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Abstract— This paper describes a method for estimating the
vehicle global position in a network of roads by means of visual
odometry. To do so, the ego-motion of the vehicle relative to the
road is computed using a stereo-vision system mounted next to
the rear view mirror. Feature points are matched between pairs
of frames and linked into 3D trajectories. The resolution of the
equations of the system at each frame is carried out under
the non-linear, photogrametric aproach using RANSAC. This
iterative technique enables the formulation of a robust method
that can ignore large numbers of outliers as encountered in
real traffic scenes. The resulting method is defined as visual
odometry and can be used in conjunction with other sensors,
such as GPS, to produce accurate estimates of the vehicle global
position. The obvious application of the method is to provide
on-board driver assistance in navigation tasks, or to provide
a means for autonomously navigating a vehicle. The method
has been tested in real traffic conditions without using prior
knowledge about the scene nor the vehicle motion. We provide
examples of estimated vehicle trajectories using the proposed
method and discuss the key issues for further improvement.

I. INTRODUCTION

The use of video sensors for vehicle navigation has be-

come a research goal in the field of Intelligent Transportation

Systems and Intelligent Vehicles in the last years. Accurate

estimation of the vehicle global position is a key issue,

not only for developing useful driver assistance systems,

but also for achieving autonomous driving. Using stereo-

vision for computing the position of obstacles or estimating

road lane markers is a usual technique in intelligent vehicle

applications. The challenge now is to extend stereo-vision

capabilities to also provide accurate estimation of the vehicle

ego-motion with regard to the road, and thus to compute

the vehicle global position. This is becoming more and

more tractable to implement on standard PC-based systems

nowadays. However, there are still open issues that constitute

a challenge in achieving highly robust ego-motion estimation

in real traffic conditions. These are discussed in the following

lines.

1) There must exist stationary reference objects that can

be seen from the cameras position. Besides, the refer-

ence objects must have clearly distinguishable features

that make possible to unambiguously perform match-

ing between two frames. Accordingly, the selection of

features becomes a critical issue.

2) Information contained on road scenes can be divided

into road feature points and background feature points.

On the one hand, roads have very few feature points,

most of then corresponding to lane markings, or even
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no points in the case of unmarked roads. On the other

hand, information corresponding to the background

of road scenes may contain too many feature points.

Robust matching techniques are then needed to avoid

false matching.

3) Typical road scenes may contain a large amount of out-

lier information. This includes non-stationary objects

such as moving vehicles and pedestrians, car wipers.

All these artifacts contribute to false measurements for

ego-motion estimation. Possible solutions to overcome

this problem are two fold: to deploy some outlier

rejection strategy; to estimate feature points motion

using probabilistic models in order to compensate for

it in the estimation process.

In this paper, we propose a method for ego-motion com-

puting based on stereo-vision. The use of stereo-vision has

the advantage of disambiguating the 3D position of detected

features in the scene at a given frame. Based on that, feature

points are matched between pairs of frames and linked into

3D trajectories. The idea of estimating displacements from

two 3-D frames using stereo vision has been previously used

in [1] [2] and [3]. The resolution of the equations of the

system at each frame is carried out under the non-linear, pho-

togrametric aproach using RANSAC. This iterative technique

enables the formulation of a robust method that can ignore

large numbers of outliers as encountered in real traffic scenes.

The resulting method is defined as visual odometry and can

be used in conjunction with other sensors, such as GPS, to

produce accurate estimates of the vehicle global position.

The obvious application of the method is to provide on-board

driver assistance in navigation tasks, or to provide a means

for autonomously navigating a vehicle. The method has been

tested in real traffic conditions without using prior knowledge

about the scene nor the vehicle motion. We provide examples

of estimated vehicle trajectories using the proposed method

and discuss the key issues for further improvement.

