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Abstract— This paper presents a robot localization system 

for indoor environments using WiFi signal strength 

measure. We analyse the main causes of the WiFi signal 

strength variation and we experimentally demonstrate that 

a localization technique based on a propagation model 

doesn’t work properly in our test-bed. We have carried out 

a localization system based on a priori radio-map obtained 

automatically from a robot navigation in the environment in 

a semi-autonomous way. We analyse the effect of reducing 

calibration effort in order to diminish practical barriers to 

wider adoption of this type of location measurement 

technique. Experimental results using a real robot moving 

are shown. Finally, the conclusions and future works are 

presented. 

I. INTRODUCTION

 The boom in wireless networks over the last few 

years has given rise to a large number of available mobile 

tools and their emerging applications are becoming more 

and more sophisticated by year. Wireless networks have 

become a critical component of the networking 

infrastructure and are available in most corporate 

environments (universities, airports, train stations, 

tribunals, hospitals, etc) and in many commercial 

buildings (cafes, restaurants, cinemas, shopping centres, 

etc). Then, new homes are slowly starting to add WiFi 

services in order to enable mobility to perform many 

routine tasks, in the known as intelligent houses. There 

are even emerging some projects about WiFi enabled 

cities as Paris, Barcelona, etc.  

The recent interest in location sensing for network 

applications and the growing demand for the deployment 

of such systems has brought network researchers up 

against a fundamental and well-known problem in the 

field of the robotics as is the localization. Determining 

the pose (position and orientation) of a robot from 

physical sensors is not a trivial problem and is often 

referred to as “the most important problem to providing a 

mobile robot with autonomous capabilities” [1].  Several 

systems for localization have been proposed and 

successfully deployed for an indoor environment. 

Examples include infrared-based systems [2], various 

computer vision systems [3], ultrasonic sensors and 

actuator systems [4], physical contact based actuator 

systems [5] and radio frequency (RF) based systems [6]. 

Many mobile robot platforms use wireless 

networking to communicate with off-line computing 

recourses, human-machine interfaces or others robots. 

Since the advent of inexpensive wireless networking, 

many mobile robots have been equipped with 802.11b 

wireless Ethernet. In many applications, a sensor from 

which position can be inferred directly without the 

computational overhead of image processing or the 

material expense of a laser is of great use. Many robotics 

applications would benefit from being able to use 

wireless Ethernet for both sensing position and 

communication without to add new sensors in the 

environment. 

WiFi location determination systems use the popular 

802.11b network infrastructure to determine the user 

location without using any extra hardware. This makes 

these systems attractive in indoor environments where 

traditional techniques, such as Global Positioning System 

(GPS) [7] fail. In order to estimate the user location, 

wireless Ethernet devices measure signal strength of 

received packets. This signal strength is a function of the 

distance and obstacles between wireless nodes and the 

robot. Moreover, the system needs one or more reference 

points (Access Points) to measure the distance from. 

Triangulation on signal strength from multiple access 

points could be the most natural technique to be applied 

but unfortunately, in indoor environments, the wireless 

channel is very noisy and the radio frequency (RF) signal 

can suffer from reflection, diffraction and multipath 

effect, which makes the signal strength a complex 

function of distance. To overcome this problem, WiFi 

location determination systems uses a priori radio map 

(wireless-map), which captures the signature of each 

access point at certain points in the area of interest.  

These systems work in two phases: training phase and 

estimation phase. During the training phase, the system 

constructs the wireless-map. In the estimation phase, the 

vector of samples received from each access point is 

compared to the wireless-map and the “nearest” match is 

returned as the estimated user location. However, the 

accuracy of this technique usually depends on a 

meticulous calibration procedure that consists of 

physically moving a wireless client to many different 

known localizations, and sometimes orientations, inside a 

building. This procedure is a practical barrier to wider 

adoption of this type of localization technique. 

