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Abstract

This work describes the application of a
fuzzy system using expert and induced
knowledge, applied to the detection of
motion problems in ground robots. Ap-
propriate characterization of the robot
behaviour becomes a key issue in or-
der to identify the variables that should
be used so as to detect the fact that
the vehicle has collided against an un-
detected obstacle, and that the obstacle
is currently being dragged by the vehi-
cle. Under those circumstances, vehicle
consumption will be greater than nec-
essary leading to an undesired situation
that should be detected and corrected by
an appropriate intelligent system.

1 Introduction

It is widely admitted that autonomous robots, in-
dependently of their application, must have effi-
cient locomotion systems (low power consump-
tion subsystems, highly precise sensors, and large
autonomy batteries are the essential key points),
reliable navigation and operational systems, and
be able to work safely in their environment. Thus,
the technology required to realize robust, reli-
able and safe robots is given considerable atten-
tion worldwide. As a consequence, the use of au-
tonomous or semi-autonomous robots in real ap-
plications is only possible when those robots ex-
hibit a certain level of intelligence, being able of
fulfilling the previous requirements.

Soft computing techniques have been considered

as a way of adding that level of intelligence from
different points of view. The most common ap-
proach integrating soft computing techniques in
robotics is that of applying it for navigation [1]
and control [4]. Some other approaches have con-
sidered these techniques at the level of process-
ing sensor information (ultrasounds, vision,. . . )
applied to localization [3], path following (corri-
dors, walls) or obstacle avoidance.

The use of fuzzy techniques in diagnosis prob-
lems has been considered [8] but mostly in
the field of automation, without considering au-
tonomous robots. In the area of autonomous or
semi-autonomous robots the effort is quite re-
duced and only a few applications have been pro-
posed considering model based diagnosis, mostly
using artificial neural networks, and centered on
the diagnosis of actuator problems.

In order to focus on this problem, a general ar-
chitecture for integrating fault diagnosis and re-
covery modules into autonomous robots is being
developed in the framework of the European re-
search project ADVOCATE II [10]. As pieces
of this architecture, different Artificial Intelli-
gence based modules (Neuro symbolic systems,
Bayesian belief networks, and Fuzzy systems) de-
voted to diagnosis and recovery are developed and
integrated into different robotic platforms.

The present paper describes one of the applica-
tion problems of the ADVOCATE II project: di-
agnosis of collision with undetected obstacles of a
ground robot, with the aim to provide recovery ac-
tions. The diagnosis module is made up of a fuzzy
system that is mainly based on expert knowledge,
but integrates data sample information.



The paper only analyses a fuzzy logic based intel-
ligent module, assuming that the rest of the archi-
tecture operates properly and provides it with the
required information (alarms, commanded and
measured actuation, sensor information,. . . )

2 Problem analysis

To represent the diagnosis problem that will be
introduced in this section, we choose the fuzzy
logic formalism [11] for its well known linguistic
concept modeling ability. The fuzzy rule expres-
sion is close to expert natural language. On the
other hand, as they are universal approximators,
fuzzy inference systems can be used for knowl-
edge induction processes. The problem under
consideration in this paper requires the integra-
tion of both, expert and induced knowledge, since
none of these sources of information seems to of-
fer a complete view of the problem. The coop-
eration between expert knowledge and induced
knowledge highly depends on induced rule inter-
pretability.

The robot under consideration integrates some
obstacle avoidance capabilities based on the use
of the information provided by an ultrasound ring.
Under some circunstances, an obstacle may by
undetected and the robot will collide with it. The
objective of the fuzzy logic module is to provide
one of the following diagnosis when the vehicle
piloting module sends an alarm. This alarm is
provided whenever there is a suspicion that a col-
lision has occurred and it has not been detected by
the ultrasound ring.

� Normal: it means that a false alarm was
launched by the Robot Piloting Module, as
no real collision has occurred.

� Vehicle_drags_obstacle: the vehicle has col-
lided against an obstacle not heavy enough to
block vehicle movement. Thus, after a tran-
sient interval the vehicle controller (adap-
tive) regains the commanded velocity and
keeps on moving by dragging the obstacle
on its way.

