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 Abstract - In this paper we present the low level navigation 
system carried out in a Partially Observable Markov Decision 
Process (POMDP) based on WiFi and ultrasound observations. 
We use an H-shape model for the corridor, obtained from 
ultrasound range sensor. This system leads the robot to follow 
a corridor while it’s detecting transitions for each door in 
autonomous mode. We demonstrate that this system is useful 
as low level navigator in a POMDP for indoor environments 
with a real robot. Some experimental results are shown. 
Finally, the conclusions and future works are presented. 
 
 Index Terms - indoor navigation system, low level robot 
control, POMDP, WiFi observation, autonomous system. 
 

I.  INTRODUCTION 

 The boom in wireless networks over the last few years 
has given rise to a large number of available mobile tools 
and their emerging applications are becoming more and 
more sophisticated by year. Wireless networks have become 
a critical component of the networking infrastructure and 
are available in most corporate environments (universities, 
airports, train stations, tribunals, hospitals, etc) and in many 
commercial buildings (cafes, restaurants, cinemas, shopping 
centres, etc). Then, new homes are slowly starting to add 
WiFi services in order to enable mobility to perform many 
routine tasks, in the known as intelligent houses. There are 
even emerging some projects about WiFi enabled cities as 
Paris, Barcelona, etc. 
 The localization, navigation and automatic map 
building are some of the principal problems in mobile 
robotics. There are several ad-hoc methods that they are 
only useful in singular applications. 
 The recent interest in location sensing for network 
applications and the growing demand for the deployment of 
such systems has brought network researchers up against a 
fundamental and well-known problem in the field of the 
robotics as is the localization. Determining the pose 
(position and orientation) of a robot from physical sensors is 
not a trivial problem and is often referred to as “the most 
important problem to providing a mobile robot with 
autonomous capabilities” [1].  Several systems for 
localization have been proposed and successfully deployed 
for an indoor environment. Examples include infrared-based 
systems [2], various computer vision systems [3], ultrasonic 
sensors and actuator systems [4], physical contact based 
actuator systems [5], laser range finder [6] and radio 
frequency (RF) based systems [7]. 
 Many mobile robot platforms use wireless networking 
to communicate with off-line computing recourses, human-
machine interfaces or others robots. Since the advent of 

inexpensive wireless networking, many mobile robots have 
been equipped with 802.11b wireless Ethernet. In many 
applications, a sensor from which position can be inferred 
directly without the computational overhead of image 
processing or the material expense of a laser is of great use. 
Many robotics applications would benefit from being able to 
use wireless Ethernet for both sensing position and 
communication without to add new sensors in the 
environment. 
 WiFi location determination systems use the popular 
802.11b network infrastructure to determine the user 
location without using any extra hardware. This makes these 
systems attractive in indoor environments where traditional 
techniques, such as Global Positioning System (GPS) [8] 
fail. In order to estimate the user location, wireless Ethernet 
devices measure signal strength of received packets. This 
signal strength is a function of the distance and obstacles 
between wireless nodes and the robot. Moreover, the system 
needs one or more reference points (Access Points) to 
measure the distance from. Unfortunately, in indoor 
environments, the wireless channel is very noisy and the 
radio frequency (RF) signal can suffer from reflection, 
diffraction and multipath effect, which makes the signal 
strength a complex function of distance. 
 The authors demonstrated in [9] that the robot 
localization based on a WiFi signal strength measure is 
possible but this sensor is affected for different factors. An 
important factor is the small scale error; this error means 
that the signal is affected in several dBms when the robot is 
moved in a distance down to the wavelength. Another 
important factor comes from the error in the small 
orientation, this error means that the robot deviates in a few 
degrees from the ideal orientation. 
 Recently they have appeared probabilistic methods to 
give very useful solutions to the localization, navigation and 
automatic mapping using uncertainty information. These 
methods are based on Bayesian networks or Markov 
models. 
 For a global navigation system, in which the objective 
is the guidance to a goal room, a topological discretization 
is appropriate to facilitate the planning and learning tasks. 
 In this context, topological representation of the 
environment and observations using sensors with high 
uncertainty, the optimal methodology in order to build a 
robust navigation system is to use a Markov model known 
as POMDP. 
 The POMDP is a mathematic model that permits to 
characterize systems with partial observability. In this work 



