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Abstract - The work described in this paper explores a new 

solution for tracking multiple and dynamic objects in complex 

environments. An XPF (Extended Particle Filter) is used to 

implement a multimodal distribution that will represent the 

most probable estimation for each object position and velocity. 

A standard PF (Particle Filter) cannot be used with a variable 

number of obstacles; some other solutions have been tested in 

different previous works, but most of them require heavy 

computational resources at least for a high number of obstacles 

to be tracked. The solution described here includes a clustering 

procedure that increases the robustness of the probabilistic 

process in order to provide on-line adaptation to the variable 

number of clusters. The result is the XPFCP: Extended 

Particle Filter with Clustering Process. The presented 

algorithm has been tested using stereovision measurements; 

the results included in the paper show the efficiency of the 

proposed system. 

Index Terms – Multimodal estimator, tracking, probabilistic 

algorithms, extended Particle Filter. 

I. INTRODUCTION

 Probabilistic algorithms have shown their reliability in 

solving estimation problems since more than fifty years ago. 

These methods were soon applied to localization problems 

in autonomous robot navigation ([1] [2]). 

 PFs (Particle Filters) were developed in the 1990s as the 

way to implement a discrete distribution and to develop a 

weighed sampling representation of the Bayesian filter, in a 

computational cheap fashion, in the framework of the 

research carried out by Isard and Blake ([3][4]). 

 The problem of tracking multiple objects appeared with 

the first autonomous robots, and probabilistic algorithms 

were soon applied to solve it ([5] [6]). 

 At this point, JPDAFs (Joint Probabilistic Data 

Association Filters) have exhibited the highest reliability 

([7]). These techniques use a standard PF, or a Kalman 

Filter, to track each single object. Conversely, the 

complexity increases when dealing with a dynamic number 

of objects, requiring a high computational cost that depends 

on the number of objects under tracking. 

 The challenge of the XPFCP (Extended Particle Filter 

with Clustering Process) presented here is to use a single 

multimodal distribution in order to model the different 

obstacles in the environment. By doing so, the global 

execution time will be made constant and lower than by 

using the previously mentioned techniques. 

 The proposed algorithm was firstly described in [8]. It 

is based on XPFs (Extended Particle Filters) for multiple 

obstacles [9]. A clustering process has been added to the 

XPF so as to increase the robustness of the estimator 

presented in [9]. 

 The algorithm described in [8] is based on an adapted 

standard PF that dynamically inserts particles from new 

detected objects and includes a clustering process. The 

functionality of the XPFCP was presented in [8], where the 

system was implemented using sonar measurements 

 In this paper, sound improvements have been made, and 

the resulting XPFCP performance is shown. Stereovision 

data are used to track obstacles in dynamic indoor 

environments. All real results achieved up to date are 

described.

II. THE MODEL

A. The model equations 

 The main objective of the XPFCP is to model the 

movement of the objects that surround an autonomous 

navigation platform in a complex environment. 

 In order to achieve this goal, the different detected 

objects have been characterized by a dynamic model, in 

which the state vector includes the obstacles relative 

position and speed, in Cartesian coordinates. 

 The following equations show the model used to 

estimate the position and dynamics of the objects: 

a

x

z

y

x

z

T

T

f

f

f

x

z

y

x

z

rt

t

t

t

t

t

t

t

t

t

t

t
()

()

()

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

2

2

1

1

1

1

1

 (1) 

c

x

z

y

x

z

y

x

z

ot

t

t

t

t

t

t

t

t

t

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

  (2) 

where:
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x z yt t t  is the position vector in Cartesian 

coordinates. The position vector is relative to the centre 

of the navigation platform. x  and z  axes conform the 

moving plane for the robot, and y  represents the height. 

x  and z  represent the objects’ movement in x  and z
axes respectively. The speed in y  axis is not considered, 

as the height of any element in the environment is 

considered to be constant. 

T  represents the sampling time of the estimation 

process.

f1()  determines the height of the element being tracked 

by the estimator. The function basically limits the height 

of the object being tracked in order to increase the 

robustness and the complexity of the estimator. 

f 2 ()  is used to modify the velocity of the object under 

tracking. This function depends on the speed of the 

clusters identified in the clustering process. 

rt  and ot  are the noise vectors related to the state 

vector (representing the accuracy of the system model 

itself) and the output vector (representing the accuracy 

of the measurements), respectively. 

