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Abstract 

This paper describes o vision-based system for 
autonomous urban transport missions in outdoor 
environments. Vision-based speciolised tasks ore 
implemented for particular functionalities such as 
lane tracking, and navigation along intersections. 
High level knowledge about goals and intentions is 
extractedfrom an apriori map so as to schedule the 
global mission and to direct the behaviours of the 
low-level perception and actuation modules. 

1. Introduction 

We undertake the problem of intelligent unmanned 
mission execution for transport applications in 
unmarked urban like scenarios (university campus, 
industrial areas, etc) basing on DGPS and vision. In 
an attempt to adapt the algorithms to the already 
existing infrastructures, no limitation on the kind of 
road is imposed. According to this, two main 
challenges arise: lane tracking on non-structured 
roads (roads with no lane markers), and sharp turn 
manoeuvres in intersections (very usual in urban 
areas). 

Previous works on this topic mainly focus on 
Intelligent Highway Systems. Nevertheless, many of 
the algorithms developed for structured roads are in 
part applicable to the detection and tracking of non- 
structured ones. A survey on the most remarkable 
works in this area primarily leads us to [14], [4], 
[IO] and [I]  where lane markers are successfully 
detected in the image plane for road position 
determination. An alternative approach considered 
in the NAVLAB project in the Camegie Mellon 
University combines vision and learning techniques 
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(neurally inspired) to compute the characteristics 
that properly describe the path along the road [9]. 
Also in the Camegie Mellon University the so-called 
“SAUSAGES” [I31 control architecture was 
developed and tested on unmanned ground vehicles 
both at Camegie Mellon and at Lockheed Martin. 
More recently, the ability to recognise intersections 
has been investigated in [SI in order to successfully 
navigate on unmarked road networks. Intersections 
were detected and tracked utilising an active pan-tilt 
head (TACC) to direct the focus of attention. Some 
promising results on autonomous turn-off 
manoeuvres conducted on unmarked campus roads 
were achieved and discussed in that work by using a 
four cameras arrangement. 

2. Control Architecture 

The system is intended to receive missions 
specifications. All modules on board the robot make 
use of the same description of the environment for 
several purposes dealing with mission specification 
and robot navigation. The environment model has 
been designed to ease the implementation of the 
mission execution system. The model is a 
topological and geometrical representation of the 
environment where no landmarks, neither natural 
nor artificial, have been used. Instead, global 
coordinates are exploited for geometrical recognition 
of relevant items such as intersections and stop 
stations. An environment is a topological graph of 
routes (arcs in the topological map), intersections, 
and stations (nodes in the topological map) obtained 
from the geometrical representation of the real 
working scenario, as depicted in figure 1. The routes 
are composed of lanes that have en exclusive 
direction. 
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I J 
Figure 1. Environment representation. a) Geometrical 

Basically, the robot has to plan the shortest route to 
the destination station, makiig use of the topological 
environment model, and divide the execution of the 
resulting plan into several appropriate vision-based 
specialised tasks. As an example, a mission 
description can be specified as follows. 

T1: Track the lane until intersection C2 
T2: Turn left in intersection C2 
T3: Track the lane until destination station 3 

The Robot Control Architecture is divided into three 
main layers (apart fiom sensors and actuators) as 
depicted in figure 2. A general description of each 
layer is given below. 

Planning Layer: planning capability is issued by 
means of a global planner that makes use of a priori 
geometrical and topological information contained 
in the environment map. For planning purposes the 
location of relevant environmental features (such as 
intersections and stop stations) is needed. According 
to the topological representation of the environment 
we can treat the problem as one of traversing a 
mathematical graph structure, in which the graph 
edges represent tracks (or lanes) and the graph nodes 
represent the joins (intersections or stop stations) 
between tracks. For such a simple environment 
model the classical Dijkstra’s algorithm [3] provides 
an efficient and fast solution to find the shortest 
route between the start and destination nodes in the 
topological graph. Along with the path, a velocity 
profile is computed issuing reference values for 
lanes and intersections traversing. 

Coordination Luyer: it basically includes the tasks 
manager and plays an essential role in the robot 

model. b) Topological model. 

control architecture. It manages and supervises the 
execution of all vision-based tasks (in a tasks 
scheduler manner), switching among them when 
appropriate while being subject to strong real time 
constraints. Each vision task has a termination 
condition that must be evaluated by the tasks 
manager in order to stop the current task and start 
the next one so as to guarantee correct plan 
execution. ........... 
................ 

......................... ! 

Figure 2. Robot Conml Architecture. 

Erecution Layer: this level includes the following 
vision-based tasks: lane tracking, navigation on 
intersections, and vehicle detection. Their 
description is given in section 3. For simplicity, both 
the lateral and longitudinal controllers have also 
been included in this layer, although their detailed 
description has been omitted in this paper. 