� Vehicle_stalled: in this case the obstacle is
heavy enough to impede the vehicle from
moving. Upon these circumstances, there

are two different possibilities: wheels start
to slip without producing any vehicle move-
ment or the vehicle wheels could get trapped
by the obstacle.

� Test_needed: it may happen that no accurate
diagnosis can be issued based on the infor-
mation provided by the variables involved in
the process. In this case, a test is recom-
mended in order to gather further data so as
to launch a more precise diagnosis.

The fuzzy system design involves expert knowl-
edge and its cooperation with data samples. The
following sections will analyse those sources of
knowledge.

3 Expert knowledge

To deal with complex problems such as robot mo-
tion, expert knowledge is of prime importance.
The expert knows the main influential variables
and is able to describe their behavior. From our
experience, expert reasoning uses linguistic terms
and is based on prototypes.

The expert knowledge extraction process can be
kept at a ’high’ abstraction level. The process can
be limited at the expert domain, without consid-
ering implementation details which are not part
of expert knowledge. For example the expert can
only indicate the number of linguistic terms he
needs for a given variable without defining the
corresponding fuzzy sets.

The first step is then to define the number and
nature of variables that are involved in the diag-
nosis process according to the domain expert ex-
perience. Considering the problem of detecting
abnormal dynamics due to obstacles dragging or
even stalling, the problem stated in previous sec-
tion, the next variables are proposed after appro-
priate preprocessing provided by the Robot Pilot-
ing Module.

� Linear and angular velocities. Both com-
manded and measured velocities are in-
cluded.

– Measured_linear_velocity.

– Commanded_linear_velocity.

– Measured_angular_velocity.



– Commanded_angular_velocity.

As will be graphically demonstrated latter in
this section (Figure 1), a fast but deep un-
dershoot in vehicle velocity takes place upon
collision with an obstacle, until the velocity
controller regains the commanded reference.
This constitutes the key hint to properly pro-
vide a diagnosis on it.

� Depth and width of velocity undershoot (Un-
dershoot_depth andUndershoot_width) pro-
duced upon collision. These variables are
crucial for determining whether the vehicle
has really collided with an obstacle that is
being dragged, or on the contrary, whether
the undershoot is due to measurement noise.
The depth and width of the velocity under-
shoot are tightly related to the commanded
vehicle velocity as deep peaks occur at high
velocity while small ones take place at low
speed.

� Difference_of_battery_voltage. It provides
a differential measurement of the decrease
suffered by the battery voltage when collid-
ing against an obstacle. This decrement is di-
rectly linked to the vehicle consumption, that
should increase upon collision, subsequently
producing the battery voltage to go slightly
down. Under specific circumstances, the
contribution of some subsystems of the robot
to energy consumption should be also con-
sidered. As in previous case, this variable
needs some preprocessing made by compari-
son of the mean value of battery voltage over
an interval before and after peak (minimum)
value of velocity.

� A ring of 16 ultrasound based sensors
is used to provide range measure-
ments around the robot. The variable
Range_measurements and its derivative,
Derivative_of_range_measurements, are
useful to provide information concern-
ing robot movement with respect to its
environment.

Based on the above mentioned variables, experts
can state different pieces of knowledge to de-
scribe certain situations relating some symptoms
with a certain diagnosis.

As a first example, let’s consider the use or range
measurements to get information about a possible
situation of robot stalled. To gain further knowl-
edge on how expert rules are stated, let’s deter-
mine whether the vehicle is moving or not. The
next options are possible.

� The value of variableRange_measurements
is different from null (something is detected
within the detection range) and its derivative
is different from zero. It could mean that
the robot is moving in a static environment,
that the robot is moving in a dynamic en-
vironment, or that the robot is not moving
but the environment is dynamically chang-
ing (due to some moving obstacle). Conse-
quently, no deterministic diagnosis could be
provided under these circumstances.

� The value of variableRange_measurements
is null (nothing is detected within the detec-
tion range). In this case there is no informa-
tion at all about the environment, and thus,
no diagnosis could be either issued.