 The values of these two vectors are very important for 

the evolution of the estimator, as rt  determines the spread 

capability of the particles that identify each object, and ot

is used in the equation that yields the ‘a posteriori’

probability of the particle set. Some empirical work was 

needed to adjust them. 

B. Adapting vision measurements to the proposed model 

 To obtain position measurements of the objects that 

surround the robot, a stereovision system has been used. A 

vision process is implemented to extract position 

measurements (3D coordinates) from 2D images. It is based 

on the epipolar geometry between the two cameras located 

in the testing platform. 

 The vision system is built upon two monochrome 

digital cameras, synchronized by a Firewire connection, and 

located in an arrangement onboard a mobile robot with a 

30cm baseline. 

 A classification algorithm has been designed to 

organize data from the vision procedure into two different 

groups: data from the obstacles that are the objective of the 

probabilistic tracker (these elements will be called 

‘obstacles’), and data from the objects that compose the 

static environment (that will be called ‘objects’).

 On the one hand, output data from the classifier output 

belonging to obstacles will be used by the probabilistic 

estimator for tracking the dynamics of this kind of elements 

in the environment. On the other hand, data belonging to 

objects are stored in a file for other possible purposes.  

 Fig. 1 shows the functional description of the classifier, 

which includes the procedure implemented to extract 3D 

points from the 2D left and right images. The third 

dimension (height = y ) is used in this work to filter the 

possible noise from the 2D images and the epipolar 

matching and to increase the robustness of the clustering 

process.

 The combination of the camera plus the matching 

algorithm exhibits an important noise in stereovision 

measurements. In this application, the noise ot  has been 

characterized as a Gaussian distribution with 0  (white 

noise) and 50 mm, after the adequate calibration. The 

sampling rate of the stereovision sequences has been tested 

from 66ms (15fps) to 33ms (30fps) with satisfactory results. 

 The execution time of the classification algorithm is 

around 60ms, so a real time data acquisition system for 

stereovision can be carried out using the proposed 

procedure.

 Fig. 2 shows the output of the classifier in one of the 

experiments along 6 frames of the global sequence. The 

results for each experiment are displayed in 3 vertically 

organized images: 

The top image shows the output of the Canny filtering 

process, where both obstacles and objects edges are 

mixed in the image.  

The picture in the middle one shows the result of the 

classification process in the XY projection ( x  range is 

from -8m to 8m, and z  range is from 0.5m to 16.5m). 

White dots represent the measurements that, according 

to the classifier results, belong to obstacles.  

The bottom one shows the left image of the associated 

frame, where the points detected as obstacles have been 

plotted in their relative XYZ position. 

 Once the classification process has been performed the 

resulting obstacle data set can be inserted in the 

probabilistic estimator.  

III. THE EXTENDED PARTICLE FILTER

 In these paragraphs, the functionality of the proposed 

XPF is explained. A more complete description of the 

algorithm can be found in [8]. 

A. The XFP 

 The main loop of a standard PF ([10] [11] [12]) starts at 

time t  with a set NisS i

tt ..1/  of random particles 

representing the posterior distribution of the state vector 

)( 1:11´ tt cap  estimated at the previous time step. 

Fig. 1. Functional description of the vision-based  classification algorithm. 
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 These particles are propagated by the system model (1) 

to obtain a new set 
'

tS  that represents the prior distribution 

of the state vector at time t , )( 1:1 tt cap .

 The weight of each particle NiwW i

tt ..1/  is 

then obtained comparing the measured output vector and the 

predicted one based on prior estimations. 

 Using the weighing vector, and applying the selected 

resampling scheme, a new set 
''

tS  is obtained with the most 

probable particles, which will represent the new 

)( :1 tt cap .

 The standard PF estimates quite well the evolution of 

any kind of single object defined by its model, but as 

mentioned in [9], two constraints make it useless in order to 

track multiple and dynamic objects: 

The standard PF is not able to estimate new appearing 

objects in the environment because the measurements 

related to new objects would be rejected at the 

resampling stage. To solve this problem, a re-

initialization phase is included in the PF standard loop to 

insert new particles directly from the measurements in 

the sample set. The resampling step also needs to be 

modified so as to allow the incorporation of the new 

particles. 

In order to track multiple objects, the importance 

sampling step should be modified as the likelihood has 

to be calculated depending on the similarity between 

each particle and the measurements from its 

corresponding object. If it is not the case, the particles 

related to the new object can also be rejected as 

mentioned in the previous paragraph. 

 Fig. 3 presents a graphical description of the XPF. The 

functionality of the modified re-initialization, importance 

sampling, and resampling methods is detailed in the 

following paragraphs.