two different kinds of partial observations are used: WiFi 
signal strength and ultrasound sensor. 
 A POMDP doesn’t know its real state because the 
uncertainty of the observations. The POMDP maintains a 
belief distribution called Bel(S) or Belief Distribution (Bel) 
to solve it. This distribution assigns to each state s a 
probability; this probability indicates the possibility of being 
the real state. 
 The Belief Distribution must be updated whenever a 
new action or observation is carried out. In some many 
applications, these two conditions are simultaneous. When 
the low level controller detects a transition a new 
observation is taken. 
 To realize an action and reach the next state the 
POMDP needs a local navigation system that positions the 
robot. This local navigation system or low level controller is 
the system able to move the robot between the states and it 
contains the transitions detector for indicating to the 
POMDP the transition among nodes assuming some 
positioning and orientation errors. A deep explanation about 
the implemented navigation system using POMDP has been 
presented by the authors in [10]. 
 In this paper, we present the low level navigating 
system used in our POMDP based on WiFi and ultrasound 
observations for our robotic platform. Firstly, we present the 
modelling of the corridor using an H-shape model and then 
we propose the non-linear lateral controller that leads the 
robot for the centre of the corridor. We experimentally 
demonstrate that the system performs well in real 
applications. Then, we present the results in real mode 
obtained from our Pioneer 2AT robot. Finally we extract 
conclusions about it and present the future works in this 
line. 

II.  LOW LEVEL NAVIGATION SYSTEM 

A. Estimation of corridor model 
 The use of a model is crucial in order to robustly 
reconstruct the corridor geometry. In this case, the robot is 
to operate in straight corridors. Accordingly, a H-shape 
model is adequate to represent the real geometry of the 
corridor. For that purpose, the width of the corridor needs to 
be a priori known (based on the map) or on-line estimated. 
Based on the corridor width, a consistent H-shape corridor 
model is computed at each iteration using least squares 
techniques. The polynomial equation of the left wall is 
constrained by the polynomial equation of the right wall 
since they have to be parallel to each other. A H-shape 
polynomial model can then be calculated by taking 
advantage of this constraint. The adjustment of the H-shape 
model is computed in two steps. In a first approach, the 
parameters of the individual straight lines describing the left 
and right walls (yleft=mleftxleft + bleft, yright=mrightxright + bright)  
are obtained based on ultrasound measures using least 
squares operators, yielding mleft, bleft, mright, bright. In the 
previous computation, variables yleft, xleft, yright, xright are 
relative to the robot centre of gravity. Based on these 
variables, a second step is realized in order to compute the 
H-shape constrained model. Let m denote the slope of the 
H-shape model. In a first approximative approach, m can be 
computed based on mleft and mright by considering the 
orientation angle of the H-model to be the average of the 

orientation angles of the individual straight lines that 
describe the left and right walls, this leads (1). 
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 Let Ems denote the mean square error existing between 
the H-shape polynomial model and the measurements 
obtained by the ultrasound sensors, as expressed in (2). 
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 Where Nleft and Nright denote the number of points 
associated in the current iteration to the left and right walls, 
respectively, yln and yrn represent the y coordinate of the nth 
measurement associated to the left and right wall, and yHln 
and yHrn stand for the y coordinate of the nth point 
corresponding to the left and right edges of the H-shape 
model that describes the corridor. Accordingly, the 
estimation of the appropriate parameters of the H-shape 
model is carried out by minimizing the derivative of Ems. 
The error can be expressed as a function of the corridor 
orientation, represented by parameter m, and also as a 
function of parameter b, where b stands for the independent 
term of the straight line that describes the centre of the 
corridor as depicted in Figure 1. 
 