WiFi location estimation techniques are divided into 

deterministic and probabilistic techniques. In the first one 

the physical area making up the environment is first 

divided into cells. Location is performed in the estimation 

phase selecting the most likely cell in order to determine 

which cell the new measurement fits best [8]. On the 
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other hand, probabilistic techniques construct a 

probability distribution over the targets location for the 

physical area making up the environment. This last 

technique provides more precision with computational 

overhead. Some recent and representative works have 

appeared in this line. In [9] the authors utilize a Bayesian 

belief network to derive a posterior probability 

distribution over the target’s location. In [10] a 

probabilistic approach using recursive Bayesian filters 

based on sequential Monte Carlo sampling is proposed. In 

both cases a laptop has been used for the localization tests 

and the best accuracy obtained is about 1.5 meters. 

In this paper, we present a probabilistic localization 

system for a robotic platform in indoor environments 

based on WiFi signal strength measure. Firstly, we 

analyse the indoor WiFi signal propagation in our test-

bed and the possibility of using this in a location 

application. We experimentally demonstrate that the 

systems based in a propagation model are not proper to 

use in our test-bed and we have achieved a system based 

on a radio map generated by a robot navigating in a semi-

autonomous way. Finally we present a strategy in order to 

minimize the calibration effort and we extract 

conclusions about it. 

II. TEST-BED

 First of all we describe the environment in which we 

have tested our navigation system and the WiFi 

infrastructure needed for that. The test-bed was 

established on the 3rd floor of the Polytechnic School 

building, in the Electronic Department, at the University 

of Alcalá. The layout of this zone is shown in Figure 1. It 

has dimensions of 60 m by 60 m with about 50 different 

rooms, including offices, labs, bathrooms, storerooms and 

meeting rooms.  

Fig. 1 Test bed environment. 3rd Floor of the Electronic Department 

 In Figure 2 we show a detail of the two corridors 

where the localization tests have been carried out. We 

divide the environment in 67 cells placed 80cm apart in 

order to build the radio-map. 

 Seven Buffalo Access Points (APs) (WBRE-54G) 

were installed at the locations indicated in figure 1, five 

APs were connected  to omnidirectional antennas and 2 

APs (AP3 and AP7) were connected to antennas of 120 

degrees of horizontal beam-width. The APs acts as the 

wireless signal transmitters or base stations. 

Fig. 2 Environment detailed with the corridors under test 

For reducing the manual calibration we have used a robot 

which is able to stop in each cell automatically in order to 

measure the WiFi signal from the different APs. As 

mobile robot we have used a Pioneer 2AT of Activmedia 

robotics with the following configuration: one Orinoco 

PCMCIA Gold wireless card, Linux Red Hat 9.0 as 

operating system, wireless tools of Jean Tourrilhes [11] 

and the patch of Moustafa A. Youssef for the Orinoco 

driver. Figure 3 depicts a picture of the robotic prototype 

used in the experiments. 

Fig. 3 Detail of the experimental setup 

III. INDOOR WIFI PROPAGATION

 In this section we present the main causes of WiFi 

variation signal strength in indoor environments. We 

have carried out some real experiments with our WiFi 

infrastructure in order to test the feasibility and reliability 

of wireless positioning. The main results were presented 

by the authors in [12]. Here, we are going to extract the 

main ideas to understand the following points. 

 In [10] authors identify three main causes for the 

variation of the signal strength in an indoor environment: 

1) Temporal variations: variations standing at a fixed 

position at a long time. 

2) Large-scale variations: the signal strength varies 

over a long distance due to attenuation.  

67 positions 

Position 67 Position 1 

Detailed in Figure 2 
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3) Small-scale variations: these variations happen 

when the user moves over a small distance and it is due to 

the wavelength of the signal (at 2,4GHz the wavelength is 

12.5cm, then, this effect will appear for distances less 

than 12.5 cm). 

 In order to test temporal variation effect in our 

system a stationary measurement experiment was 

achieved. We collected samples along a complete day 

(Friday to Saturday) from two access points (AP1 and 

AP2) and for a fix position of the robot near the AP1. The 

sampling rate was 1 s. The signal strength obtained from 

the AP1 (mean=-56.8dBm, =4.5dBm) was larger than 

from AP2 (mean=-70dBm, =3.7dBm). The reason was 

because the AP1 was closer than the AP2 from the robot 

and then because the AP2 signal had to cross two walls 

with the corresponding attenuation. Other conclusion was 

that the standard deviation of AP1 signal was bigger than 

the AP2 one. The reason was because the effect of the 

secondary paths from the AP2 was lesser that the AP1 

one. Then, almost all the signal received from AP2 was 

due to the direct path, while that the received signal from 

AP1 had high multi-path fading influence. 