B. The effect of the XPF tracking multiple objects 

 1) The re-initialization stage: A re-initialization of the 

sample set at each time step has to be done, inserting on it 

M t
 samples directly taken from the measurements. 

 With this modification, the distribution )( :1 ttm cap

from the new environmental configuration is combined with 

the posterior distribution )( :1 ttp cap  to obtain a new 

expression according to (3): 

)()1()()( 1:111:111:11 ttptttmttt capcapcap (3)

where t  is the factor that weighs up the distribution 

association. It is fixed by the relation between the M t

samples directly inserted from the output vector measured at 

t 1  and the total number of samples ( N ) in the particle 

set ( N
M

t
t ).

Fig. 3. Description of the XPF functionality. 
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Fig. 2. Results of the classification algorithm. 
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 This single distribution will adapt itself over time to 

finally represent simultaneously the state vector of all 

different objects that exist in the scene at each moment. 

 It must be remarked that the reinforcement of the new 

obstacles being tracked is not ensured if measurements are 

randomly selected from all the input data. This problem can 

be solved by doing an oriented selection of the particles to 

be inserted at the re-initialization phase. The organization of 

the necessary measurements is achieved thanks to the 

proposed clustering process.  

 2) At the importance sampling stage: To enable the 

possibility of representing multiple objects in a single 

distribution, the particle weights at the importance sampling 

step have to be obtained according to the specific object that 

is being tracked by each particle:

 To achieve this goal, the base function used to obtain 

the likelihood is modified as follows: 

2

2

2)(
td

tt eacp      (4) 

where:

2
min j

t

i

t
m

i

t ccd
t

    (5) 

 As shown in (5), the new distribution is obtained from 

the minimum distance from each particle 
i

tc  to all 

measurements 
m

tc  at each time step.  

 Function d t  has the problem (as commented in [9]) of 

giving more weight to the objects that are measured with 

higher accuracy, probably rejecting particles related to the 

most poorly sensed objects. The clustering process included 

in the final XPFCP will also solve this problem. 

 3) At the resampling stage: To insert the new M t

particles, the resampling step is also modified. In this case, 

only N M t
 samples have to be selected from the 

N existing particles in the 
'

tS  sample set to generate 
''

tS .

 Again, the proposed clustering process can be used to 

selectively choose the particles to be resampled according to 

their cluster association. 

IV. THE CLUSTERING PROCESS

A. The modified k-means algorithm 

 A segmentation procedure has been designed to 

organize the measurements that come from the stereovision 

data (previously classified as obstacles’ data) in a variable 

number of clusters. 

 This method is based on a standard ‘k-means’ algorithm 

([13]) with unknown initial number of clusters k t  (Fig. 4). 

Some improvements have been included to adapt it to its 

specific use in the probabilistic estimator. The 

improvements are designed to enhance the probabilistic 

tracker robustness, and are mainly the following:

 1) Cluster updating: Instead of randomly selecting the 

elements that conform the initial centroids to find the cluster 

organization, these are obtained from the previous 

segmentation phase by means of an updating step that relies 

on the model (1) (cluster movements can be estimated by 

calculating its centroid dynamics). Using this procedure the 

algorithm is faster as long as the clusters are slightly 

predefined at the beginning of the searching action. 

 2) The cluster validation: Once a new cluster is created, 

it is converted into a candidate that will not be used in the 

probabilistic algorithm until it will be possible to follow its 

dynamic evolution. This is achieved after a certain number 

of iterations. The same procedure is used to erase a cluster 

when it is not validated by new measurements after a 

specific number of iterations. This method ensures the 

robustness of the probabilistic estimator against spurious 

measurements.

B. The effect of the clustering process in the probabilistic 

tracker

 A similar solution to the XPF for tracking multiple 

obstacles was described in [9]. That algorithm has a 

problem of robustness with low accurate measurements. 

 The proposed clustering process is inserted aiming at 

increasing robustness. On the other hand, an environmental 

adaptive multimodal estimator can be implemented relying 

on this information. 

 The effect of the segmentation in the XPF is described 

in the following paragraphs:  

 1) At the re-initialization stage: Based on the cluster 

organization, it is possible to select the measurements to be 

included in the prior distribution )( 1:11 tt yxp  at the re-

initialization step according to their object assignment: 

M mt t
i

kt

     (6) 

where:

),( i

tt

i

t clusterkfm     (7) 

 The tracking probability of new objects is high from the 

beginning, since inserted particles are randomly chosen 

from groups that exhibit high-level concentration of 

measurements. 

