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Abstract: The work presented is related to the research area of autonomous 
navigation for mobile robots in unstructured, heavy crowded and highly dynamic 
environments. One of the main involved tasks in this researching area is the obstacle 
tracking module that has been successfully developed with different kind of 
probabilistic algorithms. The reliability that these techniques have shown estimating 
position with noisy measurements make them the most adequate to the mentioned 
problem, but their high computational cost has made them only useful with few and 
structured objects. In this paper a computational simple solution based on a 
multimodal (or extended) particle filter is proposed to track multiple and dynamic 
obstacles in an unstructured environment and based on the noisy position 
measurements taken from sonar sensors. 
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1. INTRODUCTION 
 
The origin of the probabilistic estimators arrives 
quite early on the fifties, with the idea of 
representing the state vector to predict with its 
probability distribution and applying this idea not 
only to the area of tracking in robot navigation. 
There were many advantages in the also called 
Bayesian method (also known as Sequential 
MonteCarlo) from the stochastic ones: the system 
model should not necessary be linear, and the noise 
coupled to measurements should not necessary be 
Gaussian. 
 
The standard particle filter (PF) is a sampling 
weighed representation of the Bayesian filter, 
where each one of the samples taken from the 
continuous probabilistic distribution is called 
particle. The set of particles must be independent 
and identically distributed to achieve a correct 
approximation to the continuous distribution, but 
this can be easily solved with a big enough number 
of particles randomly acquired. These techniques  
 
 

are not extensively used until the end of the 90s in 
the area of interest (Isard and Blake, 1998) with the 
introduction of a selection step in the PF loop to 
avoid the degeneration of the algorithm with time 
(Gordon et al., 1993). The idea consists on 
selecting (or resample) and multiplying the 
particles with high importance weights and 
rejecting the rest. Different alternatives for this part 
were also designed (Van der Merwe et al., 2001). 
 
To achieve a multiple objects tracker different 
options have also been designed during the last 
years (Orton and Fitzgerald, 2000). An initial 
solution is to use a standard PF to track each object 
but this is not efficient as it does not work with a 
dynamic number of objects. Some other solutions 
include an association among the detected objects 
and the particles of the filter over the time (JPDAF) 
(Schulz et al. 2001), although these techniques 
have shown very good results, this work’s aim is to 
find an alternative to JPDAFs, with the same 
reliability, higher robustness and faster results. The 
standard PF, which is proved to be un-efficient 
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tracking multiple objects that appear and disappear 
dynamically, is modified in this work to achieve 
the these specifications. 

 
 

2. DESCRIPTION OF THE DESIGNED 
ALGORITHM 

 
The dynamic and multi-object tracker designed for 
the application mentioned is based on a PF, thus in 
the following paragraphs both the standard 
algorithm and the improvements made will be 
described. 
 
 
2.1 The standard PF 
 
The main loop of a standard PF at time t starts with 
a set { }NisS i ..1/ ==  of random particles 
representing the posterior distribution of the state 
vector to be estimated )( 1..11´ −− tt yxp rr

 at the 
previous time step (t-1). These particles are 
propagated by the system dynamics to obtain a new 
set S ′  that represents the prior distribution of the 
state vector at time t, )( 1´ −tt yxp rr

. The weight of 

each particle { }NiwW i ..1/ ==  is then 
obtained based on the comparison of the measured 
output vector tyr  and the estimated one based on 
the prior estimations. Applying the selected 
resample scheme, a new set S ′′ is obtained with 
the most probable particles that will be the 
new )( ..1´ tt yxp rr

. 
 
The functionality of the algorithm is described in 
Fig. 1. See (Doucet et al., 2000) for a more detailed 
explanation. 
 
 
2.2 The multimodal PF 
 
The standard PF estimates quite well the evolution 
of any kind of a single object defined by its model, 
but as it was already mentioned at the introduction 
of this paper, it has not been designed to track a 
multiple and variable number of them.  
 
To do so, different solutions depending on the final 
application have been proposed as it has already 
been explained in the introduction. The most 
interesting of them for the work proposed in this 
paper is the one presented in (Koller-Meier and 
Ade 2001), because with a single probability 
distribution a variable number of objects can be 
tracked with high reliability and with no need of 
doing a previous association between the different 
measurements and the particles of the distribution. 
 

The most important innovations that were 
implemented at (Koller-Meier and Ade 2001) to 
adapt a standard PF to a multimodal estimator are 
the following: 
 

 
Fig. 1. Description of the standard PF functionality. 
 
Re-initialization: In the standard PF a new 
appearing object is not going to be considered 
unless its state vector is close enough to an already 
existing one, as the output vector does not modify 
directly the sample set of the estimated state vector 
itself but only their importance weights.  
 
