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Abstract - This paper presents the development of a 
probabilistic algorithm based on an Extended Kalman Filter 
(EKF), used to estimate the absolute position of an indoor 
autonomous robot. With EKF it is possible to fuse relative and 
absolute positioning data, including some kind of uncertainty 
related to sensory systems. To reach this objective it is necessary 
to do an important model analysis to enable the on-line 
adaptation of the estimation algorithm. The development 
presented in this paper has been designed Cor an autonomous 
wheelchair, whose real-time and reliability constraints have to 
be taken into account in the algorithm. 

I.  INTRODUCTION 

Robot's position is one of the most important data 
processed by a navigator in an automated mobile to achieve 
its movement objective. Robot's functionality depends on the 
precision of this measurement and so it does the success of 
its task. 

The most direct way to find robot's position is to use 
odometric sensors in a dead-reckoning positioning model. 
Nevertheless an integration process is needed to calculate the 
absolute position from this kind of sensor and model, so if 
measurements are corrupted with noise the integrated 
information will get worse with time. To achieve more 
reliable position estimation odometric data are usually 
completed with some other given by external sensors. Even 
so, the external information is always complementary to that 
of the relative sensors, because the processing time related to 
absolute positioning systems is usually too high to uniquely 
use these data in real time positioning. 

Because of that, a fusion algorithm is generally needed to 
obtain robot's position from different sensory systems [I], 
PI. 

The application presented in this communication is an 
autonomous wheelchair that moves autonomously in partially 
structured environments 131. It uses a vision system and 
artificial landmarks to localize itself inside buildings. So that, 
the vision process will be the external absolute positioning 
system in the fusion development presented in this paper. 

The optimal position estimator used in this work is an 
Extended Kalman filter (EKF). The main drawback of this 
estimator is that a complete model of both positioning 
systems, and their related noises are needed to develop the 
fusion process. Providing that these models are know, this 
method is the most appropriated in this case because it 
allows to calculate the optimal position estimation, in a very 
short processing time, in comparison with some other 
probabilistic algorithms [4][5]. 

This algorithm is mainly used in robotic applications 
related to sensory filtering and position data fusion. for  tasks 
related to map building, some other probabilistic techniques 
that take into account a whole history of sensed 
measurements, are mostly used. 

In fig.  I it is shown a block diagram of the positioning 
systems and the EKF estimator developed for this robot. 

11. THE EKf AS A FUSION ALGORITHM 

The EKF is an optimal recursive estimator that can be 
used to fuse two measurements of the state vector of a 
system, if its non-linear model and the covariance matrix of 
noises related to the two measurements are known. 

As the algorithm is recursive, the state vector estimation 
gets better as time goes by and more sensory informirtion is 
added, even though if the system model is not perfectly 
know. This feature makes the EKF technique more reliable in 
the estimation process than the rest of methods based on the 
conditional likelihood. 

The complete a-priori information needed to develop this 
algorithm is: 

A discrete linear or non-linear model from the system 
whose state vector (i,) is going to he estimated in the 
fusion process. The model includes also the noise 
vectors related to the state ( iG j and the output ( G  ) 
measurements: 

&+, = f ( J k  2 G ,  ,% 1 
I ,  =h(i,,G,) 

State vector sensory system ___._____________--_-------- 

.___._--_---- 

Output vector sensory system 

Fig. I .  The positioning system in the a u t o n c m "  wheelchair 
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The statistic model of the noises related to the In the following paragraphs, the proposed model will be 
measurements (denoted by their mean pw, &and described. 

covariance matrix Q, R):  

"=,N(Pu,>Q) 
(2) 

j = N ( p v , R )  
With these data, the EKF development is mainly divided 

in two phases: the prediction and the correction phase. Their 
functionality is as follows: 
I ,  The prediction phase begins obtaining the estimated 

state vector ( ikil,k ) with the system model, zeroing the 
noise related to the state vector ( G  = 0). ARer that, the 
innovation value of the estimation error covariance 
matrix ( Pki l Ik )  is also calculated, using the noise 
covariance matrix (Q) related to the state vector 
measurements. 