� The value of variableRange_measurements
is different from null (something is detected
within the detection range) and its derivative
is zero. This means that the vehicle is not
moving.

According to the three previous possibilities an
expert rule could be constructed by following the
next reasoning. If range measurements are differ-
ent from null and their derivative is zero then the
environment surrounding the robot is not chang-
ing. If on these circumstances the vehicle odom-
etry system measures a velocity different from
zero, it can be deduced that the vehicle is stalled
and its wheels are slipping. The rule can be for-
malized as follows:

IF Range_measurements is not(null) AND
Derivative_of_range_measurements is zero AND
Measured_linear_velocity is not(zero) THEN
Vehicle_stalled

This piece of knowledge contains a couple of
fuzzy propositions that are affected by one of the
main questions considered when designing fuzzy
systems: the use of negation. This paper will not
analyze this situation in deep, but there are two
possible interpretations of the fuzzy proposition



Measured_linear_velocity is not(zero)

wherenot can be interpreted at the level of mem-
bership functions or at the level of terms. In the
first case, the membership function will be com-
puted by applying the negation operator to the
membership function of the linguistic termzero,
where negation operator is generally defined as
������������� � � � ��������. In the second
case,not(zero) will be computed as the union
of the membership degrees to the remaining lin-
guistic terms, what in this case representsnega-
tive_big or negative_small or positive_small or
positive_big. In some cases, both values could be
numerically equivalent, as in the case of consider-
ing strong fuzzy partitions (to define the member-
ship functions) and bounded sum (as the t-conorm
defining the or operator), but that is not the most
common situation. The inference engine used in
this application does not use the negation opera-
tor, and consequently the proposition will be in-
terpreted as

Measured_linear_velocity is (nega-
tive_big or negative_small or posi-
tive_small or positive_big)

The semantics of the linguistic terms considered
in these rules, as well as the method to define it,
will be described in the next section.

Another example of expert rule can be produced
for the collision and drag case according to the
situation illustrated by Figure 1. Raw data has to
be processed to be put in the form of the variable
used by the expert. In this case we use Kalman
and FIR (Finite-input response) filtering to define
a clearervelocity undershoot produced by the col-
lision. The rule is provided as follows:

IF Undershoot_depth is medium AND Mea-
sured_linear_velocity is low AND Differ-
ence_of_battey_voltage negative_small THEN
Vehicle_drags_obstacle

This rule is complemented by a complete set of
rules analyzing other combinations of terms relat-
ing different values of the three considered vari-
ables, as the one considered in Section 5.

Previous paragraphs illustrate situations where
the vehicle is stalled or the vehicle drags an ob-

stacle. It becomes necessary to identify and as-
sess those situations that require the execution of
a test in order to gather further information con-
cerning the vehicle state so as to issue an accu-
rate diagnosis. Thus, if the original diagnosis pro-
vided by the fuzzy logic based intelligent module
is not reliable enough, a test could be the key el-
ement to improve the decision by performing an
additional predetermined manoeuvre. After peer
consideration of practical cases, the two situations
described in the following paragraphs have been
identified.

The first situation is when an alarm has been
raised by the Robot Piloting Module, but the am-
plitude of the velocity undershoot is much lower
than expected compared to the average measured
velocity of the vehicle. On the other hand, the
width of the velocity fluctuation is short enough
so as to consider that it has been caused by an
obstacle that is being dragged by the vehicle. In
such a case, a test is needed. During the test, the
vehicle should execute a back-and-forth manoeu-
vre in order to check the variation of velocity. If
the same velocity fluctuation is measured then the
obstacle being dragged diagnosis gets confirmed
and a liberation manoeuvre should be performed
afterwards. If not so, the vehicle continues the
mission unvaried.