The rest of the paper is organized as follows: in section

II the feature detection and matching technique is presented;

section III provides a description of the proposed non-linear

method for estimating vehicle ego-motion and the 3D vehicle

trajectory; implementation and results are provided in section

IV; finally, section V is devoted to conclusions and discussion

about how to improve the current system performance in the

future.

II. FEATURES DETECTION AND MATCHING

In each frame, Harris corners [4] are detected, since this

type of point feature has been found to yield detections that
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are relatively stable under small to moderate image distor-

tions [5]. As stated in [2], distortions between consecutive

frames can be regarded as fairly small when using video

input [2]. The feature points are matched at each frame, using

the left and rights image of the stereo-vision arrangement,

and between pairs of frames. Features are detected in all

frames and matches are allowed only between features. A

feature in one image is matched to every feature within a

fixed distance from it in the next frame, called disparity limit.

For the sake of real-time performance, matching is computed

over a 7x7 window.

Among the wide spectrum of matching techniques that

can be used to solve the correspondence problem we im-

plemented the Zero Mean Normalized Cross Correlation [6]

because of its robustness. The Normalized Cross Correlation

between two image windows can be computed as follows.

ZMNCC(p, p′) =

n∑

i=−n

n∑

j=−n

A · B

√√√√
n∑

i=−n

n∑

j=−n

A2

n∑

i=−n

n∑

j=−n

B2

(1)

where A and B are defined by

A =
(
I (x + i, y + j) − I(x, y)

)
(2)

B =
(
I ′ (x′ + i, y′ + j) − I ′(x′, y′)

)
(3)

where I(x, y) is the intensity level of pixel with coordinates

(x, y), and I(x, y) is the average intensity of a (2n +
1)x(2n + 1) window centered around that point. As the

window size decreases, the discriminatory power of the area-

based criterion gets decreased and some local maxima appear

in the searching regions. On the contrary, an increase in

the window size causes the performance to degrade due to

occlusion regions and smoothing of disparity values across

boundaries. In consequence, the correspondences yield some

outliers. According to the previous statements, a filtering

criteria is needed in order to provide outliers rejection. The

accepted matches are used both in 3D feature detection

(based on stereo images) and in feature tracking (between

consecutive frames). Figure 1 depicts an example of fea-

tures detection and tracking using Harris detector, ZMNCC

matching technique, and mutual consistency check.

III. VISUAL ODOMETRY USING NON-LINEAR ESTIMATION

The problem of estimating the trajectory followed by a

moving vehicle can be defined as that of determining at frame

i the rotation matrix Ri−1,i and the translational vector Ti−1,i

that characterize the relative vehicle movement between two

consecutive frames. The use of non-linear methods becomes

necessary since the 9 elements of the rotation matrix can

not be considered individually (the rotation matrix has to

be orthonormal). Indeed, there are only 3 unconstrained,

independent parameters, i.e., the three rotation angles θx, θy

and θz , respectively. The system’s rotation can be expressed

by means of the rotation matrix R given by equation 4.

R =




cycz sxsycz + cxsz −cxsycz + sxsz

−cysz −sxsysz + cxcz cxsysz + sxcz

sy −sxcy cxcy




(4)

where ci = cosθi and si = sinθi for i = x, y, z. The

estimation of the rotation angles must be undertaken by using

an iterative, least squares-based algorithm [7] that yields

the solution of the non-linear equations system that must

compulsorily be solved in this motion estimation application.

Otherwise, the linear approach can lead to a non-realistic

solution where the rotation matrix is not orthonormal.

A. Non-linear least squares

Given a system of n non-linear equations containing p

variables:





f1(x1, x2, . . . , xp) = b1

f2(x1, x2, . . . , xp) = b2

...

fn(x1, x2, . . . , xp) = bn

(5)

where fi, for i = 1, . . . , n, is a differentiable function from

ℜp to ℜ. In general, it can be stated that:

1) if n < p, the system solution is a (p−n)-dimensional

subspace of ℜp.

2) if n = p, there exists a finite set of solutions.

