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Abstract—The main goal of Assistive Technology (AT) is to
ensure the functional independence of disabled individuals. This
paper proposes the definition of a new concept of AT within the
context of the ITS, Assistive Intelligent Transportation System
(AITS), analyzing its intrinsic requirements and providing a set
of examples. We demonstrate that AITS must localize users
with disabilities and identify their specific type of impairment in
order to provide an efficient response, and we propose a specific
procedure to guarantee anonymity while identifying the type of
disability. Moreover, this new type of AT is illustrated by means of
a new assistive intelligent pedestrian crossing application that is
capable of localizing pedestrians with disabilities, identifying the
specific type of impairment and providing an adaptive response
to enhance functional capabilities of impaired pedestrians while
crossing. By combining stereo-based object detection with radio-
frequency identification technology (RFID and Bluetooth Low
Energy), a specific solution to the problem of user localization and
anonymous disability identification is proposed. Our approach
has been validated in a real crosswalk scenario and it may be
extended to other types of AITS, depending on the localization
accuracy requirements and the range of operation of the specific
application.

Index Terms—Assistive Intelligent Transportation Systems,
Pedestrians with disabilities, stereo, RFID/BLE, data association,
RSSI-distance modelling.

I. INTRODUCTION

Assistive technology (AT) is usually defined as any item,
piece of equipment, software or product system used to
increase, maintain or improve the functional capabilities of
individuals with disabilities [1]. Different disabilities require
different assistive technologies. Some examples of these in-
clude wheelchairs, walkers or power lifts for mobility im-
pairments; screen readers or video magnifications for visual
impairments; hearing aids and assistive listening for hearing
impairments, memory aids and educational software for cog-
nitive impairments, etc. Furthermore, AT may be applied to
many different fields including sports, education, computer
accessibility, ambient-assisted living [2], etc. In this paper,
we propose the extension of the range of AT applications
to the field of Intelligent Transportation Systems (ITS), in a
so-called Assistive Intelligent Transportation System (AITS).
Based on the aforementioned definition for AT and considering

David. Fernández-Llorca, Raúl Quintero, Ignacio Parra, Carlos Fernández,
Iván. Garcı́a-Daza and Miguel. A. Sotelo are with the Computer Engi-
neering Department, and Cristina Alén is with the Signal Theory Depart-
ment, Polytechnic School, University of Alcalá, Madrid, Spain. email:
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the definition of ITS provided by EU Directive 2010/40/EU
[3], we offer the following definition for AITS:

• Assistive Intelligent Transportation Systems are ITS ca-
pable of interacting with users with disabilities and pro-
viding an adaptive response to each type of disability, to
increase, maintain or improve their functional capabilities
while making use of the transportation infrastructure.

This definition may be applied to the entire field of road
transport, including intelligent infrastructure and intelligent ve-
hicle applications, as well as traffic and mobility management.
For example, an assistive intelligent vehicle could identify the
drivers type of disability, providing an adaptive response that
may involve fully autonomous navigation or different types
of Advanced Driver Assistance Systems (ADAS); an assistive
intelligent parking infrastructure would be able to identify a
vehicle with an impaired passenger (driver or other) in order
to guide the driver to a specific location, or allow the vehicle
to park in a special spot; an assistive traffic control system
(electronic tolls, dedicated lanes, access control systems, etc.)
may be able to automatically permit the entrance of a vehicle
with an impaired passenger, or to allow the use of a High
Occupancy Vehicle (HOV) lane, etc. In all cases, there are
three main requirements to be fulfilled by the AITS:

1) Identification of the specific type of disability: since dif-
ferent disabilities require different responses, the AITS
must clearly identify the type of disability. In order to
guarantee that no personal information is managed by
the AITS, this identification process has to be anony-
mous.

2) Adaptive response to increase, maintain or improve
his/her functional capabilities: this requirement involves
a wide range of possible solutions that will be linked to
the specific type of AITS.

3) Localization of the user with disabilities: in most cases
the AITS would need to have an idea of the relative or
global position of the impaired user in order to provide
an efficient response that is adapted to his/her needs. The
accuracy of the localization will depend on the specific
type of application.