At the correction phase the Kalman matrix (which is 
used to fuse position data) is firstly obtained from the 
innovation value of the estimation error covariance 
matrix ( Pktlik ) and the output vector measurements 
covariance matrix (R). With the Kalman gain (K),  the 
prediction of the state vector (calculated in the first 
phase of the algorithm) is corrected including in it the 
new output vector measurement ( Fktl ). At the end, the 
estimation error covariance matrix is also updated 
( Pk+l/k+l ). 

Kalman filter can only be .used if noises coupled to all 
measurements are normal, white and uncorrelated among 
them 161. 

Any sensor normally used in robotics usually fulfils the 
specifications. If  it is not the case, whiteness can be easily 
obtained with an adequate calibration, and correlation among 
sensed data can be easily removed, decoupling sensors on 
board the robot. 

2. 

II. THE EKF AS A FUSION ALGORITHM 

At this point it is necessary to link the positioning process 
in Fig. 1 with the system model in (I ) .  According to this 
relation, the system state vector ( ?k ) is going to he obtained 
with the odometric measurements. As the dead-reckoning 
model is non-linear, the Extended version of the Kalman 
Filter has to be used. 

On the other hand, data generated by the vision process 
[3] will be used as the output vector ( Zk ) in the model (I)  
doing some simple but also non-linear trigonometric 
relations. 

With that, at the first phase of the EKF, the state vector of 
the positioning model will be estimated with the odometric 
measurements. This estimation will be corrected using vision 
measurements at the second phase of the fusion algorithm. 

The global model needed to develop the estimation with 
the EKF algorithm, will be completed with the stochastic 
models that characterize the noises related to each of the 
measurements. 

A. The state vecfor model 

The standard dead-reckoning equation of a differential 
kinematics robot used to obtain this first model. The noise 
related to the state vector (!2 in ( I ) )  has been removed in 
this case: 

i o , k + l l k  = f (;o,k ,;k so) 3 
(3) 

( 4 )  
Xo,ktl/k =xo,k +Ts ' v k  'c0s80,k 

Yo ,k+ l /k  = Y o , k  +Ts ''k 'sin80.k 

Bo,k+llk =$o,k +Ts 

Sub-index '0' included in position variables informs about 

The set point ( i i ,  = [ V k  Q k ] ' )  can be obtained 
directly From the odometric measurements 

( cfkk = [wR 

their odometric origin. 

T m,] ) using the robot inverse kinematics: 

(5) 

B. The model ofnoise related to the stale vector 

T o  obtain this noise model, the linear matrix that relates 
the odometric measurements with the state vector has to be 
found. This relation can be achieved applying the Taylor law 
to the (4), including this time the related noise Gk in the non- 
linear model: 

;on,k+l = f ( t n , k  rckrGk ) = 
f (?orr ,O)+A'( .<"n,k - ~ o n , O ) f . . , f w k  .Gk (6) 

T .  
Where Wk = [ w R  w L ]  IS the noise vector related to 

odometric measurements, and A is the transference matrix in 
the linear model state equation. This last matrix will be 
needed to calculate the estimation error covariance matrix 
(4tllkt,), when processing the E K F  correction phase, and 
its value is obtained as follows: 

0 0 -Vosin(B0) 

From equations (4), ( 5 )  and (6), the searched model will 
be obtained as the relation between ?on,k+, and Gk vectors, 
as follows: 

%'& ' cos(@o,k)  x ' T ' ' c o s ( B o , k )  

R / . ~ , . s i n ( ~ , , ~ )  R/ : .~;s in(~, ,~)  
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Where the noise vector Gk will be characterized by its 
statistics (2): zero mean (p,  = 0 )  and covariance matrix, 

(9) 

To remove the mean value related to this noise vector a 
previous calibration process was done to the sensory system. 
Borenstein and Feng [7] [SI developed the UMBmark 
method to quantify this systematic error and calculate two 
correction constants that, included in the kinematical 
equations, remove it. 