 
Fig. 1 H-shape corridor model 

 
 The left and right edges of the corridor can then be 
constrained by parameters m, b, and the corridor width, 
denoted by W. This allows to compute the derivative of Ems 
yielding an expression that depends only on parameter b, 
assuming that m is already known as described by (3). 
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 Where xln and xrn represent the x coordinate of the nth 
measurement associated to the left and right wall, 
respectively. The minimization of (3) with respect to 
parameter b yields the value expressed in (4). 
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 Upon computation of parameters m and b, the 
estimation of the H-shape model that describes the corridor 
is complete. The corridor model is computed in relative 
coordinates with respect to the robot centre of gravity. 
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Accordingly, it provides the basis to measure the lateral and 
orientation errors of the robot with regard to the centre of 
the corridor. Figure 4 depicts a graphical example of 
corridor model estimation during on-line operation. The 
measurements associated to the model are represented by 
green points, while the corridor model is represented by a 
couple of straight lines, as observed in Figure 2. To avoid 
perturbations such as doors and moving obstacles, the 
distance between the measured points and the previous 
corridor model must be bellow 5 cm in order to validate the 
measurement and include it in the estimation process.  
 

 
Fig. 2 Online estimation of corridor model 

 
 The validation process allows to easily detect doors in 
the corridor walls. Considering the 5cm validation band, all 
doors (either open, close, or ajar) will be detected as an 
open gap in the wall model, as depicted in Figure 2. Doors 
can be robustly detected even in the presence of sporadic 
moving obstacles (people walking around) by taking 
advantage of a priori knowledge about a door typical width. 
In case the corridor is overcrowded with moving obstacles, 
the current door detection process could fail but in these 
cases the high level navigation system based on POMDP 
would be able to recover the localization of the robot. From 
(4), variables bL and bR for the left and right edges of the 
wall, respectively, can be demonstrated to be as expressed 
in (5). 
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 Based on (4) and (5) the lateral and orientation error of 
the robot with regard to the centre of the corridor can be 
computed as in (6). 
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 Where de represents the lateral error, and θe stands for 
the orientation error. A graphical illustration of de and θe can 
be observed in Figure 3. 
 
B. Lateral Control 
 The main goal of the lateral controller is to ensure 
adequate corridor tracking by correctly keeping the robot in 

the centre of it with appropriate orientation (parallel to the 
corridor walls). This goal is very important in our system in 
order to minimize the WiFi small scale and orientation 
errors. This constraint can be formulated into the 
minimization of the lateral and orientation errors. Thus, a 
model describing the dynamic behavior of de and θe is 
needed in order to design a stable lateral controller. 
 1) Kinematic model: the robot configuration space is 
composed of the global position and orientation variables 
described by (x,y,θ), while the robot angular velocity Τ and 
linear velocity v are the variables of the robot actuation 
space. Mapping from the actuation space to the 
configuration space can be solved by using the so-called 
dead reckoning equations as expressed in (7). 
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 Let’s remark that v represents the velocity of the robot 
centre of gravity, denoted as control point. The kinematic 
model in terms of global position and orientation of the 
robot is converted into a kinematic model in terms of 
relative coordinates. As observed in Figure 3, de is defined 
as the distance between the robot control point and the 
closest point (xd,yd) along the desired trajectory. This 
implies that de is perpendicular to the straight line that 
describes the centre of the corridor at (xd,yd). The tangent of 
the slope of the central line is denoted by θd. It represents 
the desired robot orientation. Based on this, de and θe suffice 
to precisely characterize the location error between the robot 
and the centre of the corridor, as described in (8). 
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 The derivative of de and θe with respect to time are 
demonstrated in (9), while the complete non-linear 
kinematic model for de and θe is formulated in (10). 
 