In order to gain insight into the needs of the proposed
technology, this paper presents a specific type of AITS as an
example: assistive intelligent pedestrian crossings. In this case,
the pedestrian crossing will be able to localize pedestrians with
disabilities, identify the specific type of disability, and provide



different adaptive responses depending on the disability. Fur-
thermore, the knowledge of the impaired pedestrians position
allows the infrastructure to provide an oriented response to
enhance assistance to the disabled pedestrian. Some examples
include:

• Adaptive green phase for pedestrians with mobility or
cognitive impairments.

• Variable audible messages beyond beeps or ticks, for
pedestrians with visual or cognitive impairments. By
knowing the position of the disabled pedestrian, the
message content of the audible message may be adapted
and its volume can be modulated depending on the closer
waiting area.

• Variable visual messages for pedestrians with hearing or
cognitive impairments. Again, the position of the im-
paired pedestrian permits the system to adapt the content
of the visual message, and to provide visual aid as close
as possible to the disabled pedestrian.

• More sophisticated approaches such as in-pavement flash-
ing light systems to guide pedestrians with cognitive or
hearing impairments.

However, since the adaptive response of the AITS will
largely depend on the specific application and given that
our aim is to illustrate the AITS concept, in this paper we
are mainly concerned with transversal tasks, so we shall
mainly focus on the first two requirements: type of disability
identification and impaired pedestrian localization. A specific
solution is presented for dealing with anonymous identification
of the type of disability, which may be easily extended to
other assistive systems, and shall therefore be presented as a
general procedure. For this purpose, two wireless technologies
are compared: passive Radio Frequency Identification (RFID)
and active Bluetooth Low Energy (BLE). Pedestrians with
disabilities are only required to wear a portable passive RFID
tag or active BLE beacon 1, whereas the infrastructure is
equipped with a RFID reader and two RFID antennas or
two BLE adapters. Pedestrian (impaired or not) localization
is implemented by means of a wide-angle stereo-based pedes-
trian detection and tracking system which besides the 3D
information, also exploits the fact that cameras are static
so the background may be modeled and used to improve
segmentation. The stereo-based object detection system allows
us to implement a fast and automatic Receive Signal Strength
Indicator (RSSI) to a distance (RSSI-distance) calibration
procedure that will be used to obtain relative distances be-
tween the wireless tags and the antennas. Finally, in order to
associate detected tags with detected pedestrians in the scene,
a global nearest neighbor algorithm is applied, including a
novel and robust distance metric that can handle noisy RSSI
measurements.

Specifically, the main contributions of this work are:
• We define the new concept of Assistive Intelligent Trans-

portation System (AITS), analyze its intrinsic require-
ments and provide a set of examples.

• We illustrate this new type of assistive technology by
means of a new assistive intelligent pedestrian cross-

1From now on, BLE active beacons will be named as BLE tags.

ing application, capable of localizing pedestrians with
disabilities, identifying the specific type of impairment
and providing an adaptive response to enhance functional
capabilities of impaired pedestrians while crossing.

• A specific procedure to ensure anonymity while identify-
ing the type of disability is presented.

• A new RSSI-distance calibration procedure is pro-
posed by combining stereo-based object detection with
RFID/BLE identification technologies.

• A specific solution to the problem of user localization and
anonymous disability identification is proposed by means
of a new metric and a general nearest neighbor technique
that associates pedestrians detected by the stereo system
and the RSSI values given by the radio-frequency tag
(passive RFID or active BLE) and at least two antennas.
This approach may be extended to other types of AITS,
depending on localization accuracy requirements and the
range of operation of the specific application.

The remainder of the paper is structured as follows: Section
II presents related works on pedestrian detection from the
infrastructure and RFID/BLE-vision localization approaches.
In Section III, the system layout is summarized. The general
procedure proposed to ensure anonymous identification of
type of disability is described in Section IV. In Section V,
stereo-based pedestrian detection, RFID/BLE localization and
stereo-RFID/BLE data association procedures are detailed.
Experimental results are presented in Section VI, including
a detailed comparison of both wireless technologies. Finally,
Section VII offers a discussion, conclusions and future work
possibilities.

II. RELATED WORK

A. Infrastructure-based pedestrian detection

Pedestrian detection is a well-known topic in the field of
intelligent vehicles. Numerous surveys have been published
over the past decade, including both monocular and stereo
approaches [4], [5], [6], [7], [8]. Stereo cues are particularly
relevant since they enhance both the region of interest selection
[9] and the classification [10] stages, providing more accurate
relative distance values than monocular approaches, which
are essential for collision avoidance maneuvers such evasive
steering or automatic braking [11], [12], [13]. On the other
hand, in the context of infrastructure-based applications such
as traffic surveillance, pedestrian-vehicle conflict or collision
detection, pedestrian behavior modeling, etc., monocular ap-
proaches have been widely used given that the camera is static
can be exploited by applying background subtraction, optical
flow, motion history images, and other techniques, in order
to segment pedestrians [14], [15], [16], [17], [18], [19], [20],
[21].