3) si n > p, there exists no solution.

As can be observed, there are several differences with

regard to the linear case: the solution for n < p does not

form a vectorial subspace in general. Its structure depends

on the nature of the fi functions. For n = p a finite set of

solutions exists instead of a unique solution as in the linear

case. To solve this problem, an underdetermined system is

built (n > p) in which the error function E(x) must be

minimized.

E(x) ,

N∑

i=1

(fi(x) − bi)
2 (6)

The error function E : ℜp → ℜ can exhibit several

local minima, although in general there is a single global

minimum. Unfortunetaly, there is no numerical method that

can assure the obtaining of such global minimum, except for

the case of polynomial functions. Iterative methods based on

the gradient descent can find a global minimum whenever the

starting point meets certain conditions. By using non-linear

least squares the process is in reality linearized following

the tangent linearization approach. Formally, function fi(x)
can be approximated using the first term of Taylor’s series

expansion, as given by equation 7.

fi(x + δx) = fi(x) + δx1
∂fi

∂x1

(x) + . . .+

+δxp
∂fi

∂xp
(x) + O(|δx|)2 ≈ fi(x) + ▽fi(x) · δx

(7)
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Fig. 1. a) The upper row depicts feature detection results using Harris detector in several images in urban environments. Detection is constrained to a
couple of regions of interest located in the lateral areas of the image bellow the horizon line. b) The bottom left image shows an example of features
matching in a stereo image. c) The bottom right image depicts an example of feature tracking in two consecutive frames. ZMNCC and mutual consistency
check is used both for feature detection and feature tracking.

where ▽fi(x) = ( ∂fi

∂x1

, . . . , ∂fi

∂xp
)t is the gradient of fi

calculated at point x, neglecting high order terms O(|δx|)2.

The error function E(x + δx) is minimized with regard to

δx given a value of x, by means of a iterative process.

Substituting (7) in (5) yields:

E(x + δx) =
∑N

i=1
(fi(x + δx) − bi)

2
≈

≈

∑N
i=1

(fi(x) + ▽fi(x) · δx − bi)
2 = |Jδx − C|2

(8)

where

J =




▽f1(x)t

. . .

▽fn(x)t


 =




∂f1

∂x1

(x) . . . ∂f1

∂xp
(x)

. . . . . . . . .
∂fn

∂x1

(x) . . . ∂fn

∂xp
(x)


 (9)

and

C =




b1

. . .

bn


 −




f1(x)
. . .

fn(x)


 (10)

After linearization, an overdetermined linear system of n

equations and p variables has been constructed (n < p):

Jδx = C, (11)

System given by equation 11 can be solved using least

squares, yielding:

δx = (Jt
J)−1

J
t
C = J

†
C. (12)

In practice, the system is solved in an iterative process, as

described in the following lines:

1) An initial solution x0 is chosen

2) While (E(xi) > emin and i < imax)

- δxi = J(xi)
†
C(xi)

- xi+1 = xi + δxi

- E(xi+1) = E(xi + δxi) = |J(xi)δxi − C(xi)|
2

where the termination condition is given by a minimum value

of error or a maximum number of iterations.

B. 3D Trajectory estimation

Between instants t0 and t1 we have:




1xi
1yi
1zi


 = R0,1




0xi
0yi
0zi


 + T0,1; i = 1, . . . , N

(13)

Considering (4) it yields a linear six-equations system at

point i, with 6 variables w = [θx, θy, θz, tx, ty, tz]
t:





1xi = cycz · 0xi + (sxsycz + cxsz) · 0yi+
+(−cxsycz + sxsz) · 0zi + tx
1yi = −cysz · 0xi + (−sxsysz + cxcz) · 0yi+
+(cxsysz + sxcz) · 0zi + ty
1zi = sy · 0xi − sxcy · 0yi + cxcy · 0zi + tz

At each iteration k of the regression method the following

linear equations system is solved (given the 3D coordinates

of N points in two consecutive frames):

J(ω)δxk = C(xk) (14)

with:
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J(ω) =




J1,11 J1,12 J1,13 J1,14 J1,15 J1,16

J1,21 J1,22 J1,23 J1,24 J1,25 J1,26

J1,31 J1,32 J1,33 J1,34 J1,35 J1,36

J2,11 J2,12 J2,13 J2,14 J2,15 J2,16

J2,21 J2,22 J2,23 J2,24 J2,25 J2,26

J2,31 J2,32 J2,33 J2,34 J2,35 J2,36

...
...