To solve this problem a re-initialization of the 
sample set S  at each time step has to be done, 
inserting on it M samples directly from the output 
vector. With this modification, information from 
the new environmental configuration 

)( 1..11 −− ttm yxp rr
is combined with the posterior 

1. Initialize (only at t=0): Obtain the sample set S  with 
N particles from the posterior distribution 

)( 1..11´ −− tt yxp rr
 (this will be done with the prior 

distribution )( 0´xp r
) 

2. Propagate: Obtain the new prior set S ′with the 
model of the state vector to estimate: 

),(),( 11 VSfSvxfx ttt =′⇒= −−
rrr

,     

 where 1−tvr  is the noise signal associated to the 
dynamics of the state vector model, and from which V 
is obtained as a vector of standard random variables 
with statistics defined by 1−tvr . 

3. Importance Sample: Calculate the importance weights 

of S ′  from the likelihood )( tt xyp rr
: 
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 where ),( ..0..0 ttt yxxq rrr
 is the best proposal 

approximation of the posterior distribution. In most 
works this best approximation is substituted by the 
prior one, so the equation is simplified.  

4. Resample: Multiply/reject samples of S ′  with 
high/low importance weights respectively to obtain a 

posterior distribution )( ..1´ tt yxp rr
 represented by a 

new set S ′′  with N particles.  
5. Output: The final estimated vector state is usually 

obtained calculating the mean of the posterior.  
6. Go to step 2…: The sample set S ′′  from the posterior 

distribution )( ..1´ tt yxp rr
 at time t is then used as the 

new set S  for the algorithm implementation in the 
next step, at time t+1. 



distribution )( 1..11 −− ttp yxp rr
 to obtain a new 

expression for it: 

)()1()()( 1..111..111..11 −−−−−− ⋅−+⋅= ttpttmtt yxpyxpyxp rrrrrr γγ
 

where γ  is the factor that weights the distribution 
association up, and that is fixed by the relation 
between the M samples inserted directly from the 
output vector measured at t-1 and the total number 
of samples (N) in the particle set S  ( N

M=γ ).  
 
With this new initialization the single probability 
distribution will adapt itself over time to finally 
represent simultaneously the state vector of all the 
different objects that exist in the environment at 
each time. On the other hand, as new particles are 
directly taken from the output vector, they will be 
very near from the correct value of each new object 
state vector, so they will be assigned with a high 
weight as the algorithm evolutions. This fact allows 
choosing a small value for γ  (thus the evolution of 

)( 1..11 −− ttp yxp rr
 distribution is not affected) 

without the risk that the particles related to new 
objects in S  disappear with the resample.  
 
Resample: To insert the new M particles as 
mentioned, the resample phase is also modified. In 
this case, only N-M samples have to be selected 
from the N existing at the S ′  sample set. The 
resampling process, as well as the rest of the PF 
algorithm is for the rest equal to the standard PF. 
 
This version of the also called extended PF works 
quite well if all objects are sensed with more or less 
the same accuracy, but the authors of (Koller-Meier 
and Ade 2001) explain that if it does not occurs (as 
it can happen easily working with ultrasound 
sensors, as it is the case in the application presented 
in the paper) the sample set may degenerate as the 
related weights can be much larger for some 
objects than for some others. To solve this problem 
different improvements have been made to this 
extended PF in the algorithm proposed in this 
paper, as it will be explained next. 

 
 
2.3. The clustering algorithm 
 
A clustering algorithm has been designed to 
organize the measurements that come directly from 
the sonar in k detected objects. The parameter k is 
dynamically obtained from the measurements 
obtained at each moment, thanks to a prediction 
process implemented in the PF loop. 
 
The clustering process is based on a standard 
kmeans algorithm (Kanungo et al., 2002), but some 
improvements have been included to adapt it to its 
specific use at the probabilistic estimator: 

Standard kmeans: The functionality of the standard 
algorithm is the following: 
 
a. Select randomly k centroids for the clusters. 
b. While the distance from each measurement is not 

minimum to its assigned cluster centroid. 
c. For 1 to all measurements: assign it to the cluster 

whose centroid is the nearest. 
d. If the distance from the measurement to any 

centroid is bigger than a limit, create a new 
cluster, whose centroid is the measurement itself 
(k=k+1). 

e. Recalculate all cluster centroids using the mean. 
f. If a cluster is empty or has very few members it 

is erased (k=k-1). 
 