However, accurate range measurements are still necessary in
order to permit the application of safety measurements taken
from the infrastructure. Thus, in [22] a multi-sensor network
to perceive the intersection environment has been proposed,
including 14 laser scanners and 10 cameras. The proposed
setup was then used to detect pedestrian intention at intersec-
tions [19]. Considering pedestrian detection at crosswalks, one



of the first stereo approaches was provided by the SafeWalk
commercial system [23]. However, its narrow field of view and
limited range only allows the system to be used at pedestrian
waiting areas on sidewalks. Thus, a multiple lane crosswalk
would require a minimum of two SafeWalk systems for the
pedestrian waiting areas and once C-Walk (monocular) for
the crosswalk, and still, stereo measurements will only be
available at pedestrian waiting areas. The feasibility of using
only one stereo platform to monitor both the crossing area and
the waiting zones at crosswalks was revealed in [24] where
a wide-angle stereo system was used to detect pedestrians
and nearby vehicles in a two-lane crosswalk. The system
was also capable of providing relevant features regarding the
pedestrian’s intent to cross or wait. With the same goal of
modeling pedestrian behavior at crosswalks, in [25] a 360
degree field of view, a Velodyne laser scanner was used for
pedestrian and vehicle detection. However, in this case, manual
labeling was used to obtain relevant features, so the approach
may not be directly used to perform automatic pedestrian
detection.

B. Localization based on radio frequency (RF) and computer
vision

Object localization based on radio frequency identification
technology has been widely proposed to address numerous dif-
ferent applications [26], including different technologies such
as RFID, Ultra-Wide Band (UWB), Bluetooth, BLE, ZigBee,
Wi-Fi, etc. [27], and different RSSI-based localization ap-
proaches such as multilateration, Bayesian inference, nearest-
neighbor and proximity [26]. By combining localization with
its identification capability existing applications may be en-
hanced and new ones may be developed. Numerous works
have been proposed for the localization of radio-frequency
tags (objects) with fixed nodes (antennas or adapters), as well
as the localization of moving nodes using a fixed set of tags
[27]. However, for the course of this work, we have focused
on the localization of moving passive/active tags using fixed or
moving nodes in combination with vision-based approaches.

In most cases, the combination of wireless sensors and
vision-based localization techniques is used to increase global
localization accuracy by means of some Bayesian filter
(Kalman Filter -KF-, Extended KF -EKF-, Particle Filter -
PF-, Unscented Kalman Filter -UKF-, etc.), that fuses the
range measurements coming from the different sensors. Thus,
in [28], eight directive RFID antennas, and one camera are
embedded on a mobile robot to detect passive tags worn on
the user’s clothes, in indoor environments with a range of
5m. Saliency maps are obtained for each antenna by counting
occurrence frequencies and are translated to the image domain.
These maps are used to filter particles on a PF applied over
a skin probability image. In [29], RFID-based localization
in a small indoor area of interest with a limited number of
objects is carried out via RSSI measurements and combined
with a camera-based localization system by means of an UKF.
There is an obvious improvement in RFID-based localization
accuracy thanks to the use of the monocular vision system. The
formula between RSSI measurements and distance is adjusted

using a manual calibration process. No data association is
performed since results are provided with only one object
that is directly associated with the detected tag. A similar
fusion scheme using a PF to combine RSSI data from passive
RFID tags with stereo measurements is proposed in [30].
Four different antennas are used to cover an indoor region
of 4 × 4 meters. The RSSI-distance calibration procedure
involves manual distance computation, and a linear-regression
model is used to obtain the distance from RSSI measurements.
Multilateration is used to perform RSSI-based localization.
Again, no data association is applied since only one object
is taken into account. PF is also applied in [31] to fuse Wi-Fi
and vision measurements in outdoor scenarios. The so-called
fingerprints (SSID and RSSI of different nodes) and a GPS
are used to perform RSSI-distance calibration. The GPS is
only used for calibration, and its accuracy is limited when no
differential corrections are available. RSSI-based localization
is conducted using the centroid position for all access points.
Data association is not applicable since results are obtained
using only one person.