 On the other hand, the signal strength was quite 

stable and consistent without people working, but it was 

highly affected by some environment elements such as 

the movement of people, the computer noise and the 

influence of other radio signals (Bluetooth mouse and 

keyboard links, etc). This influence provoked changes in 

the measures between 5 to 15 dBm. We must remark that 

the conditions of this experiment was very extreme 

because at working time a lot of people was moving 

around the robot and almost all the offices have PCs with 

Bluetooth links.   

 For testing large-scale variations, signal strength 

from AP1 and AP2 were collected several samples with 

the robot moving across the three corridors. We took the 

radio map locations on the corridors on a grid placed 80 

cm apart and taking 300 samples for each position. The 

variation of the average signal strength over a distance of 

18 meters was about 20 dBm. Moreover, there wasn’t a 

linear variation of the signal with the distance due to the 

multi path effect. This is the reason because it was very 

difficult to built a propagation model for indoors 

environments. 

 For demonstrating small-scale variations we 

achieved several measures from the AP1 in different 

points separated a short distance (<12,5cm) and we 

generated a histogram for each case. Variations up to 3 

dBm were measured in a distance small than 10 cm with 

different profiles for the histograms. 

 We also analysed the effect of the robot orientation 

in our environment. We took several signal strength 

measures and we obtained its histograms in orthogonal 

orientations to observe that it is possible to obtain the 

orientation and not only the position of the robot. The 

histogram profile was different for the test orientations 

and there was a maximum difference in the average 

signal for the test cases of 8dBm. The reason of this 

variation is because the antenna is not in the centre of the 

robot, as can be seen in Figure 3. 

IV. INDOOR WIFI LOCATIZATION

 In this section we present the localization system 

designed based on a radio map. For building and testing it 

we have used a mobile robot Pioneer 2AT. 

 In order to probe that a system based on a 

propagation model doesn’t work properly in our 

environment we have developed a localization system 

applying the propagation model based on the log-distance 

path loss model [13] shown in equation (1). 

(1)X+
d

d
logn10+)PL(d=PL(dB)

0
0

 PL indicates the path loss level, the value of n 

depends on the surroundings and building type, d0 is the 

close-in reference distance which is determined from 

measurements close to the transmitter, d is the distance 

between the transmitter and the receiver, and X

represents a normal random variable in dB having a 

standard deviation of  dB. 

 Figure 4 shows the result of this propagation model 

for the AP1 signal applied to our environment. 

 The asterisks show the log path loss level and the 

circles the real measures obtained for the 67 positions of 

the environment. Each position was obtained each 80 cm. 

 As can be seen in this figure, the measures obtained 

from the propagation model can differ of the real values 

up to 15 dBm and the mean squared error for this 

trajectory is 7 dBm. This means that the localization error 

obtained in our environment can be up to 12 meters. This 

value is not useful in the practice for our localization 

system, this is the reason because we have rejected this 

technique and we have chosen a localization technique 

based in a priori radio map. 

Fig. 4 Propagation model vs. Real measures

 Once that we have decided to work with a radio map, 

there are two possibilities of using it: 

 1) Discrete map. In this case we divide the 

environment in cells, we obtain several measures for each 

cell and we assign them to the centre of the cell position. 

Once that the training phase has concluded, in the 

localization phase we obtain the position of the robot 

comparing the signal received from each access point 
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with the discrete ones of the wireless-map and the 

“nearest” match is returned as the estimated robot 

location. As can be seen, positions of the robot obtained 

with this technique are discrete.   

 2) Continuous map. In the training phase we take the 

measures obtained for the discrete map and we 

interpolate them in order to obtain a continuous map for 

our environment. In the localization phase the robot 

position is estimates as the position in the wireless-map 

for which the signal received match. In this case these 

positions are continuous. 