On the other hand, non-systematic errors can be modeled 
with another test (Extended UMBmark) designed also by 
Borenstein and Feng. Nevertheless, this method is only 
useful to compare different robots behavior in the same 
environmental conditions. 

In  fact, there is no way to model these kinds of noises with 
a static value, so that, the covariance matrix (9) has to be 
calculated on-line periodically with a data set coming from 
the actual odometric measurements. 

All the positioning experiments presented in this work, 
have been done with non-sliding encoders. These kinds of 
sensors are mounted in passive wheels placed in parallel with 
driving ones [9]. Passive wheels will not slide when the robot 
does, so that the most important source of non-systematic 
noises related to the state vector will be removed using non- 
sliding encoders in the odometric measurements. 

C. The output vector model 

The output vector is determined directly from the vision 
system. This process is based on the detection and post 
processing of an artificial landmark specially designed and 
located in the robot environment [ 3 ] .  In Fig. 2 a simplified 
diagram of the vision process and landmark can be seen. 

As it can be notice in the figure. the landmark has three 
remarkable pattems: a vertical Barker code (thick lines) used 
to find landmarks on images, 4 black dots located in the 
comers used to obtain the relative position from the mark to 
the camera, and another vertical pattem (bar code of thin 
lines) used to identify each landmark in the environment. 

p'3 = (xwk.Yv,t, %,d 

The objective of the vision algorithm is to obtain vector 
V3 in Fig. 2, which will be the robot's absolute position in 
global coordinates. 

Once a mark is localized in  the image, thanks to the 
Barker code, vision algorithms obtain the robot's relative 
position to the mark (in coordinates LCS). This information 
is shown in Fig. 2 as vector VI. 

To find the positioning vision measurement (V3 = i , k ) ,  

the vision algorithm identifies the bar code included in the 
mark, which will be used as a pointer in an environmental 
map. This map contains the absolute position of each 
landmark (in coordinates system GCS), which is vector V2 in 
Fig. 2. 

With all this information, the output vector model can be 
calculated as a coordinates transformation (from LCS to 
GCS): 

i v , k  = b(2v,k so) = 2 v . k  
(10) i, = v3= V I +  v 2  

= xm,; t x:,~   COS(^,,^)- 
yv,k = Y,,,,~ + x : , ~  ,sin(&,i)+ 

.sin(&,j) 

%v,k = $m,i %,k = %m,i + Y k  

In this case, sub-index 'vi  included in position variables 
informs about their vision origin. 

The first expression of ( IO)  bas been simplified taking 
into account that the output vector is equivalent to the state 
vector, and removing the noise from (I). 

D. The model ofnoise related to the output vector 

In [ 3 ] ,  a detailed analysis of the noises associated to the 
output vector is also developed. As a result of this study, a 
value called 'pixel error variance' is found comparing the 
final mark location obtained by the complete algorithm with 
the firstly sensed one. 

In the study it is used a different pattern for the output 
vector, and for the noise vector related to it: 

T 
zr ,k  = [ r k  s i n ( y k )  C d Y k  )] 
~;=[vr Vsiny vsiny] 

(1 I )  
T 

Where r, is the mean value of the distance between the 
robot and the mark, and y v , k  is the camera orientation 
relative to the mark (see Fig. 2). 

To find the model of the noise associated to the output 
vector (IO),  i t  is necessary to find a linear matrix that relates 
the position measurements obtained by the vision system and 
the noise vector used ( I  I ) .  The linear equation desired is the 
following: 

?,,n,k = h ( X , n , k , ~ k ) = X v n , k  + v k  ' c k  ( I 2 )  

Notice that Vk is not the same than the set point in the 
X" dead-reckoning model (5). 

