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Abstract— This paper describes an improved stereo vision
system for anticipated detection of car-to-pedestrian accidents.
An improvement of previous versions of the pedestrian dection
system is achieved by compensation of the cameras pitch
angle, since it results in higher accuracy in the location of
the ground plane and more accurate depth measurements.
The pedestrian detection system has been applied to collision
avoidance and mitigation. Collision avoidance is carried out
by means of deceleration strategies, whenever the accident
is evitable. Likewise, collision mitigation is accomplished by
activating an active hood system. For that purpose, the system
has been mounted and tested on two different prototype cars
and tested on private circuits using dummies.

I. INTRODUCTION

Each year, thousands of pedestrians and cyclists are struck
by motor vehicles. Most of these accidents take place in
urban areas where serious or fatal injuries can be sustained
at relatively low speed. Only in the European Union about
8.000 pedestrians and cyclists are killed and about 300.000
injured. In North America approximately 5.000 pedestrians
are killed and 85.000 injured. In Japan approximately 3.300
pedestrians and cyclists are killed and 27.000 injured [1]. To
reduce these figures, the European Commission is forcing
the automotive industry to introduce safety measures to
drastically cut the number of fatalities by 50% by 2010
compared to the figures of 2001. While in the first phase
(up to 2005) passive measures were introduced to achieve
the requirements, the way to reach the final requirements in
the second phase (from 2005 to 2010) seems to demand the
introduction of active or preventive safety measures.

The range of active safety measures is quite wide [2]
including ideas like active hood systems, outside airbags,
active bumpers or automatic deceleration [3]. Since these
actuators have to be activated just before the crash occurs,
sensors such as radar and cameras have compusorily to be
used in order to provide a measure of the time-to-collision
well in advance. The study of the cumulative frequency
of crashes between vehicles and pedestrians [1] shows that
a crash speed of up to 40 km/h can cover more than
75% of total pedestrian injuries. Thus, if a speed of up
to 40 km/h is considered, the levels of injury suffered by
pedestrians involved in frontal impacts with motor vehicles
will be significantly reduced. Furthermore, some accidents
are likely to be avoided, for velocities well bellow 40 km/h,
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if pedestrians are detected by the sensors onboard the car
with enough anticipation. In such cases, the deployment of
deceleration strategies makes sense not only for collision
mitigation but also for collision avoidance.

One of the most popular measures for collision mitigation
is the use of the so-called active hood system [4] [5]. These
types of systems raise the hood of the vehicle in case of an
unavoidable crash. This way a more elastic deformation of
the hood can be achieved to get a reduced force over the
pedestrian, especially over the head. Most of the pedestrians
involved in a car-to-pedestrian accident have the first contact
with the car’s frontal region. This usually means that the
legs make contact with the front bumper and after 50 to 150
ms the body, and especially the head, hit the bonnet or the
windscreen of the car as stated in [6]. For adult leg injuries,
the major source is the front bumper of vehicles. When
an adult pedestrian is struck by a vehicle, the first impact
is generally between the pedestrian knee region and the
vehicle’s front bumper. Because this initial contact is below
the pedestrian’s center of gravity, the upper body begins to
rotate toward the vehicle. The pedestrian’s body accelarates
linearly relative to the ground because the pedestrian is being
carried along by the vehicle. The second contact is between
the upper part of the grille or front edge of the bonnet and
the pedestrian’s pelvic area. The final phase of the collision
involves the head and thorax striking the vehicle with a linear
velocity approaching that of the initial striking velocity of
the vehicle. Research has shown that the linear head impact
velocity is about 90 percent of the initial contact velocity [1].
Child and adult heads adults legs are the body regions to be
most affected by contact with the front end of vehicles. On
vehicles, the bonnet top and the windscreen are the vehicle
regions mostly identified with a high potential for contact
in a car-to-pedestrian accident. These areas can cover more
than 65 per cent of the fatal and serious injuries.