A dynamical RSSI-distance calibration process is proposed
in [32] using linear local models around the target, combining
RSSI and vision measurements using an Extended Information
Filter (EIF) in indoor environments. Although the dynamic
RSSI model increases localization accuracy, its use is lim-
ited to a one-object one-tag scenario. In real scenarios with
multiple targets, perfect data association will be needed. A
room-level accuracy system is proposed in [33], by means
of a RSSI-room calibration process and a video tracking
system that is able to detect an individual entering orleaving
a room. Trilateration is then applied to solve the room-level
localization problem. Results are provided with only one
candidate; therefore no data association process is applied.

As we can observe, and as suggested by [34] and [35], the
problem of data association between objects or blobs and tags
has been somehow neglected in the literature, which limits
the applicability to real scenarios. In [34], a probabilistic
framework was proposed to combine RFID and monocular
vision measurements for indoor scenarios in a limited range. A
pre-defined and manual grid is used to perform RSSI-distance
calibration, modeling each grid position with a Gaussian
distribution. RSSI-based localization is solved by means of
a Mixture of Gaussians, where each mode corresponds to one
RFID antenna. A Hidden Markov Model is finally applied
to handle the data association problem using a Gaussian
distribution as the metric, and finally combining RSSI and
vision measurements to compute the person/tag final position.

However, as suggested by several studies [36], [37], intrinsic
limitations exist when using RSSI as a distance metric in
terms of accuracy and stability for localization purposes. Thus,
as in [38], we propose using the RFID/BLE system as an
identification tool (type of disability), and using the vision
system (stereo) for localization. In this way, the data fusion
problem may become simply a data association problem.
A global nearest neighbor algorithm with a novel distance
metric is proposed to link radio frequency tags with stereo
objects (pedestrians). Our RSSI-distance calibration process
is fully automatic. The system was devised for use in outdoor



scenarios (crosswalks), in medium-sized areas with a mea-
surement range of up to 15m, which is a clear contribution
to the state of the art. Our previous study [35] was based
on the use of RFID technology. However, BLE has been
found to be a more suitable technology for indoor location
tracking with respect to accuracy, stability and range [39].
Accordingly, we contribute to this topic by providing a specific
comparison between RFID and BLE technologies in outdoor
scenarios. Furthermore, a new RSSI-distance directional model
is proposed. The presented solution mainly focuses on the type
of disability identification in crosswalks, but it may also be
extended to other types of scenarios or applications.

III. SYSTEM LAYOUT
A. Sensor Architecture

A global overview of the sensor architecture is depicted
in Fig. 1. On the one hand, the stereo platform is composed
of two CMOS USB cameras with VGA resolution and a
baseline of 30cm, with automatic gain control, synchronized
with an IR illumination device Raymax 25 controlled by a
photocell and having two wide angle optics with a focal
length of 2.8mm. A specific synchronization HW controls
both the external trigger and the shutter between the cameras
and the IR illumination device. On the other hand, a UHF
Class 1 Gen 2 RFID Speedway Revolution R220 reader
with two inputs is connected to the PC’s Ethernet card. Two
far field circularly polarized panel antennas within the 865-
870MHz band (Europe frequency allocation) are connected to
the reader. Due to our outdoor scenario range needs, the Onmi-
ID Dura 3000 RFID passive tags were selected, which have
a theoretical read range of up to 20m. Finally, two Trendnet
Class I micro Bluetooth 4.0 USB adapters with BLE protocol
are directly connected to the PC, which provides a theoretical
wireless range up to 100m at a power consumption of 100mW.
In this case, the active beacons used during our experiments
are from Gelo Inc. due to their special features for outdoor
scenarios, however any other models can be used. Note that
the synchronization between all sources of information (stereo,
RFID and BLE) is carried out by retrieving the PC timestamp.

Fig. 1. Global overview of the sensor architecture.