Fig. 4. Description of the ‘k-means’ clustering algorithm. 
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 This fact prevents situations in which particles related 

to poorly sensed objects are removed from the multimodal 

distribution at the resampling phase.  

 The 
i

tm  particles to be inserted from each cluster are 

completed with some others, randomly selected from its 

history buffer. History buffers contain measurements 

assigned to each cluster in previous time steps as long as 

they are not very distant from the current cluster centroide. 

 2) At the importance sampling stage: The cluster 

structure is used to obtain a new likelihood function in 

which each particle is compared to the closest cluster 

centroid: 

2
min j

t

i

t
k

i

t ccd
t

   (8) 

in (4), where 
k

tc  represents the centroide location for each 

cluster.

 By using this method the predicted sample set 
''

tS  will 

be very close to the real state vector, yielding high values 

for the likelihood function )( :1 tt acp  at the importance 

sampling step, and thus improving the estimator robustness. 

 3) At the resampling stage: The cluster information can 

be used to do a dynamic assignment of the N M t

particles to be resampled among the k t  detected clusters, 

according to their likelihood too. 

 Fig. 5 shows the performance of the final XPF 

designed, including the clustering process (XPFCP). 

V. THE RESULTS

 Fig. 6 displays the result of a stereovision-based test 

using the XPFCP. As can be observed, the frames have been 

taken from a complex and unstructured indoor environment.  

 Thanks to the classification algorithm presented in 

paragraph II (Fig. 2), only those measurements related to 

obstacles in the environment are tracked by the probabilistic 

estimator. 

 The figure shows the XPFCP output in 10 frames in a 

global sequence going from a) to j). Each frame has 2 

vertically organized images: 

The upper one displays the left image. Green dots 

represent the measurements ( tc  in the proposed model 

(2)), red dots represent the particles’ positions (part of 

ta  (1)), and the square represents the output. Cluster 

shapes (modelled as vertical cylinders in the 3D world) 

show the final and deterministic number and position of 

obstacles in the environment. 

The lower image presents the XY projection of the 3D 

results shown in the upper figure. The meaning of the 

different elements that appear in this plot is the same as 

the one explained in the previous paragraph. In this case, 

a circle is the corresponding shape of the cylindric 

model at the end of each XPFCP execution loop. 

 The test has been done with a total number of N 600
particles and 

t 0 6. new inserted particles at the re-

initialization step. As the total number of particles is kept 

constant, the XPFCP execution time is also constant, with a 

value of around 18ms. Therefore, the sampling time of the 

global application (classification process and XPFCP 

algorithm) will be limited by the first one, to 60ms. It 

implies a performance of 15fps in the final tracking system. 

This value is more than enough for a real time tracking 

system in indoor environments. 

 The results displayed in Fig. 6 show that the tracker 

follows correctly the position of each obstacle. 

 Some problems appear with occlusions. In the 

experiment shown in Fig. 6, only h) and i) situations depict 

this problem. Some proposals are already being tested in 

order to solve it, as mentioned in the next paragraph.  

VI. CONCLUSIONS AND FUTURE WORK

 A robust estimator of obstacles movement in 

unstructured, indoor environments has been designed and 

tested. 

 The proposed XPFCP is based on a probabilistic 

multimodal filter that is completed with a clustering process, 

obtaining highly accurate and robust multitracking in 

complex environments. 

 A specific classification algorithm for stereovision data 

has also been developed. This process is able to separate 

vision measurements belonging to obstacles from those 

belonging to objects that are part of the environment, 

simplifying the XPFCP dynamic estimation task. 
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each history buffer (white)

Clustering new measurements (white)

from updated clusters at t-1

History buffers (black) are reconstructed using new 
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to improve the clustering efficiency) 
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Fig. 5. Description of the final proposed estimation algorithm (XPFCP).
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 The clustering process improves the probability of new 

appearing obstacles, increasing the robustness of a standard 

multimodal estimator, proposed in other solutions. A 

subtractive clustering algorithm is being tested in order to 

improve the behaviour of the estimator in occluded 

situations. 

 In addition, the execution time of the global application 

is low enough to allow for real-time tracking of fast objects 

in complex environments.  

 Finally, the XPFCP designed can easily fuse data 

coming from different kinds of sensors, making the final 

application more flexible and adaptive to different 

environmental conditions. 
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Fig. 6. Sequential images of a real time experiment using stereovision data.
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