Sensor systems onboard the car are mandatorily required
for predicting the car-to-pedestrian distance and the time-
to-collision, both for collision avoidance and for collision
mitigation. Cameras are the most commonly used sensors for
that purpose. As a matter of fact, a number of remarkable
pedestrian detection systems have been developed by scien-
tists around the world using cameras in the visible espectrum
[7] [8] [9] [10] and infrared cameras [11] [12] [13]. The
stereo-vision system for pedestrian detection developed by
the ITS Research Group at the University of Alcalá [14] is
currently being deployed on real cars with a double purpose:
collision avoidance and collision mitigation. In either case,
the accuracy of depth measurements is a critical issue for
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it has a direct influence on the estimation of the time-
to-collision. An improved pedestrian detection system can
be achieved by compensating for variations of the cameras
pitch angle, since these variations can modify the ground
plane position and distort depth measurements. Accordingly,
a pitch angle estimator has been developed and deployed, as
explained in this paper. Collision avoidance is carried out by
means of deceleration strategies, whenever the accident is
evitable. Likewise, collision mitigation is accomplished by
activating an active hood system. The collision avoidance
module has been tested on a Citron C3 Pluriel car equipped
with a stereo vision system. Tests were carried out on a pri-
vate circuit. The collision mitigation module was mounted on
a Seat Cordoba car equipped with an active hood system that
is triggered by the stereo vision system. Real experiments
were performed for both collision avoidance and collision
mitigation using dummies. Practical results are provided in
this paper.

The rest of the paper is organized as follows: section II
provides a description of improvements in time-to-collision
estimation accuracy with regard to the already existing
vision-based pedestrian detection system developed in pre-
vious work by the authors. Section III presents current
improvements by means of pitch angle compensation. Imple-
mentation and experimental results are described in section
IV. Finally, section V summarizes the conclusions and future
work.

II. PEDESTRIANS DETECTION

Pedestrians detection is carried out using an improved
version of the system described in [14], where a combination
of feature extraction methods was implemented for vision-
based pedestrian detection. The basic components of pedes-
trians are first located in the image and then combined with
a SVM-based classifier. Candidate pedestrians are located
using a subtractive clustering attention mechanism based on
stereo vision. An efficient candidate selection mechanism
is a crucial factor in the global performance of the pedes-
trian detection system. The candidate selection method must
assure that no miss-detection occurs. Candidates, that are
usually described by a bounding box in the image plane, must
be detected as precisely as possible. All the improvements
presented in this paper deal with the candidate selection
stage, and are intended to increase the accuracy of the
time-to-collision estimation. In [14] subtractive clustering
techniques are used for candidates selection after obtaining
a cloud of points corresponding to obstacles in the 3D
scene. Nonetheless, these points are subject to outliers due to
correlation noise. In the current work, some improvements
have been implemented in the correlation step in order to
increase robustness and reduce noise. These post-processing
measures are described next:

� Only strong responses of the correlation function along
the epipolar line are considered as correspondents.

� If the global maximum of the function is not strong
enough relative to others local maximums, then the
current left image point is rejected (unique maximum).

� Right image correlated points are also correlated over
the left image (mutual check strategy). If the new
left matched points are not exactly the same than the
original ones, these correspondences are considered as
noise (multi-correlation).

� In case different left image points would be correlated
over the same right image point, two strategies could be
taken: maximum correlation criterion or minimum dis-
parity criterion. The second one is used so as the noise
due to structured backgrounds, which usually produces
close 3D points, is avoided (minimum diparity).

After applying the previous steps, the number of correlated
points gets decreased by an average of

�����
after using multi-

correlation. By using both multi-correlation and minimum
disparity methods an average of ��� � of points are selected
as noise.

An adaptive subtractive clustering is applied then to ob-
tain the 3D coordinates of pedestrians candidates. Another
improvement with regard to [14] is the implementation of a
multi-candidate generation strategy in order to improve the
accuracy of 3D position of detected candidates since this is
also a critical issue for accurate time-to-collision estimation.
The purpose is to produce several candidates around each
selected cluster in an attempt to compensate for the effect
of the candidate bounding box accuracy in the recognition
step. Accordingly, several candidates are generated for each
candidate cluster, by slightly shifting the original candidate
bounding box in the 	 and 
 axes in the image plane. The
candidate selection method yields generic obstacles with a
3D shape that is similar to that of pedestrians. The 2D candi-
dates are then produced by projecting the 3D points over the
left image and computing their bounding box. Nonetheless,
the 2D bounding box corresponding to a 3D candidate might
not perfectly match the candidate appearance in the image
plane, yielding false pedestrian depth measurements.