3. Vision-based tasks 

As described above, the system exploits the well- 
known efficiency of particular processes in 
specialised tasks hy switching between Lone 
Tracking and Intersection Navigation according to 
the plan, the environment model, and DGPS 
information. 

3.1 Lane Tracking 

The mission of this task is to provide correct lane 
tracking between two consecutive intersections. 
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Previous research groups [7] have widely 
demonstrated that the reconstruction of road 
geometry can be simplified by assumptions on its 
shape. Thus, a polynomial representation is used 
assuming that the road edges can be modelled as 
parabolas in the image plane. This model has been 
successfully proven by experience in previous works 
[12],[11]. Similarly, the assumption of smoothly 
varying lane width allows the enhancement of the 
search criterion, limiting the search of features to 
almost parallel edges. On the other hand, due to both 
physical and continuity constraints, the processing of 
the whole image is replaced by the analysis of a 
specific region of interest in which the relevant 
features are more likely to be found. All these well- 
known assumptions enhance and speed-up the road 
estimation processing (21. 

According to these previous considerations the 
incoming image is on hardware re-scaled (the frame 
grabber itself performs this feature in real time), 
building a low resolution image of what we call the 
Area of Interest (AOI), comprising the nearest 20 m 
ahead of the vehicle. The A01 is segmented basing 
on colour properties and shape restrictions. The 
proposed segmentation relies on the HSI (Hue, 
Saturation, Intensity) colour space [6] because of its 
close relation to human perception of colours. The 
scheme performs in two steps: 

1. Pixels are classified as chromatic or achromatic 
as a function of their HSI colour values 
according to equation 1. 

I > 9 0  or 1<10 or S<10 (1) 

where the saturation S and the intensity I values 
are normalised from 0 to 100. 

2. Pixels are classified into road and non-road 
(mcluding obstacles). Chromatic pixels are 
segmented using their HSI components: each 
pixel in the low resolution image is compared to 
a set of pattern pixels obtained in the first image 
in a non supervised manner. The distance 
measure used for comparing pixel colours is a 
cylindiical metric. It computes the distance 
between the projections of the pixel points on a 

chromatic plane, as well as in the intensity axis, 
as defmed in equations 2 and 3. 

d,  =!I, - 4  I (2) 

and 

d ,  =&S,)2 + (S , )2  +2S,S ,  cos0  (3) 

where 

(4) IH,-H,IifIff-HtI<n 
2x-I H ,  -H, I if 1 H, - H ,  I>x 

e=[ 

Subscript i stands for the pixel under consideration, 
while subscript s represents the pattern value. A 
pixel is associated to the road region if the value of 
metrics dch and d, are respectively lower than 
thresholds TA and TI. To account for road shape 
restrictions, threshold Ta is affected by an 
exponentially decay factor yielding the new 
threshold value r that depends on the distance from 
the current pixel to the previously estimated road 
model, denoted by d as defmed in equation 5. 

where @ stands for the estimated width of the road 
and K is an empirically set parameter. This makes 
regions closest to the previous model be more likely 
to be segmented as road. For achromatic pixels, 
intensity is the only justified colour attribute that can 
be used when comparing pixels. A simple linear 
distance is applied in this case, so that the pixel is 
assigned to the road region if the difference is lower 
than a threshold value T d ,  similarly affected by an 
exponential factor, as equation 6 shows. 

Once the segmentation is accomplished, a time- 
spatial filter removes non-consistent objects in the 
low resolution image, both in space and time 
(sporadic noise). After thaf the maximum horizontal 
clearance (absence of non-road sections) is 
determined for each line in the AOI. The measured 
points are fed into a Least Squares Filter with 
Exponential Decay [I21 that computes the road 
edges in the image plane as well as the central 
trajectory of the road using a second order 
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(parabolic) polynomial. A complete example is 
depicted in figure 3. 

Figure 3. a) Original image. b) Road segmentation. c) 
Edges measure. d) Edges estimation. 