The second situtaion is when an alarm has been
raised by the Robot Piloting Module, but the am-
plitude of the velocity undershoot is much higher
than expected compared to the average measured
velocity of the vehicle, or the velocity goes to
zero for a short time. After that, the vehicle ve-
locity gets back rapidly to its commanded value.
This situation could be caused by a heavy obsta-
cle that is blocking the vehicle. In such a case,
it’s very likely that the vehicle stops for a while
(due to the collision) and then enters into slippery
mode. A test is needed to clear up what’s going
on. For this purpose, the vehicle should perform
an odometry independent velocity measurement
based on visual optical flow. If the measured ve-
locity is similar to zero, then the slippery mode
is confirmed and a liberation recovery manoeuvre
should be launched. On the contrary, if the mea-
sured velocity is similar to the commanded veloc-
ity, the vehicle continues the mission unvaried.

Once analysed the expert rules extraction process



(a) Test 1. Commanded linear velocity: 100 mm/s. (b) Test 2. Commanded linear velocity: 25 mm/ s

Figure 1: Vehicle Battery Voltage and Linear Velocity during a collision-and-drag case.

we will briefly consider knowledge induction.

4 Induced knowledge

In complement with expert knowledge, data are
likely to give a good image of variable interaction.

In order to induce complementary pieces of
knowledge, some real experiments have been per-
formed so as to collect data concerning the vehi-
cle battery voltage and linear velocity. Thus, in a
first trial a small but heavy obstacle was deliber-
ately introduced in the environment in order to in-
terrupt the vehicle trajectory during autonomous
operation. Due to its small size, the obstacle can
not be detected by the ultrasound-based obstacle
detection module onboard the vehicle. Accord-
ingly, the vehicle collides with the obstacle, yield-
ing a temporary decrease in its linear velocity.
Upon collision, the velocity controller adapts to
this situation by increasing the actuators torque
so as to rapidly attain the commanded reference
velocity. This causes the vehicle to drag the ob-
stacle along its way by increasing the battery cur-
rent consumption, and consequently, the battery
voltage goes slightly down.

Let us concentrate on this example to illustrate the
knowledge extraction process, including its coop-
eration with expert knowledge.

This behavior, for two different commanded lin-
ear velocities, is shown in Figure 1, where the ve-

hicle battery voltage and linear velocity are de-
picted for a real collision-and-drag case. The un-
dershoot in the left Figure has a depth of 25% of
velocity, i.e. 25 mm/s, while in the right one has
a depth of 44%, i.e. 11 mm/s. These two values,
according to the partition that will be generated in
the next step, can be considered as medium and
small undershoots, respectively.

We now use the results of a set of experiments
producing this kind of preprocessed data, to de-
fine variable fuzzy partitions.

As expert rules use linguistic terms, it is of prime
concern to design highly interpretable fuzzy par-
titions. The necessary conditions for interpretable
fuzzy partitions have been widely studied [2].

We implement the main constraints of fuzzy par-
titions as follows:�

��
�

������			�


�� ��� � �

�� � � �� ��� � �
(1)

where � is the number of fuzzy sets in the
partition and�� ��� is the membership degree of
� to the��� fuzzy set. Equation 1 means that any
point belongs at most to two fuzzy sets when the
fuzzy sets are convex.

Due to their specific properties [9] we choose
all fuzzy sets of triangular shape, except at the
domain edges, where they are semi trapezoidal.



Conditions from equation 1 are implemented by
choosing fuzzy set breakpoints as shown in Fig-
ure 2.

0

1 1 2 3 4 5

Figure 2: A standardized fuzzy partition

As a part of the ADVOCATE II project, a knowl-
edge extraction tool has been developed. This tool
offers, among others, capability to induce fuzzy
partitions from data. The tool integrates differ-
ent methods, as the hierarchical fuzzy partitioning
(HFP), described in [5, 6], or the k-means algo-
rithm [7].

Figure?? illustrates that point by showing one of
the screens of the extraction tool.

Analysis by the experts of the fuzzy partitions de-
termines the best suited according to expert crite-
ria. As an example, in the case of the varianble
undershoot depth, the preferred partition is that
obtained by HFP with four fuzzy sets, but adding
a fifth term, corresponding to the labelnull, to in-
clude the case of no collision that was not repre-
sented in the experimental data.

Figure 4: Expert selected fuzzy partition.