Two strategies are proposed to solve the “bounding accu-
racy effect”. The first one consists in training the classifier
with additional badly-fitted pedestrians in an attempt to
absorb either the extra information due to large bounding
boxes containing part of the background, or the loss of
information due to small bounding boxes in which part of
the pedestrian is not visible. The second strategy consists in
performing a multi-candidate (MC) generation for every ex-
tracted candidate, trying to hit the target and add redundancy.
Three window sizes are defined: the window size generated
by the candidate selection method, a

�����
oversized window,

and a 
 ����� downsized one. These three windows are shifted
5 pixels in each direction: top, down, left, and right. Thus,
a total of 15 multicandidates are generated for each original
candidate.

A majority criterion is followed in order to validate a
pedestrian. Thus, the MC strategy yields a pedestrian if more
than 5 candidates are classified as pedestrians. This number
has been defined after extensive experiments. In average,
the candidate selection mechanism generates 6 windows per
frame, yielding a total of 90 candidates per frame after the
multi-candidate process. In case the number of candidates



Fig. 1. Upper row: multi-candidate generation. Bottom row: results after classifying the 15 candidates.

Method Detected Missed False alarms
Single 138 10 9

Multicandidate 143 5 8

TABLE I

GLOBAL PERFORMANCE EVALUATED IN A SET OF SEQUENCES WITH A

TOTAL DURATION OF 20 MINUTES

generated by the attention mechanism increases abruptly the
MC approach might become impractical. A major benefit
derived from the MC approach is the fact that classification
performance of pedestrians at long distance increases. Figure
1 depicts typical images from our test sequences. The number
below the bounding box represents range. The right most
image shows a motorcyclist that is detected as a pedestrian
(false positive). In the left most image two kids are properly
detected and their range is correctly measured.

The results obtained in practical experiments are listed in
Table I. For each row in the table the following information
is provided: type of method, number of detected pedestrians
(only pedestrians below 25 m are considered), number of
missed pedestrians, and number of false alarms issued by
the system.

The analysis of the results reveals that detection rate is
improved using multi-candidate generation for the single
frame classification while the false positive rate remains
practically unchanged. The single and MC methods exhibit
a ratio of 9 and 8 false alarms, respectively, in 20 minutes
of operation. This yields ratios of 27 and 24 false alarms
per hour, respectively. The MC method does not exhibit an
appreciable improvement in FPR because false alarms are
usually due to candidates with features similar to pedestrians,
such as motorbikes, fences, windows reflections, etc. These
candidates are not better classified by using multi-candidate
generation since at least 5 out of the 15 candidates continue
being classified as pedestrians. The DR is 93.24% using the

single method, and 96.62% using the multi-candidate one.
Five non-detected pedestrians by the single method have
been detected using the multi-candidate approach. Several
cases are corrected by this approach. For example, kids,
which are usually selected as candidates with very few
points, are better detected by using the MC method. When
several people are together in the same area the candidate
selection method usually yields bounding boxes which fall
between two people due to the 3D approach. Thanks to the
MC method these pedestrians are well classified. Let us clar-
ify the fact that the other missed pedestrians were partially
occluded or completely out of the vehicle path. There is
other important effect due to the use of MC classification:
pedestrians can be classified at larger distances. This implies
that the system can anticipate pedestrian detection with more
time in advance.

III. PITCH ESTIMATION

Detection range specification in vision based pedestrian
detection applications is usually no longer than � ��� due to
several constraints like camera resolution, pedestrian size,
etc. Thus, Flat road geometry is considered, i.e., road cur-
vature can be neglected in the near range. Thanks to the
stereo approach the vertical road profile can be directly
extracted. The robust correlation process reduces the number
of 3D points under the road (which is directly proportional
to the amount of correlation errors). Taking into account a
base plane without pitch change, the height of the camera
relative to the base plane, and the camera vertical field of
view, the origin of the world coordinate system is placed at
the intersection point between the base plane and the lower
boundary of the vertical field of view. Figure 2 depicts the
lateral projection of 3D points on the YOZ plane.