Cluster movement estimation: Instead of assigning 
randomly the initial centroids they are obtained 
from the previous clustering process, thus the 
algorithm is shorter as the clusters to find are 
slightly predefined. The cluster movement can be 
estimated calculating its dynamics centroid. 
 
Cluster candidate: When a new cluster is created 
(does not come from an initial centroid) it is 
converted into a candidate that is not validated to 
be useful in the probabilistic algorithm until it is 
possible to follow its evolution with its related 
dynamics for a variable number of times. The same 
process is used to erase a cluster. This method 
ensures the robustness of the probabilistic 
estimator to spurious measurements and so 
increments its reliability. 
 
The information obtained from the clustering 
algorithm is used in different parts of the PF loop 
incrementing the possibilities and reliability of the 
probabilistic estimator, as follows: 
 
At the re-initialization step: With a cluster 
organization it is possible to select the 
measurements to be inserted in the prior 
distribution )( 1..11 −− ttp yxp rr

 at the re-initialization 
step, according to their preliminary object 
assignation (in general M/k measurements from 
each cluster). As newly inserted particles are 
chosen randomly from groups with high level 
concentration of measurements their likelihood is 
very high from the beginning. This fact prevents 
from situations in which particles related to objects 
poorly sensed are erased from the multimodal 
distribution at the resampling step, as occurred in 
(Koller-Meier and Ade 2001). The M/k particles to 
be inserted from each cluster are completed with 
some others randomly selected from its 
accumulation buffer, which contains measurements 
assigned to each cluster in previous time steps and 
that are not very distant from its actual centroid. 
New particles taken from the accumulation buffer 
make the estimation more stable. 



At the propagation and importance sampling step: 
The cluster structure is used to make particles 
evolution and their likelihood according to their 
one most similar cluster model and output vector 
respectively. With this method the predicted 
sample set S ′  is going to be very close to the real 
state vector, obtaining high values for the 
likelihood function at the importance sampling 
step, and thus improving the robustness and 
reliability of the global estimator. 
 
At the resampling step: The cluster information can 
be used to do a dynamic assignation of the N-M 
particles to resample among the k different clusters 
detected, and according to their likelihood too. 
Particles are effectively resample, so the cluster 
structure is only used to select the most adequate 
likelihood measurement. This fact also prevents 
from the situations of objects poorly measured 
whose related particles are erased from the 
posterior, as mentioned before. 
 
It is important to remark that the clustering process 
is only a help to insert with likelihood enough, the 
newly detected objects into the obstacle position 
density function. A PF is needed to obtain the 
stochastic model of the position measurements, 
which will be useful to implement a position 
estimator. 
 
This clustering process is, probably, the most 
interesting contribution of the presented work.  
 

Fig. 2 shows the functionality of the extended PF 
designed, including the clustering algorithm. 
 

3. RESULTS 
 
Different tests have been developed with a robotic 
platform (from ActivMedia Robotics), in a 
dynamic environment. The robot has 16 sonar all 
around its body with a 3m range. In one of the tests 
the robot has been wandering around by an 
unstructured environment with diverse obstacles 
appearing in the scene, in a manual driving mode.  
 
Fig. 3 show different moments of an experiment, 
each one with four graphics with the following 
meaning: 
 
o Left upper corner: actual 3D density function of 

the occupied space represented by the particle set 
in the x-y space.  

o Right upper corner: representation of the robot 
actual situation in the environment. The circles 
show validated obstacles generated by the PF 
output step. 

o Left lower corner: accumulated representation of 
the PF output, all along the covered path. 
Different identified clusters are represented with 
different shapes for their centroid point. The 
darker line shows the robot position all along the 
path. 

o Right lower corner: actual histogram of the 
particle set state vector components. The 
obstacle positioning model is based on the state 

Resampling N-M particles 
according to their cluster association 

N-M particles from posterior 
distribution at t-1 (black) 

M/k new particles randomly taken  
from each cluster + its accumulation buffer 

at t-1 (white) 

Importance Sampling based on likelihood. 
The nearest cluster centroid is used to 

obtain each particle likelihood 

Clustering (white) from actualized centroids 
Members too distant from the new centroid are 

taken out from cluster accumulation buffers (black) 

Particles propagation 
with their cluster dynamics 

(centroid propagation is also done) 

S ′′

W

S ′

S

Fig. 2. Description of the functionality of the extended PF designed. 



vector: [ ]ttttt vyvxyxx =
r

, and only 
its two first components are shown here (these 
are directly obtained from the sensor model, the 
other two are estimated). The different groups 

that can be distinguished at the histograms would 
result in different clusters (different 
distinguished obstacles). 

 

 

 
  Fig. 3. Results from the probabilistic tracker developed. 
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