...
...

...
...

JN,11 JN,12 JN,13 JN,14 JN,15 JN,16

JN,21 JN,22 JN,23 JN,24 JN,25 JN,26

JN,31 JN,32 JN,33 JN,34 JN,35 JN,36




δxk = [δθx,k, δθy,k, δθz,k, δtx,k, δty,k, δtz,k]t

C(xk) = [c1,1, c1,2, c1,3, . . . , cN,1, cN,2, cN,3]
t

Let us remark that the first index of each Jacobian matrix

element represents the point with regard to whom the

function is derived, while the other two indexes represent

the position in the 3x6 sub-matrix associated to such point.

Considering (9) the elements of the Jacobian Matrix that

form sub-matrix Ji for point i at iteration k are:

Ji,11 = (cxksykczk − sxkszk) · 0yi + (sxksykczk +
cxkszk) · 0zi

Ji,12 = −sykczk · 0xi + sxkcykczk · 0yi − cxkcykczk · 0zi

Ji,13 = −cykszk · 0xi + (−sxksykszk + cxkczk) · 0yi +
(cxksykszk + sxkczk) · 0zi

Ji,14 = 1
Ji,15 = 0
Ji,16 = 0
Ji,21 = −(cxksykszk + sxkczk) · 0yi + (−sxksykszk +
cxkczk) · 0zi

Ji,22 = sykszk · 0xi − sxkcykszk · 0yi + cxkcykszk · 0zi

Ji,23 = −cykczk · 0xi − (sxksykxkzk + cxkszk) · 0yi +
(cxksykczk − sxkszk) · 0zi

Ji,24 = 0
Ji,25 = 1
Ji,26 = 0
Ji,31 = −cxkcyk · 0yi − sxkcyk · 0zi

Ji,32 = cyk · 0xi + sxksyk · 0yi − cxksyk · 0zi

Ji,33 = 0
Ji,34 = 0
Ji,35 = 0
Ji,36 = 1

After computing the Jacobian matrix the iterative process

is implemented as described in the previous section.

C. RANSAC

RANSAC (RAndom SAmple Consensus) [8] [9] is an

alternative to modifying the generative model to have heavier

tails to search the collection of data points S for good points

that reject points containing large errors, namely “outliers”.

The algorithm can be summarized in the following steps:

1) Draw a sample s of n points from the data S uniformly

and at random.

2) Fit to that set of n points.

3) Determine the subset of points Si for whom the

distance to the model s is bellow the threshold t. Subset

Si (defined as consensus subset) defines the inliers of

S.

4) If the size of subset Si is larger than threshold T the

model is estimated again using all points belonging to

Si. The algorithm ends at this point.

5) Otherwise, if the size of subset Si is below T , a new

random sample is selected and steps 2, 3, and 4 are

repeated.

6) After N iterations (maximum number of trials), draw

subset Sic yielding the largest consensus (greatest

number of “inliers”). The model is finally estimated

using all points beloging to Sic.

RANSAC is used in this work to estimate the Rotation

Matrix R and the translational vector T that characterize

the relative movement of a vehicle between two consecutive

frames. The input data to the algorithm are the 3D coordi-

nates of the selected points at times t and t + 1. Notation t0
and t1 = t0 + 1 is used to define the previous and current

frames, respectively, as in the next equation.