The number of 3D projected points over the same 2D
point in the lateral view are coded in a gray scale image.
Thus the weight of matching errors is reduced. As in [15]
we consider the vertical displacement due to roll negligible in



Fig. 2. 3D projected points on the YOZ plane up to 30m.

comparison to the displacement due to pitch. From the point
of view of the world coordinate system origin, and varying
the slope to cover all possible pitch values, uniformly spaced
rays are cast. Gray level values (number of points) along
each ray

�
are counted in a histogram ��� ��� . The histogram

is normalized and the mean value �� is computed. A stable
jump over

�	� �
�� in the histogram is looked for from under
the road upwards. Being

��� �
the lowest ray and

�
���
the

highest one, pitch angle is selected as follows:

for
�
� �

to
�

if ����� �������� �� and ��� ������������ �� and ��� ��� �������� ��
and ��� ���! �"� �����#�$ ��� �%� ����� �'&�(*) �
then + � +,( ; break;

else + � �
;

(1)
The parameter �'&�(*) is used to avoid pitch estimation

errors when there are not enough road points detected. Figure
3 depicts three examples for positive, negative and zero pitch
angle values. The darker the ray the higher the number of
accumulated points. The estimated pitch angle is drawn in
bold.

In order to have a steady estimation of the pitch angle, a
linear Kalman filter is applied. The state vector is composed
by the pitch angle and its velocity, -�. �0/ +�.  �1+�.32 and
the measurement vector by the pitch angle, 4�. �5/ +6.72 .
The following equations show the proposed pitch angle
estimation:8-�. �:9 +6.1+6."; �<9 �=�

� � ; 9 +6.#>@?1+6.#>@?A; � 8B . state eq. (2)4C. � +�. � 8D . measurement eq. (3)

where
8B . and

8D . are the state vector noise and the mea-
surement vector noise, respectively. Accordingly, a smoother
pitch angle estimation is obtained. So, the transformation
matrix that has to be applied in order to perform 3D points
correction is:E F �HGI � � �

� J DLK ��+ � 
 K �NM ��+ �� K �OM �P+ � J DLK ��+ �RQS (4)

Once the longitudinal profile of the road has been ex-
tracted, and 3D points corrected, road surface points, which
are not obstacle points, can be easily removed by using

Fig. 3. Pitch angle estimation. From top to bottom: positive pitch angle,
negative pitch angle and pitch angle about 0 degrees.

their T coordinate value. By doing so, these points do not
perturb the clustering step. The average computation time
required to estimate the pitch angle is less than 10ms. This
implies that the pitch estimation module takes less than 5%
of total computation time required by the pedestrian detection
system.

IV. IMPLEMENTATION AND RESULTS

The system was implemented on two different platforms
for testing collision avoidance and collision mitigation, re-
spectively. On the one hand, a Pentium IV at 2.4 GHz
running the Knoppix GNU/Linux Operating System and
Libsvm libraries [16] was mounted on a SEAT Cordoba
prototype vehicle equipped with an active hood system. This
vehicle was tested on a private circuit using light dummies
so that the vehicle can run them down as many times as
required without being damaged. On the other hand, a second
prototype based on a G4 Power PC was installed on a
Citroen C3 Pluriel equipped with automatic steering wheel,
brake and accelerator pedals. This vehicle was tested on
a different test circuit, emulating an urban quarter, where
velocity deceleration techniques and avoidance manoeuvres
can be properly executed. In both cases, the stereo vision
system uses 320 U 240 pixel images. The complete algorithm
runs at an average rate of 15-20 frames/s, depending on the
number of pedestrians being tracked and their position. The
average rate has a strong dependency on the number of pixels
being matched because of the correlation computational cost,
which consumes, in average, 80% of the whole processing
time.



Fig. 4. Emmergency stops at different velocities.

A. Collision avoidance

As previosly stated, collision avoidance experiments con-
sists on emmergency stop manoeuvres by brusquely de-
celerating the vehicle. Several experiments were conducted
to achieve an estimation of the distance that is need for
preventing an accident as a function of the current vehicle
speed. Although this computation can be easily done using
theoretical equations, we decided to execute real emmer-
gency stop manoeuvres and derive a realistic estimation of
the stopping time at different velocities. Figure 4 depicts
the evolution of the vehicle velocity in several experiments
where an emmergency stop manoeuvre was executed. Based
on the previous experiments, an approximate equation for
computing the stopping time was estimated using linear
regression techniques.As depicted in figure 5 the estimated
curve is a reasonable approximation of the real curve. The fi-
nal expression of the estimated stopping time ��������� , including
actuator latencies, is provided in equation 5.