3.2 Intersection Navigation 

Intersections are conflicting and dangerous areas of 
the environmenZ in particular in urban areas where 
sharp tums must be carried out. To traverse an 
intersection the system fuses knowledge on the 
geometrical map, the plan under execution, and the 
incoming image, using in essence the same 
processing techniques described in the previous 
section to segment the road. The vehicle can perform 
three possible operations at an intersection: left turn, 
right turn, or go ahead 

Left and Right turns: left and right tums require 
similar algorithmic treatment. One major difference 
with respect to lane tracking is that the road shape 
does not properly fit any polynomial model, in 
particular at the beginning of the curve (consider 
typical X or T-shaped intersections). That makes no 
sense to rely on it to estimate and update the road 
edges and width. This yields to consider two stages 
during the traversing of an intersection: in a first 
stage a slow tum (to the right or left depending on 
the plan) is issued until the vehicle starts to get 
properly positioned on the next street. The road 
shape doesn't fit the parabolic model during this 
stage. In a second stage the turn is completed at low 
speed by resuming lane tracking as soon as the road 
model fits the real road edges. Vehicle's localisation 
is required along the curve trajectory so as to decide 
when to resume lane tracking. To provide an 
estimation of the vehicle's position during the turn, 

we model the arc described by the vehicle as a 
random variable 5. Its probability density is 
maintained at any point in time in the framework of 
Markov localisation (a passive probabilistic 
approach to localization), successfully used for 
active localisation of indoor robots [5]. 

The key idea of Markov Localization is to compute a 
probability distribution (belief) over all possible 
locations (5) in the environment (m this case 5 can 
range fiom 0°, at the beginning of the curve, to 90°, 
for T-shaped intersections). Bel(L,=l) denotes the 
vehicle's belief of being at location I at time f .  Here, 
1 is a location in 5 space, being 5 the arc described 
by the vehicle along the curve. Bel(L0) reflects the 
initial state of knowledge: if the vehicle knows its 
starting position, Bel(&) is centred on the correct 
location; if the vehicle does not know its initial 
location, Bel(L0) is uniformly distributed to reflect 
the global uncertainty of the vehicle. In our 
experiments, Bel(Lo) is initially set to 0" taking 
advantage of the fact that the vehicle is starting the 
turn. The belief Bel is updated as follows. 

The vehicle moves. Vehicle motion is modelled by 
the conditional probability p&7'). p.(7/7') denotes 
the probability that motion action a, when executed 
at 1', carries the vehicle to I .  p,,@'7') is used to update 
the belief upon vehicle motion, where 
denotes the resulting belief at time f :  

L ,  = 

BZI ( L ,  = / )  = p , ( / / / ' ) B e /  ( L , - l  = /') (7) 

In this work, p&7 7 is computed accounting for the 
kinematic and dynamic constraints of the vehicle. 

The vehicle measures. A sensor measure is denoted 
by s, so thatp(s1) is the likelihood of measuring s at 
location 1. Probability p(s/) specifies the probability 
of observations at the different locations during the 
tum. When measuring s, the belief is updated as 
follows: 

,. 

(8) p(s / I )  Be/ ( L ,  = I )  
Bel (L, = /) = 

P ( S )  

where p(s) is a nonnaliser to ensure that the belief 
Bel sums up to 1 over all 1. Thus, the vehicle 
maintains a belief distribution Bel(L) which is 
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updated upon vehicle motion, and upon sensor data 
measure. Such probabilistic representation allows to 
handle ambiguities and to represent degree-of-belief. 
Our implementation is based on a fine-grained 
geometric variant of Markov localisation where the 
angular resolution is 0.1 degree. The likelihood 
p(si2) is directly obtained from an approximate 
model of the environment. On the other hand, s is a 
vision-based measure that stands for the correlation 
between the current segmentation and several a 
priori road models obtained according to the 
parabolic-shaped constraint and the estimated road 
width. In other words, the higher the value of s, the 
higher the probability that the segmented road fits a 
parabolic model. 

N 
s = m a x  R, (9) 

where R, stands for the correlation .between the 
current segmentation and road model i, and N is the 
number of road models, empirically set to 5. This 
way vehicle localisation during the tum is enhanced 
by vision measures in a probabilistic manner. In case 
the degree-of-belief that the vehicle is located in the 
next street (and so the tum is about to complete) is 
high enough, normal lane tracking is resumed and 
vehicle’s speed is increased according to its velocity 
profile. To illustrate the process figure 4 shows an 
example in which the vehicle traverses an 
in1 section. 

Figure 4. Intersection traversing example. 

Go ahead: in many intersections the mission of the 
system is simply to traverse it and go ahead. This 
task requires different treatment than turning left or 

right. In this case the incoming image is processed 
using the same algorithm described for lane 
tracking. 

3.3 Vehicle Detection 

In the frst  stage of this work we propose a 
monocular colour vision system for obstacles 
detection. According to the excellent discussion 
presented in [2] about vision-based obstacles 
detection for intelligent vehicles, using one single 
image leads to some limitations on the kind of 
obstacle that can he detected but provides a simple 
and fast method. We intend to detect other vehicles 
moving in the same or opposite lane. Using the road 
shape (given by the polynomial model) and an 
estimation of the road width (basing on the previous 
segmentation) the exact area of the image where the 
obstacles are expected to appear is determined. 
Thus, vehicles can be characterised by symmetry 
and edges features, within the estimated road, as far 
as usual vehicles have quite a distinguishable 
artificial shape and size that produces remarkable 
vertical edges in the filtered image. According to 
this, figure 5 depicts an example of vehicle detection 
along the run. 