1xi
1yi
1zi


 = R0,1




0xi
0yi
0zi


 + T0,1; i = 1, . . . , n

(15)

After drawing samples from three points, in step 1 models

R̃0,1 and T̃0,1 that best fit to the input data are estimated

using non-linear least squares.Then, a distance function is

defined to classify the rest of points as inliers or outliers

depending on threshold t.

{
inlier e < t

outlier e > t
(16)

In this case, the distance function is the square error

between the sample and the predicted model. The 3D co-

ordinates of the selected point at time t1 according to the

predicted model are computed as:




1x̃i
1ỹi
1z̃i


 = R̃0,1




0xi
0yi
0zi


 + T̃0,1; i = 1, . . . , n

(17)

The error vector is computed as the difference between the

estimated vector and the original vector cointaining the 3D

coordinates of the selected points (input to the algorithm):

e =




ex

ey

ez


 =




1x̃i
1ỹi
1z̃i


 −




1xi
1yi
1zi


 (18)

The mean square error or distance function for sample i

is given by:
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e = |e|2 = e
t · e (19)

In the following subsections, justification is provided for

the choice of the different parameters used by the robust

estimator.

1) Distance threshold t: According to this threshold sam-

ples are classified as “inliers” or “outliers”. Prior knowledge

about the probability density function of the distance between

“inliers” and model d2
t is required. If measurement noise

can be modelled as a zero-mean Gaussian function with

standard deviation σ, d2
t can then be modelled as a chi-

square distribution. In spite of that, distance threshold is

empirically chosen in most practical applications. In this

work, a threshold of t = 0.005 was chosen.

2) Number of iterations N : Normally, it is inviable or

unnecessary to test all the possible combinations. In reality,

a sufficiently large value of N is selected in order to assure

that at least one of the randomly selected s samples is

oulier-free with a probability p. Let ω be the probability

of any sample to be an inlier. Consequently, ǫ = 1 − ω

represents the probability of any sample to be an outlier.

At least, N samples of s points are required to assure that

(1 − omegas)N = 1 − p. Solving for N yields:

N =
log(1 − p)

log(1 − (1 − ǫ)s)
(20)

In this case, using samples of 3 points, assuming p =
0.99 and a proportion of outliers ǫ = 0.25 (25%), at least 9

iterations are needed. In practice, the final selected value is

N = 10.

3) Consensus threshold T : The iterative algorithm ends

whenever the size of the consensus set (composed of inliers)

is larger than the number of expected inliers T given by ǫ

and n:

T = (1 − ǫ)n (21)

4) Data Post-processing: This is the last stage of the

algorithm. Some partial estimations are discarded, in an

attempt to remove as many outliers as possible, using the

following criteria.

1) High root mean square error e estimations are removed.

2) Meaningless rotation angles estimations (non physi-

cally feasible) are discarded.

Accordingly, a maximum value of e has been set to 0.5.

Similarly, a maximum rotation angle threshold is used to

discard meaningless rotation estimations. In such cases, the

estimated vehicle motion is supposed to be R = I y T =
0. Removing false rotation estimations is a key aspect in

visual odometry systems since false rotation estimations lead

to high cumulative errors.

IV. IMPLEMENTATION AND RESULTS

The visual odometry system described in this paper has

been implemented on a Pentium IV at 1.7 GHz running

Linux Knoppix 3.7 with a 2.4.18-6mdf kernel version. The

algorithm is programmed in C using OpenCV libraries (ver-

sion 0.9.7).A stereo vision platform based on Fire-i cameras

(IEEE1394) was installed on a prototype vehicle. After

calibrating the stereo vision system, several sequences were

recorded in different locations including Alcalá de Henares

and Arganda del Rey in Madrid (Spain). The stereo se-

quences were recorded using no compression algorithm at 30

frames/s with a resolution of 320x240 pixels. All sequences

correspond to real traffic conditions in urban environments.