ωθθθ
dt

)θθ(dθ

θsinv)θθsin(vθcosyθsinxd
..

d
.

d
.
e

edd
.

d
..

e

==−=
−

=

=−=+−=
   (9) 

ωθ

θsinvd
.
e

e
.
e

=

=                                  (10) 

 

 2) Non-linear lateral controller: the lateral error de and 
the orientation error θe must be minimized in order to lead 
the robot along the centre of the corridor. For simplicity, the 
robot linear velocity v is assumed to be constant. The design 
of the control law is based on general results of the so-called 
chained systems theory [11]. The use of the popular tangent 
linearization approach is avoided since it is only locally 
valid around the configuration chosen to perform the 
linearization, and thus, the initial conditions may be far 
away from the reference trajectory. On the contrary, some 
state and control variable changes are posed in order to 



convert the non linear system into a quasi-linear one, termed 
as chained form. Thus, the non linear model for de and θe 
can be transformed into chained form using the state 
diffeomorphism and change of control variables shown in 
(11). 
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 These transformations are invertible whenever the robot 
linear velocity is different from zero. Based on (11), the 
kinematic model can be rewritten as in (12), considering y1 
and y2 as the new state variables.  
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 In order to get a velocity independent control law, the 
time derivative is replaced by a derivation with respect to ς, 
the abscissa along the direction parallel to the centre of the 
corridor, as graphically depicted in Figure 3. 
 

 
Fig. 3 Graphical description of variable ς 

 

 Analytically, ς is computed as the integral of linear 
velocity vΗ, measured along axis ς. The expression of ς is 
provided in (13). 
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The time derivative of state variables y1 and y2 is expressed 
as a function of ς in (14). 
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 Where y’1 and y’2 stand for the derivative of y1 and y2 
with respect to Η. Solving for y’1 and y’2 leads to (15). 
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 As observed in (15), the transformed system is linear 
and thus, state variables y1 and y2 can be regulated to zero 
by using the control law proposed in (16). 
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 Using (15) and (16), the dynamic behavior of y1 with 
respect to ς is demonstrated to be linear, as shown in (17). 
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 This implies that variables y1=de and y2=tanθe tend to 
zero as variable ς grows. The previous statement is 
analytically expressed in (18). 
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 Accordingly, variable ς must always grow so as to 
ensure that the lateral and orientation error tend to zero. 
This condition is met whenever v>0 and -Β/2 < 2e < +Β/2. 
In other words, the robot must continuously move forward 
and the absolute value of its orientation error should be 
below Β/2 in order to guarantee proper trajectory tracking. 
Thus, the non linear control law is finally derived from (15) 
and (16) and formulated in (19). 
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III.  EXPERIMENTAL RESULTS 

 First of all we describe the test-bed used and then we 
present some experimental results to validate the proposed 
local navigation system with the real robot. 
 
A. Test-bed 
 The test-bed was established on the 3rd floor of the 
Polytechnic School building, in the Electronic Department, 
at the University of Alcala. The layout of this zone is shown 
in Figure 4. It has dimensions of 60 m by 60 m with about 
44 different rooms, including offices, labs, bathrooms, 
storerooms and meeting rooms.  
 
 

 
Fig. 4 Test bed environment. 3rd Floor of the Electronic Department 
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 With a circle we remark our target test-bed. Results 
obtained in this area could be applied to all environment, 
because the building and the WiFi Access Points (APs) are 
symmetrically distributed. 
 Seven Buffalo APs (WBRE-54G) were installed at the 
locations indicated in figure 4, five APs were connected to 
omnidirectional antennas and 2 APs (AP3 and AP7) were 
connected to antennas of 120 degrees of horizontal beam-
width. The APs acts as the wireless signal transmitters or 
base stations. 
 As mobile robot we have used a Pioneer 2AT of 
Activmedia robotics with the following configuration: an 
embedded computer with a Pentium III 850MHz, a 16 
ultrasound sensor ring, one Orinoco PCMCIA Gold wireless 
card with a omnidirectional Buffalo antenna placed above 
the robot, the operating system is Linux Red Hat 9.0. We 
modified the wireless tools of Jean Tourrilhes [12] to obtain 
a valid observation for this application and the patch of 
Moustafa A. Youssef for the Orinoco driver [13]. Figure 5 
shows the robot Pioneer 2AT that we have used. 
 