A. Discrete mode localization system. 

 In this case a discrete map is necessary and the 

system works in two phases: training phase and location 

determination phase. In the training phase, a wireless-

map is built taking the radio map locations on the 

corridors on a grid with cells placed 80 cm apart (the 

corridor width is 160 cm). For each location, 100 samples 

from the seven APs were taken and the histogram of each 

AP was loaded in a database. This wireless-map forms a 

statistical representation of the environment based on the 

APs. This phase has to be executed only once for a given 

environment. It is necessary that the environment remain 

consistent from this phase to the localization phase for 

localization to work. In the location determination phase 

the histogram of the samples received from each AP are 

correlated with the histograms of the wireless-map and 

the position associated to the highest correlation is 

estimated as robot location. 

 In order to test that the environment remains 

consistent between the training phase and the localization 

phase we have obtained the mean value of the received 

measures for the different 67 positions in the training 

phase and on a different excursion through the same 

space a few hours later. Figure 5 shows the signal 

consistency for the AP4. The mean values for the training 

phase are shown with asterisks and the mean values for 

the posterior phase are shown with circles. 

 Location of the robot is defined as a point with two 

degrees of freedom. A specific point in the environment 

is chosen as the origin and the location of the robot is 

specified in terms of Cartesian coordinates with respect to 

this origin. 

Fig. 5 Signal consistency from AP4

 We represent the wireless-map tuple by one set of 

readings from each Access Point per cell, as can be seen 

in equation (2): 

(2)})AP,...,AP,{APy,(x, k21

 where (x,y) represent Cartesian coordinates of a 

physical point centre of each cell on the map and 

{AP1,AP2,...,APk} represent vectors containing the set of 

readings collected from Access Point 1,2, …k. 

B. Continuous mode localization. 

 The explained discrete mode is useful for 

localization purposes but doesn’t work very well when 

the goal is to fusion WiFi information with the 

information obtained from other sensors (odometry, laser, 

etc.) in order to develop a robust metric navigation 

system for a robot. In this case is more interesting to 

obtain a continuous measure. To solve this problem we 

propose to interpolate the mean values of the received 

signal from each access points using a Radial Basis 

Function (RBF) network. Using this technique we obtain 

interpolated radio maps for the environment where the 

robot can moves and for each AP as the shown in Figure 

6 for the Access Point number 2. The input points for the 

RBF network are remarked with crosses and the solid 

surface shows the interpolated map. 

Fig. 6. Interpolation for received signal from AP2 

with RBF Input network 2 

 The inputs of the RBF are the real location of the 

robot and the outputs represent the mean value of the 

histogram in this location {APx}. 

 Once we have obtained a continuous radio map in 

the training phase, we implement a new RBF network to 

obtain the robot position estimation. In this case, the RBF 

inputs are the received signal of the different Access 

Points {AP1,AP2,…,AP7}, and the outputs are the 

estimated position ( )ŷ,x̂ . Figure 7 shows the process of 

the localization in continuous mode. 

 For testing this method we have obtained 1000 

random locations in the environment and we have 

calculated the error between the RBF estimated position 

and the real value. The mean square error obtained is 2.47 

m. This value can be acceptable considering that no 

training points have been using in the testing. 
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Fig. 7 Continuous mode localization architecture

V. REDUCING CALIBRATION EFFORT

 The main problem that present the localization 

systems based in WiFi with radio map is the manual 

generation of the map. The accuracy of such systems 

usually depends on meticulous calibration procedure that 

consists of physically moving a wireless client to many 

different known locations, and sometimes orientations, 

inside a building. It may be unrealistic to expect anyone 

to spend the recourses on such work. Conscious of this 

problem we have used a robot which is able to take 

automatically the WiFi signal in the different locations 

and we have achieved an experiment to minimize the 

effort of the calibration. 

 As is explained in [14] the calibration effort is 

reduced by way of reduce: 

 1) The time at each location: the time that they spend 

in a static position to obtain the received signal measures. 

 2) The number of locations: represent the necessary 

locations to obtain a reference radio map. 

 They reduced the time at 17% of total and they 

obtain only a growth of 12% in the mean square error.  

 In this work, the number of calibration locations 

from the original full set is progressively reduced. The 

authors choose k locations from the original calibration 

set running a k-means clustering algorithm on the original 

locations to make k clusters. Then, they picked the k 

original locations nearest the k cluster centroids as those 

for calibration. 