B. Scenario Description

In order to validate the proposed methodology to develop
assistive intelligent pedestrian crossing systems, a two-lane

crosswalk including the pedestrian waiting zones was selected.
Note that in order to estimate distance measurements from
wireless sensors, more than one antenna is needed. Thus,
the sensor architecture depicted in Fig. 1 can be installed
in various ways, depending on the location of the wireless
antennas. Previous wireless localization studies [27], [26] sug-
gested that the optimal relative position between the antennas
should maximize the distance between them within the region
of interest. Such is the case when each antenna is installed at
each waiting region, as depicted in Fig. 2(a). However, in our
case and due to implementation limitations, we have installed
both antennas at the same waiting zone as depicted in Fig.
2(b). The baseline between both antennas (RFID or BLE) has
been selected considering the maximum distance permitted by
the length of the cable of the antennas.

IV. ANONYMOUS DISABILITY IDENTIFICATION

Although computer vision approaches have evolved dra-
matically over recent years, it is impossible to consider a
potential vision-based solution to recognize different types of
disabilities. The automatic recognition of wheelchair users,
people with crutches, people with white canes, or even a
rough estimation of the pedestrian’s age may be possible
in the near future. However, there are no visual evidence
of individuals having visual (unless carrying a white stick),
hearing, or cognitive impairments. Therefore, different type
of technology is necessary.

The general approach proposed to maintain anonymity in
the type of disability identification process performed by the
infrastructure may be described as follows (see Fig. 3):

• (1) The disabled user applies to a local government
or administration for a specific disability identification
device. The provided device must be easily wearable
and inexpensive. A passive RFID tag or an active BLE
beacon (with batteries) is proposed for use as disability
identification devices.

• (2) The local administration certifies the user’s type of
disability and requests an RFID tag or BLE beacon from
the Central Management Unit (CMU). The CMU may be
either publicly or privately managed.

• (3) The CMU writes the code corresponding to the
specific type of disability in the writable memory of the
RFID tag or the BLE beacon (feature needed), and sends
it to the local administration.

• (4) The local government provides the user with the
identification device. This device and its written codes
does not contain personal information about the user.

• (5) From this point on, the assistive infrastructure may
interact with the disabled user, performing fully anony-
mous disability identification to adapt the infrastructure
response.

Note that the proposed procedure has been updated with
respect to our previous work [35], avoiding the stage in which
all the infrastructure databases have to be updated with the
corresponding RFID identifier. Thus, assistive infrastructures
do not require remote updating each time a new user applies
for his/her identification device.



(a) (b)

Fig. 2. Scenario description. (a) Optimal sensor configuration; (b) Sensor configuration used due to deployment limitations.

Fig. 3. Anonymous disability identification procedure.

V. USER LOCALIZATION

A. Stereo-based pedestrian detection

Our stereo-based pedestrian detection approach has been
previously described in [24] and [35]. Here, a short summary
is provided (see Fig. 4). Pedestrian localization is carried out
using a temporal XZ density map that contains large values
in regions with a high density of 3D points (after removing
points outside the range 0.2m <Y < 2m w.r.t. the road plane).
This map includes information related to moving (pedestrians
and vehicles) and static (poles, trees, etc.) objects. Static
points are removed using a dynamical background subtraction
algorithm [40] to mask the disparity map with the foreground
objects. Region-growing is then applied over the masked
temporal density map providing a list of potential candidates.
Vehicle/pedestrian classification is carried out using features
such as object velocity, size, and image location of its first
appearance in the scene. In addition, an occlusion reasoning
algorithm [21] is used to divide large objects that may cor-
respond to multiple pedestrians. A Kalman-based filter with
a constant velocity model is applied to track both pedestrians
and vehicles. Data association problems are solved using the
Hungarian assignment with a metric that combines the 3D
Mahalanobis distance between blobs and 2D blob appearance

(normalized cross-correlation) [41].

B. RSSI-based localization

In most RSSI-based localization approaches, the signal
strength received from one sensor to another is considered as a
monotonically decreasing function of their distance, including
the reception and transmission antennas power and their gains.
As described in [37], a simplified form of the relation between
distance and receive power has been primarily used:

Pr(dBm) = Pr1(dBm)−K.log10(D(m)) (1)

where Pr1 is the received power in dBm at 1m, K is the
loss parameter and D is the distance between the receiver and
the transmitter. The values of Pr1 and K are determined by
minimizing the root mean square error using calibration data,
i. e., RSSI and ground-truth distance measurements.