 

 
Fig. 5 Real robot used to test the navigation system developed 

 
B. Lateral and orientation errors 
 We have obtained the lateral and orientation error of the 
proposed low level navigator with the real robot. These 
errors are directly related with the small scale error and 
small orientation error of the WiFi sensor as we have 
explained. It’s desirable that navigator leads the robot with a 
small lateral and orientation errors to take WiFi 
observations with low uncertainty. 
 We have programmed different targets and we have 
obtain the lateral and orientation error of the robot. 
 Figures 6 and 7 show the percentage of lateral and 
orientation errors respectively, obtained from 40 different 
targets. The errors have been divided by ranges, referenced 
to the wavelength for the lateral error and to the degrees for 
the orientation error. 
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Fig. 6 Results from 40 experiments in lateral error (%) 

 As can be seen in Figure 6, the accumulated probability 
that the lateral error is under the 1/2 of the WiFi wavelength 
is 70%. 
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Fig. 7 Results from several experiments in orientation error (%) 

 
 In the same way in Figure 7, we can see that the 
accumulated probability that the orientation error is under 3º 
is 78%. 
 In both cases the accumulated percentage between the 
explained margins allows to obtain WiFi observations with 
low uncertainty. 
 As an example, Figure 8 depicts the lateral error and the 
orientation error evolution during online operation in a 
couple of real robot missions, in which the robot was 
located at the beginning of a corridor. 
 The robot linear velocity was set to 20 cm/s and the 
previously explained lateral controller led the robot along 
the centre of the corridor. 
 

 
(a)                                                            (b) 

Fig. 8 Results from two different experiments: (a) lateral error (in cm) 
and (b) orientation error (in degrees) 

 
 In both experiments, the orientation error didn’t exceed 
1 degree while the lateral error was under the 1/2 of the 
wavelength. 
 As observed in Figure 8, both de and θe tend to zero as 
the robot moves forward, this indicates that the controller is 
stable. 
 
C. Navigation errors 
 To check that the local navigation system is useful for 
the global navigation system we programmed a several 
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different chained targets. The robot was navigating during 3 
hours with normal daily work activity and obtaining some 
few localization errors as can be seen in Table I. 
 

TABLE I 
RESULTS IN SEVERAL DIFFERENT CHAINED TARGETS 

  Number Percentage 
Direct path 26 65% Successful 
Indirect path 12 30% 
Incorrect 
target 

1 2,5% Failures 

Loops 1 2,5% 
 
 “Direct path” means that the target is reached following 
the ideal trajectory while “Indirect path” means that the 
target is reached after recovering maneuver. 
 
D. Transitions detection errors 
 Another important characteristic in the low level 
navigation system is the fact of obtaining failures in the 
transitions detection. When the low level doesn’t detect a 
transition this introduces uncertainty in the action model. 
 To measure these transitions detection failures, we 
programmed different chained targets. The robot was 
navigating during 1 hour with different conditions of people 
in the environment and then we obtained the transitions 
detection errors as can be seen in Figure 9. 
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Fig. 9 Results of transitions detection error 

 
 When the activity in the environment is null the failures 
are zero, while when people in the environment is raising 
the probability of having a failure also rises. 
 It’s important to note that even with these transitions 
detection failures in the low level navigation system, the 
global navigation system is able to recover the correct 
position and it’s able to reach its target in the majority cases. 

IV.  CONCLUSIONS AND FUTURE WORKS 

 In this paper, we have presented a local navigation 
system for indoor environment that is used as a low level 
navigator in a POMDP navigation system based on WiFi 
and ultrasound observations Then, it works as a robust 
transitions detector for the POMDP topological map. 
 With this structure we have obtained an autonomous 
navigation system very robust and that it is able to recover 
its position in spite of the sensor uncertainty. 

 This low level controller is specially indicated to use in 
this POMDP navigation system because it has a small scale 
and orientation errors and it contributes to take WiFi 
observations with a low uncertainty. 
 In the future, we will try to enhance the algorithm to be 
faster than actual, and then we will plan to take WiFi 
observations only in the interesting states, such as the end of 
the corridors, obtaining a faster and robust algorithm for 
real applications. 
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