4. Implementation and results 

All modules were developed in C under the Real 
Time Linux Operating System, running on a single 
PC (processing up to 1.5 frames/s). The system has 
been successfully tested on the electric vehicle 
(CitroEn Berlingo commercial prototype) illustrated 
in figure 6, on a private test circuit in the Institute de 
Autombtica of the Consejo Superior de 
Invesfigaciones Cientifcas (CSIC), where many 
successful autonomous missions have already been 
carried out on a network of non-structured roads. As 
an example, figure 7 shows the trajectory described 
by the vehicle during an autonomous mission. For 
further results, you can anonymously rebieve some 
compressed-AV1 video files from 
fcd/venus.deueca.alcala.es/oub/vision exhibiting 
autonomous mission execution and vehicle detection 
capacities. 
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Figure 5.  Vehicle detection example. 

Figure 6. Commercial prototype used for testbeds. 

r d  

Figure 7. Vehicle trajectory during autonomous 
navigation from SS to S1. 

5. Future work 

In the short term we intend to recognise intersections 
using visual information as well as to complement 
the vehicle detection system using radar sensors. 
Another important goal is to carry out overtaking 
manoeuvres using several autonomous vehicles. 

Acknowledgments 

The authors want to thank the generous support of 
the Institute de Automatica of the C.S.1.C for its 
crucial contribution to this work. 

References 

[I]  M. Bertozzi and A. Broggi. A parallel real-time 
stereo vision system for generic obstacle and lane 
detection. IEFE Transactions on Image Processing 7 
(1)62-81.1998. 

[2] M. Bertozzi. A Broggi, A Fascioli. Vision-based 
intelligent vehicles: state of the art and 
perspectives.Robotics and Autonomous systems 32, 
1-16.2000. 

[3] S .  Cameron and P. Probert. Advanced Guided 
Vehicles. Aspects of the Oxford AGV Project. 
World Scientific Publishing Co. Pte. Ltd, 1994. 

[4] E. D. Dickmanns, R Bebringer, D. Dickmanns, T. 
Hildebrant, M. Mauer, F. Thomanek and J. 
Sbielblen. The seeing passenger car 'VaMoRs-P'. In 
Proc. Of Int. Symp. On Intelligent Vehicles, Paris. 
1994. 

[5 ]  W. B. Dieter and S .  h. Active markov 
localization for mobile robots. Preprint submitted to 
Elsevier Preprint. 1998. 

[6] N. Ikonomakis, K. N. Plataniotis and 
Venetsanopulos. Color Image Segmentation for 
Multimedia Applications. Journal of Intelligent and 
Robotic Systems. 2000. 

[7] M. Liitzeler and E. D. Dickmanns. Road recognition 
with MarVEye, in: Proceedings of the lEEE 
Intelligent Vehicles Symposium '98, Stuttgart, 
Germany, October 1998, pp. 341-346. 

[8] M. Liitzeler and E. D. Dickmanns. EMS-Vision: 
Recognition of Intersections on Unmarked Road 
Networks. International Symposium on Intelligent 
Vehicles (IV'2000). Dearborn, (MI). October 2000. 

[9] D. A. Pomerleau. Neural Network Perception for 
Mobile Robot Guidance. Kluwer Academic 
Publishers. Boston. 1993. 

[lo] D. A.Pomerleau and T. M. Jochem. Rapidly 
adapting machine vision for automated vehicle 
steering. IEEE Expert 11 (2) 1996. 

[ l l ]  F. J. Rodriguez, M. Mazo, M. A. Sotelo. Automation 
of an industrial fork lift truck, guided by artificial 
vision in open environments. Autonomous Robots 5 ,  
215-231. Kluwer Academic Publishers. 1998. 

[12] H. Scheneiderman and Marilyn Nasbman. A 
discriminating feature tracker for vision-based 
autonomous driving. IEEE Transactions on Robotics 
and Automation, Vol 10. NO 6, 1994. 

[13] A. Stentz, M. Hebert and Chuck Thorpe. Intelligent 
Unmanned Ground Vehicles. Autonomous 
Navigation Research at Camegie Mellon. Kluwer 
Academic Publishers. 1997. 

[14] C. Thorpe. Vision and Navigation. The Camegie 
MellonNavlab. Kluwer Academic Publishers. 1990. 

57 

Authorized licensed use limited to: Univ de Alcala. Downloaded on July 20, 2009 at 10:08 from IEEE Xplore.  Restrictions apply.