Fig. 2. Relalion used by the vision process to obtain the oulput vector 
G C S  [X,Y,Z]: Global Cmrdinates System 

LCS (X',Y',Z'I: Landmark Coordinates System 
CCS [X",Y",Z",a,p,rl: Camera Cwrdinates System 

The relation (12) can be obtained from Fig. 2, taking into 
account some simplifications due to environmental 
conditions [ 3 ] .  The required transformation is: 
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x,,,~ = M1-(rk t v,) . (s in(yk)t  vsiny).  M2- 

- ( r k t V , ) , ( c O S ( Y k ) t V E O S Y ) . M 3  ( I 3 )  
Y,,~ = M4t  (rk t v,).(sin(Yk)t v S i n y ) , M 3 t  

t ( r k  v d ' ( c o s ( Y k ) t  " c o s y ) '  M 2  
%,k = llfSt Yk 
Where the constants Mj are: M2 = 

V2= [x,,, Y,,,,~ e,,,]' = [Ml M4 M5IT and 

M3 = sin(@,,;), and the notation 'i' identifies the concrete 
landmark that the vision system has detected in the image. 

From equations (12) and (13), the model of the noise 
related to the output vector is as follows: 

-sin(y,). A42 s in(yk) .M3 0 
v k = [  - r k . M 2  r k ' M 2  01 (14) 

Where the noise vector Gk is defined by its statistics: zero 
mean (pv = 0 thanks to a previous calibration process) and 
a covariance matrix, 

0 &=jf (15) 

The way to find the dynamic value of this last covariance 
matrix is also shown in [3], where different variables must to 
be taken into account: the full orientation vector from the 
camera to the mark, the camera parameters and the 'pixel 
error variance'. 

Once the model analysis has been completely defined it 
can be easily noticed that covariance matrixes of both noise 
sources are dynamic. This fact makes the estimation 
algorithm slower, but on the other hand it is more reliable 
and i t  is easier for the EKF to converge. 

- q , M3 ~ k . M 2  0 

%sy 

' *  
; i f ,h /h  = ~,,,/~., +Kh(%,h -h(~o.ko/ka-l,O)) 

, 3 .  Updating estimation error covariance matrix: 
'b/h = 'koiko-l - Kloz ' Pko/ko-l 

IV. APPLlCATlON AND RESULTS OF THE EKF 

Once defined the models, the will give the real time 
absolute position of the robot, From odometric and vision 
data. Fig. 3 shows the processing flowchart developed to 
implement the estimator; anyway, there are still some 
important considerations to take into account. The first one is 
related with the different executing period of each one of the 
sensory systems, due to their different computing load (as 
commented in section I):  

T,, will be the sampling period for the odometric 
system. 
T,, , will be the sampling period for the vision system, 
always larger that T,,and related with it by the 
multiplicity expression: Tsv = n .  T,, , where n is 
integer. 

The estimator execution period will match the faster one, 
which is the odometric system one ( T30). Even though, just 
the EKF prediction phase is developed each T,, , while the 
EKF correction phase will only be developed eachT,,, 
because it is then when there are new vision data to fuse with 
the predicted state vector. This means that the algorithm will 
generate the complete estimation of the state vector only 
each Tsv. 

The most important drawback of this fact is that the 
Kalman gain recursive evolution can diverge if the 
multiplicity factor n is too big. At the same time, noise 
related to the state vector gets more important as n grows, 
because corrections of the state vector get more distant in 
time. Different tests have been done to analyse this effect, 
concluding that if the multiplicity relation gets higher that 3 
or 4 (depending on the noise contents of relative 
measurements), the algorithm do not converge and the 
estimation is not correct. 

This last conclusion limits the vision system processing 
time, If robot's kinematics f ixesT,  to 50ms, the EKF 

convergence will limit the T,, to 200ms, which can be 

5 .  Obtaining estimation error covariance matrix: 
j 

i 
i 

I 
I Pko+i/ko A k o ' P h / k v ' n b w k o ' Q ' w , ' ,  

...... . ...... .-_. .I.-__ ........ .._....._l._l 

Correction phase (kv,Tsv) Prediction phase (ko,Tso) 
............... __ ............. ....... 