Thanks to the stereo-based object detection system, and
considered to be one of the main contributions, the calibration
data including thousands of RSSI, distance and angle measure-
ments may be automatically obtained. Using a sequence of one
person wearing one tag in a fixed position and orientation, and
moving around the stereo region, the stereo-based pedestrian
location system can be applied to obtain 3D measurements
w.r.t. one reference point (left camera in our case). These
measurements may be directly associated with the RSSI values
provided by the antennas since data association is not neces-
sary at this stage (one person-one tag). The 3D position of the
tag w.r.t. the stereo system is approximated as the center of the
blob in the XZ-map, assuming a fixed tag height w.r.t. the road
plane. Although this approach provides distance measurements
that suffer from both stereo inaccuracies and simplification
(due to considering the tag at the center of the blob at a
fixed height), its accuracy shall be much greater than that
provided by the RSSI-based procedure [36], [37], therefore it
can be perfectly used as ground truth. In addition, this process
automatically provides thousands of measurements in a short
period of time, avoiding manual intervention.

As discussed in Section III-B, due to implementation lim-
itations, all of the sensors (RFID/BLE antennas and stereo
cameras) are located at the same waiting region, integrated



Fig. 4. Overall block diagram: stereo-based pedestrian detection, and RSSI identification.

in the same stereo baseline (see Fig. 5). Stereo reconstruction
provides 3D points P1

LC referenced to the left camera (LC). The
relative positions of both the left and the right antennas (LA;
RA) w.r.t. the left camera are approximated using an identity
rotation matrix and translation vectors containing only the X
component. Thus, points P1

LA and P1
RA may be easily computed

and associated with their corresponding RSSI values.
After applying the automatic calibration procedure, we

obtain the parameters of Eq. (1) and the RSSI-distance curves
depicted in Fig. 6 for both RFID and BLE, and the left and
right antennas respectively. Furthermore, we compute the exact
variance as a function of the RSSI-based distance, which shall
be used later on. We refer to this model as the standard
RSSI-distance approach. For a given RSSI value (Pri), we
compute the corresponding distance as D = 10(Pri−Pr1)/−K , and
we get the associated pre-computed variance σ2

D. The possible
location of the tag w.r.t. the antenna shall then be defined as
a circumference centered at the antenna position with radius
D and uncertainty σ2

D.

Fig. 5. Relative position between cameras and wireless antennas.

However, the standard approach does not consider the di-
rectional (angular) dependence of the signal strength between
the antenna and the tags. In order to take into account the
radiation pattern of the wireless antennas, a more sophisticated
model has been proposed, including the angle θ between the
antenna and the user, that is, Pr(dBm) = f (D,θ). Although
the signal strength can be considered as a logarithmically
decreasing function of its distance, this is not the case w.r.t.
the angle. After analyzing the calibration data (see Fig. 7) we

concluded that the signal strength linearly decreases w.r.t. the
angle, therefore we propose the use of a directional form of
the relation between distance and power received as follows:

Pr(dBm) = Pr1(dBm)K1.log10(D(m))+K2.θ (2)

where θ is the angle of the relative position between the
tag (stereo-based) and its corresponding antenna. Thanks to
the automatic calibration procedure, non-linear least squares
fitting may be applied over data to obtain the parameters of
the directional model (Pr1,K1,K2). For this case, we compute
the variance as a function of both the distance and the angle
σ2

D,θ . These models and their corresponding parameters are
depicted in Fig. 8. Now, for a given RSSI measurement Pri we
compute the curve where Eq. (2) intersects the plane Pr = Pri,
which shall represent the potential location of the tag.

Finally, in both, standard and directional cases, a Kalman
filter is used to receive steadier distance estimations for each
tag and antenna. A constant variation model is used. The
state vector includes the RSSI value and its variation, whereas
the measurement vector is defined by the RSSI value. RSSI
variance is computed during the calibration process.

C. Stereo-RSSI data association

In the standard approach (non-directional), a single RSSI
value yields a sphere with the antenna position at its center
and a radius equal to the RSSI-based distance measurement
as possible tag locations. In our case, a fixed and known
tag height is assumed to reduce the 3D sphere to a 2D
circumference. Then, the tag position may be determined by
intersecting the circumferences generated by each antenna. For
isotropic antennas with a 360◦ radiation pattern, a minimum of
3 antennas are required to compute the tag location. However,
in our case, directional 180◦ antennas are used and one of
the intersection points may be discarded. Accordingly, two
antennas are sufficient to provide a unique solution. A similar
reasoning may be used for the directional case, in which the
tag fixed height assumption provides 2D curves that should
intersect at a unique point.