The final result is shown in Figure 4. As ex-
pected, the partition is highly interpretable while
being designed according to the data. The five
fuzzy sets correspond to the linguistic terms {null,
small, medium, large, very_large}. The five an-

chor points in the partition are located at {0, 15,
22, 32, 73} mm/s

The knowledge extraction tool provides also func-
tionalities for rule induction, but its use have been
limited, in this paper, to partition design.

5 Results and discussion

For performance analysis of our system several
motion trials using BART prototype have been
carried out in the way previously explained. The
comparison of the diagnoses given by the fuzzy
system and the expert shows that the fuzzy diag-
nosis was correct in most of the trials.

Next, we are going to present a trial example for
illustrating the overall process. In this case, the
robot (which mass is 12 kg) is moving straight
ahead with a linear velocity of 150 mm/s. The
robot collides with a heavy obstacle (two batter-
ies which overall mass is 5 kg) deliberately intro-
duced in its trajectory and then the vehicle drags
the obstacle. The preprocessed variables involved
in this experiment are depicted in figures 5 and 6.

Figure 5: Vehicle velocity upon heavy obstacle
collision.

The values of the variables to be considered are:

� Undershoot_depth = 67 mm. Being
�����_
�������� � ���� and�
�������� �

����.

� Measured_linear_velocity = 143 mm/s. Be-
ing �������� � ���� and �
����
��� �

���	.



Figure 3: Fuzzy partitions generated by the knowledge extraction tool.

Figure 6: Battery voltage upon heavy obstacle
collision.

� Difference_of_battery_voltage = -0.28 volts.
Being���������_����	
�� � �.

These values will activate at different levels four
rules of the system, where the highest activation
(0.85) will be for the rule:

IF Undershoot_depth is very_large AND
Measured_linear_velocity is high AND Differ-
ence_of_battery_voltage is negative_big THEN
Vehicle_drags_obstacle

According to that, and independently of the char-
acteristics of the inference process (for any aggre-
gation operators and defuzzification method) the
situation will be classified as a clear problem of
dragged obstacle.

However, there are some situations in which the
system does not run as well as expected. In or-
der to improve system design, and then system
accuracy, further work will consider automatic
rule generation and their integration in the expert
knowledge base. To make this integration eas-
ier the generated rules will use the readable fuzzy
partitions already designed.



6 Conclusions

Some ground robot motion problems are consid-
ered in this paper and especially the detection, us-
ing robot motion parameters, of non visible obsta-
cles using the usual sensorial capacities onboard
the robot. The system we aim to design will be
able to provide diagnosis as well as recovery ac-
tions upon these circumstances. The detection
of collisions with non visible obstacles provoking
motion problems is of prime importance for au-
tonomous operation of ground robots in real envi-
ronments.

As the obstacle characteristics are, obviously, un-
known, the global system, i.e. robot and obsta-
cle, cannot be accurately modeled from a quan-
titative point of view and only qualitative (or ap-
proximate) reasoning can be applied. As demon-
strated throughout the paper, some linguistic re-
lationships can be established between the obsta-
cle characteristics and their influence in the robot
motion variables upon collision. In such a frame-
work, one should use all the available pieces of
information for diagnosis and recovery action is-
suing.

The two kinds of knowledge, expert knowledge
and data, convey complementary information.
The objective is to extract their specific contri-
bution to make the cooperation benefit for the
system to be designed. Fuzzy logic, and fuzzy
inference systems, are likely to offer a common
framework. Nonetheless, the cooperation of ex-
pert knowledge and data in system design remains
an open problem, especially when the goal is to
get a system which is both accurate and inter-
pretable.

In this paper this cooperation is restricted to vari-
able partitioning. The distribution of data is used
to design strong fuzzy partitions for each separate
variable under expert control. This type of parti-
tioning ensures each fuzzy set can be attached a
linguistic label. The final semantic agreement is
given by the expert: the fuzzy set centers must
correspond to possible prototypes of the corre-
sponding labels. Then, rules defined by these lin-
guistic labels can be written by the expert. Fur-
ther work will consider automatic rule induction
and their fusion with expert rules.

The preliminary results show that the approach is
appropriate but further analysis is required.
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