' 1. Obtaining the Kalman gain: 
I 

, Kh = 'koiko-I ('kdko- I + vkv ' Rh ' vA)- 
Zo,ko+l/ko = f [ 2 v , h  i 2. Correcting the estimated state: o,ko/ko-l 

I I Fig. 3 R e  estimation algorithm developed 
" ' ~ '  
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accomplished using an appropriate processor for running 
vision algorithms [3]. 

These timing constraints have been applied to the EKF 
final design, which is presented in Fig. 3. 

In this figure signals sub-indexes show not only the origin 
of sensed data used to calculate the estimator variables, but 
also the execution period used to update them (‘kv’ if they 
are updated each T,, and ‘ko’ ifthey are updated each Tso) ,  

V. RESULTS 

The final algorithm shown in previous Fig. 3 has been 
developed in ‘C’ and compiled for MATLAB, with the 
objective of inserting it afterwards in a complete simulation 
model. Using Real Time Workshop MATLAB tool, this 
simulation model can be downloaded and monitored from 
MATLAB in almost any embedded processing system. 

Fig. 4 shows the simulation model of a trajectory 
generator and its associated position controller for the 
autonomous wheelchair. In this system, the EKF estimator 
has been inserted in the feedback loop of the position 
controller, so that an optimal estimation of robot’s position 
can be used in the tracking loop. 

The results obtained from the simulation of the model in 
Fig. 4. are shown in Figs. 5,6 and 7. For this test, noises 
related to both sensory systems have been modelled by static 
covariance matrixes, with a value according to the worst 
noise conditions found in real experiments (0.01 pixels’ of 
‘pixel error variance’ and 0.2 rad’ls’ of odometric variance). 
On the other hand, T, has been set to 50ms and T,, to 
100ms. 

Fig. 5 shows the evolution of speed variables: the ones 
generated by the controller (the thick and light line) and the 
ones sensed by the odometric system (the thin and dark line). 

Fig. 6 shows the evolution of position variables: the set 
points obtained by the trajectory generator (the thick and 
light line), the ones calculated by the artificial vision system 
(the thin and dark line) and the ones estimated by the EKF 
Fusion algorithm (the dark line). 

ti 

In this figure, the different plots for variables X and Y 
cannot be seen properly, because they are mostly equal (this 
is due to the high precision of the fusion algorithm). Only 
variable Theta shows the difference between the estimation, 
the sensed and the set point values. 

Finally, Fig. 7 shows the trajectory followed by the robot 
during the experiment: the set point from the trajectory 
generator (the thick and light line) and the one developed by 
the robot (the dark line). 

As it can be noticed in these plots, the Fusion process 
developed by the EKF algorithm minimizes the effect of 
noises associated to the different sensory systems, to obtain 
an optimal estimation of robot’s position. 

V. CONCLUSIONS 

It has been developed a robust estimation algorithm based 
on an EKF that obtains a reliable state vector informing 
about robot’s position. The algorithm can be used to develop 
control loops and trajectory tracking in autonomous indoor 
navigation with high reliability. 

The estimation is done fusing data from odometric and 
vision sensory systems, whose different sampling periods and 
accuracy are taken into account in the prediction process. 

Estimation tests made to the navigation system of an 
automated wheelchair have shown that the results of the 
position estimation are robust enough to achieve an 
autonomous indoor navigation of a mobile robot with high 
security constraints. 

Different works have already been developed with similar 
and more complex objectives. In [ I O ]  a simultaneous 
localization and map generator is build with the same fusion 
idea. The application and the processing results (in terms of 
time and accuracy) are the main contribution of the 
development presented in this paper in comparison with 
some other related works. 

nr Omega (rad/s) 

0 2 4 6 8 10 12 14 16 18 20s 
-2 I 

0 2 4 6 8 10 12 14 16 18 20s 

Fig. 5 .  Speed variables evolution 

Fig 4. Trajectory generator used to test the EW 
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Rg. 6. State vector evolution 
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Fig. 7. Final trajectory 

Real time operation results have not been obtained yet, 
hut the extreme conditions tested in simulations assure that 
on line results will be precise and robust enough for the 
autonomous indoor navigation objective. 
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