Fig. 5. Regression curve.

�	������� � ��
 � ��� �
�$- � � ��
 ����� �$- � ��
 � � � � (5)

where - stands for vehicle velocity at the time of starting
the emmergency stop manoeuvre. Similarly, the estimated
distance required by the vehicle to come to a full stop � �������
is provided equation 6.

� ������� � ��
�� �	� ��
 ����� ��� - � � ��
 ����� � - � � ��
�� � � ��� - � (6)

B. Collision mitigation

Collision mitigation experiments were carried out using
a light-weight dummy. The car ran over the dummy in
several experiments at different velocities bellow 50 km/h.
In all cases, the active hood had to be activated at a pre-
programmed time before the collision took place, ranging
between 200-350ms. The experiments were recorded using a
high speed camera providing 1000 frames per second. Thus,
the ground truth was obtained from recorded videos given
that each frame corresponds to 1ms. With the use of special
software applications digital videos recorded with high speed
cameras can be played frame by frame in order to precisely
determine the exact time between the activation of the active
hood and the instant the car-to-dummy collision occurred.
This measurement can be done with an accuracy of 1ms.
Figure 6 shows the arrangement used in the experiments.

Fig. 6. Arrangement used in collision mitigation experiments.

Normally, the specifications for hood activation are in
the range 200-350ms. In previous versions of this work,
the authors achieved an accuracy of 120ms in the time-
to-collision estimation. This figure depends on the vehicle
velocity and the number of correlated points for candidates
selection. Let us take into account the fact that the exact
desired activation time can occur while an image is be-
ing processed. Considering that the execution time of the
algorithm is in the average of 50ms, and that during that
time the system remains blind, issuing the activation signal



TABLE II

TIME-TO-COLLISION ESTIMATION IN THREE DIFFERENT EXPERIMENTS.

Impact velocity Timer activation Pre-programmed time Ground truth

25 km/h 373 ms 350 ms 350 ms

34 km/h 308 ms 250 ms 235 ms

40 km/h 290 ms 250 ms 200 ms

at the end of the frame process would result in a poor
resolution activation accuracy that depends on the processing
time of the vision-based algorithm. To avoid this problem, a
timer is programmed 2 or 3 frames before the activation
time is reached. After that, the process is resumed. The
timer interrupts the main process when the programmed
time expires. In that moment, the vehicle hood is activated
and the vision process is overrun. After the improvements
described in this paper, the accuracy in the issuing of the
activation signal has been increased to some 50ms (worst
case). Table II shows the results for three collision mitigation
experiments at different velocities ranging between 20-50
km/h. The first column represents the vehicle velocity just
before the collision. The second column shows the time
between the activation of the timer and the real collision.
The third column is the desired (pre-programmed) activation
time, and the fourth column represents the ground truth
provided by the high-speed camera recording the experiment.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have implemented some improvements
on our previous vision-based pedestrian detection system
intented to increase the accuracy of the time-to-collision
estimation in car-to-pedestrian accidents. The final goal is
to use the system in collision avoidance and mitigation.
The improvements described in this paper are summarized
bellow:

1) Enhanced correlation method by using mutual check
consistency, multi-correlation, and minimum disparity
criteria.

2) Adaptive subtractive clustering technique in the candi-
dates selection stage.

3) Multi-candidate (MC) generation strategy. This has
proven to be useful not only to increase the accuracy
of the time-to-collision estimation, but also to improve
the performance of the SVM-based pedestrian classi-
fication system.

4) Pitch estimation. The estimated value is used to com-
pensate for road slope.

After implementation of the previous techniques, a re-
markable increase in performance has been achieved in the
accuracy of the time-to-collision estimation, as demonstrated
in practical experiments. Nonetheless, further improvement is
still necessary, especially in collision mitigation applications
based on active hood, where activation of the vehicle hood
must be absolutely precise to maximize the mitigation effect.
This can be achieved by reducing the computation time
required to execute the algorithm. Two alternatives are being

considered at present: implementation of the code on a
FPGA-based platform and optimization using ALTIVEC.
Finally, comparisons with ground-truth data and further
quantitative assessment of improvements are being carried
out at present. These figures will be provided in future
publications.
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