio must be imposed so that
the best trajectory fit the χ(n)2 distribution in some
high degree (> 90%).

• The second minimum distance must be far to the first
in some degree which can be imposed again in terms
of probability (15% less probable at least).

D. Usage with the XPFCP output

To use the ML algorithm described, the output set of
particles St is also clustered in No groups, and the position
ci
t of the i = 1 : No different clusters is computed. As the

pose Xt used in this section requires also the orientation of
the object, a rudimentary orientation estimation is used on
each object by using consecutive frames. Once computed,
the set of candidate trajectories are tested using (3).

V. EXPERIMENTAL SETUP

The proposals made in this paper were tested using a
real environment with calibrated cameras and a mobile robot
platform. The cameras are low cost CCD sensors with
640x480 pixels of resolution. The adquisition and processing
cluster performs synchronization by using a local network
between its nodes. Calibration is made previously with a
chessboard pattern and the room floor is used as a common
reference plane.

The robot platform has odometry sensors and a wireless
network for receiving commands from the environment and
for sending odometry readings to the system. Odometry noise
is tuned by using a close loop experiment.

The experiments use 3 cameras inside a room with humans
crossing around the robot. The system achieves good detec-
tion without requiring many parameters to tune. Trajectory
identification is done each time the conditions commented
before are reached and bounding the uncertainty to a radius
of 70cm

In Fig. 5 the trajectories of three humans and the robot are
shown compared to odometry information. In Fig. 6 it can
be seen a long trajectory tracking for the robot and humans
using 3 cameras (see accompanying video). A manual ground
truth predicts an accuracy near 10cm which is enough for
robot positioning.

100 150 200 250 300 350 400 450
150

200

250

300

350

400

X(mm)

Z
(m

m
)

human1

human2

robot

human3

odometry

Fig. 5. Path comparison between odometry, robot and human

VI. CONCLUSIONS AND FUTURE WORKS

In this paper a complete robot and obstacle tracking system
is proposed by using a ring of calibrated cameras in wide
baseline distribution. The system is flexible and robust, by
combining a very simple but powerful visual hull approach
and by using a probabilistic approach for tracking. A robot
identification methodology is proposed which avoids relying
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Fig. 6. Localization in a real environment

in complex and risky appearance models. Instead, it is based
on the capability of the “Intelligent Space” to control the
robot and the extra odometry information.

The results included in the paper show that the MTT
performs well in real environments where multiple people
are crossing near the robot and there are multiple occlusions.
Besides, the multimodal estimator proposed solves the asso-
ciation and tracking task for a variable number of objects in
a constant and real time, and faces robustly the overlapping
silhouettes and shadows problems of the observation system.

The weakest point of the algorithm comes from he fact that
a background extraction method is used for detecting objects.
In this paper a very rudimentary algorithm is proposed that in
a near future must be replaced by a state-of-the-art method.
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