 In our case, we have used the reducing of the 

locations number with the k-means algorithm but instead 

of selecting the k locations nearest the k cluster centroids 

we have used the k cluster centroids. An example for a 

reducing of 90% of the calibration positions is shown in 

Figure 8. 

 Respecting the reduction of time at each calibration, 

we have reduced the number of measures taken in each 

position from 100 to 10. This measures reduction 

supposes a time reduction from 35 s to 3,5 s. The results 

of these experiments are shown in the next section. 

Fig. 8. The k cluster centroids for 10% of reducing 

VI. EXPERIMENTAL RESULTS

 In this section, we present the experimental results of 

our robot localization system in a simulated mode using 

data collected in real mode. 

 In this mode, the robot moves in the environment and 

the WiFi readings are collected to a file during the 

moving.  

 The simulation environment is shown in Figure 9. 

This figure shows three corridors (corridor 3 and 4 and 

main corridor of the environment). Also the trajectory 

followed by the robot to collect the information is shown. 

Then, this collected information will be used to obtain the 

results in simulate mode. 

Fig. 9. Environment of simulation and the trajectory 

followed by the robot to collect information. 

 In a first experiment we have tested the reduction of 

the locations number. To do that, we have used a 

reduction about all training locations progressively from 

100% to 10%. We have run a k-mean algorithm to 

progressively reduce k cluster centroids, and then we 

have selected those as the training locations. We have 

tested this reducing method with the Continuous Mode
localization system, and we have achieved the next 

results shown in Figure 10. In this, the mean square error 

versus the calibration effort is shown. The x axis 

represents the locations fraction used for the system 

training respect of the overall. The y axis represents the 

obtained mean square error. 

                                                                                             1549

Authorized licensed use limited to: Univ de Alcala. Downloaded on July 20, 2009 at 10:37 from IEEE Xplore.  Restrictions apply.



Error (rms) vs. Calibration Effort
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Fig. 10. Reducing the number of calibration locations for training. 

 Is important to note that our system is working in 

worse conditions than in the [14] because our test 

positions are random and in [14] are training positions. 

Nevertheless, we have obtained a mean square error of 

2.57m for all locations in training phase, which is lower 

than the obtained in [14]. Taking a 40% of the overall 

training locations, the mean square error increases up to 

4.78m. 

 The second experiment that we have carried out is to 

reduce the samples per location as in the training phase as 

in the localization phase. 

 To test this experiment we have used the Discrete
Mode localization system to obtain the decrease of the 

correct localizations. As can be seen in Figure 11, we can 

generate a radio map using the 10% of the overall 

samples obtaining a percentage of correct localizations of 

92,53% with only 18 samples collected in the localization 

phase. 
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Fig. 11. Reducing the number of calibration locations for training. 

VI. CONCLUSIONS AND FUTURE WORKS

 In this paper, we have presented a robot localization 

system based on a priori wireless-map for indoor 

environment using different methods of localization such 

as continuous mode localization and discrete mode 

localization. The radio map has been obtained 

automatically using a robot able to navigate in semi-

autonomous way. 

 We have analysed the main causes for the variation 

of the WiFi signal strength and we have demonstrated 

that this variations are easily reduced by way of obtaining 

a histogram instead of a simple measure. 

 With our system we have obtained a global 

localization error of 0% for discrete mode localization in 

a real mode with real data obtained from the WiFi robot 

interface for 50 samples in training phase and 18 samples 

in localization phase. 

 Also we have obtained a global localization system 

with a mean square error of 2.57m in a continuous mode 

in a simulated mode with real data recollected from the 

WiFi robot interface. Although this error can seem high 

for a navigation application we must think that this has 

been obtained using single locations. In the practice this 

value can be reduced using tracking techniques over time 

and applying data fusion with other sensors of the robot. 

 We have obtained some preliminary results of WiFi 

and odometry fusion using a Particle Filter [12] and we 

have obtained a location error below to 40 cm. 

 In the near future we have the intention of testing this 

system in the all environment with the four corridors 

instead of the corridors 3 and 4. 

 Also we want to apply the system to a different 

mobile platform such a PDA carried by a man. 
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