The results of a first experiment are depicted in figure 2. The

vehicle starts a trajectory in which it first turns slightly to

the left. Then, the vehicle runs along a straight street and,

finally, it turns right at a strong curve with some 90 degrees

of yaw change. The upper part of figure 2 shows an aerial

view of the area of the city (Alcalá de Henares) were the

experiment was conducted (source: http://maps.google.com).

The bottom part of the figure illustrates the 2D trajectory

estimated by the visual odometry algorithm presented in this

paper.

Fig. 2. a) Aerial view of the area of the city were the experiment was
conducted. b) Estimated trajectory using visual odometry.

As can be observed, the system provides reliable esti-

mations of the path run by the vehicle in almost straight

sections. As a matter of fact, the estimated lenght of the

straight section in figure 2.b is very similar to the ground

truth (some 175m). The estimated vehicle trajectoy along the

straight street is almost straight, similar to the real trajectory

described by the vehicle in the experiment. Nonetheless,

there are still some problems to estimate accurate rotation

angles in sharp bends (90 degreess or more). Rotation angles

estimated by the system at strong curves tend to be higher
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than the real rotation experimented by the vehicle. This

problem does not arise in the first left curve conducted by

the vehicle, where the estimated rotation and the real rotation

are very similar, as can be observed in figure 2.

In A second experiment, the car started turning slight right

and then left to run along an almost straight path for a

while. After that, a sharp right turn is executed. Then the

vehicle moves straight for some metres until the end of the

street. Figure 3 illustrates the real trajectory described by

the vehicle (a) and the estimated trajectory estimated by the

visual odometry algorithm (b). In this case, the estimated

trajectory reflects quite well the exact shape and length of

the real trajectory executed by the vehicle.

Fig. 3. a) Aerial view of the area of the city were the experiment was
conducted. b) Estimated trajectory using visual odometry.

V. CONCLUSIONS AND FUTURE WORK

We have described a method for estimating the vehicle

global position in a network of roads by means of visual

odometry. To do so, the ego-motion of the vehicle relative to

the road is computed using a stereo-vision system mounted

next to the rear view mirror of the car. Feature points are

matched between pairs of frames and linked into 3D trajec-

tories. The resolution of the equations of the system at each

frame is carried out under the non-linear, photogrametric

aproach using least squares and RANSAC. This iterative

technique enables the formulation of a robust method that

can ignore large numbers of outliers as encountered in real

traffic scenes. Fine grain outliers rejection methods have

been experimented based on the root mean square error

of the estimation and the vehicle dynamics. The resulting

method is defined as visual odometry and can be used in

conjunction with other sensors, such as GPS, to produce

accurate estimates of the vehicle global position.

A key aspect of the system is the features selection and

tracking stage. For that purpose, a set of 20 points has

been extracted using Harris detector. The searching windows

have been optimized in order to achieve a trade-off between

robustness and execution time. Real experiments have been

conducted in urban environments in real traffic conditions

with no a priori knowledge of the vehicle movement or the

environment structure. We provide examples of estimated

vehicle trajectories using the proposed method. Although

preliminary, first results are encouraging since it has been

demonstrated that the system is capable of providing ap-

proximate vehicle motion estimation in non strongly bended

trajectories. Nonetheless, further improvements need to be

accomplished in order to accurately cope with 90 degrees

curves, which are very usual in urban environments.

As part of our future work we envision to develop a

method for discriminating stationary points from those which

are moving in the scene. Moving points can correspond to

pedestrians or other vehicle circulating in the same area.

Vehicle motion estimation will mainly rely on stationary

points. The system can benefit from other vision-based

applications currently under development and refinement in

our lab, such as pedestrian detection and ACC (based on

vehicle detection). The output of these systems can guide

the search for really stationary points in the 3D scene. The

obvious application of the method is to provide on-board

driver assistance in navigation tasks, or to provide a means

for autonomously navigating a vehicle. For this purpose,

fusion of GPS and vision data will be accomplished.
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