However, as suggested by previous works [36], [37], and
as supported by our data (see Figs. 6 and 7), the intrinsic
limitations when using RSSI as a distance metric in terms of



Fig. 6. Standard RSSI-distance model. Upper row: RFID. Lower row: BLE. Left and right antennas respectively.
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Fig. 7. Calibration measurements. Upper row: RFID. Lower row: BLE. Left and right antennas respectively.
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Fig. 8. Directional RSSI-distance model. Upper row: RFID. Lower row: BLE. Left and right antennas respectively.

accuracy and stability, as well as, in our case, the suboptimal
position of both antennas (at the same baseline) results in an
intersection point or area (including the uncertainties) that is
not a robust and accurate metric to be used for solving the
data association problem. Therefore, a new distance metric
that models the probability of association between a 3D
object (stereo-based) and a detected tag (RSSI-based) has been
proposed.

The distance, di j
k , between a 3D object i and the tag j

(assuming fixed height) detected by antenna k (k = LA for
left antenna and k = RA for right antenna) is modeled using
a univariate normal distribution where the mean value is
the RSSI-based computed distance d j

k , the variance is that
computed after the RSSI-distance calibration σ2

d j
k

(standard)

or σ2
d j

k ,θ
j

k
(directional) and the independent variable is the 3D

object position w.r.t. the antenna di
stereo,k:

di j
k =

1
σD,θ

√
2π

e
−

(dstereo,k
i −d j

k )
2

2σ2
D,θ (3)

where D = d j
k and θ = θ j

k . Note that Eq. (3) may be valid for
both the standard and the directional approach, assuming that
θ = 0 for the standard model. The graphical representation of
this metric is depicted in Fig. 9 for the standard approach. For
the directional case, the curves resulting from the intersection
between the directional model and the RSSI plane shall be
used instead of circumferences.

Eq. (3) is computed for both antennas. If one of these does
not receive a signal, the metric shall be set to zero. In order to
compute the global metric di j that represents the probability
that tag j is being worn by person i, the following equation
would be applied:

di j = di j
LA.d

i j
RA (4)

Eq. (4) can be easily extended to N antennas by applying
the following expression:

di j =
N

∏
k=1

di j
k (5)

To achieve a reliable data association, a global nearest-
neighbor (GNN) [42] algorithm is applied. The association
probability between the predicted position of all pedestrians
(i = 1 . . .P) and all the detected tags ( j = 1 . . .T B) are com-
puted at each time iteration t. The corresponding probability
matrix CP×T B is defined using the computed distances di j. The
Hungarian or Munkres algorithm is then applied so that the
global association probability is maximized, as long as the
final assignment is always greater than 0.5 (higher thresholds
may not be used due to unstable RSSI measurements). In order
to avoid oscillations between the associations, a variable ci j is
used for each 3D object i accounting for the number of times
it has been associated with tag j. The final association at time
t is given by the 3D object i that has the maximum number of



Fig. 9. Graphical representation of the new metric defined between a 3D
object and the tag detected by both antennas.

associations. When this counter achieves a maximum thresh-
old, the association is fixed until the tag or the 3D object exits
the detection area.

VI. EXPERIMENTAL RESULTS
The stereo-based object detection system has been pre-

viously validated in different types of scenarios [24], [35]
(daytime and nighttime), with an average Detection Rate (DR)
of 99% and a False Positive Rate (FPR) of 1.5%. In addition,
90% of the objects detected by the system were tracked in
less than 10 frames once they were fully visible (0.33 seconds
running at 30Hz). Below, results concerning data association
between tags and pedestrians are presented.

In order to validate the proposed methodology for localizing
tagged pedestrians (users with disabilities), different types
of sequences have been recorded in a crosswalk scenario,
including different number of people, tags and trajectories (see
Table I). Some users were required to carry one tag at a fixed
height and pointing to the antennas. Other users were only
required to cross the road as usual. In order to validate the
system performance, the following metrics have been used:
percentage of time that the tag is correctly associated to its
corresponding tagged pedestrian (CA, Correct Association)
and percentage of time a tag has not been associated (NA,
Not Associated). Due to the nature of our problem, a tag
associated to an incorrect pedestrian for cases in which the
pedestrian is very close to the tagged one may be considered
to be correct associations since the infrastructure shall still be
able to provide an effective response. Accordingly, we have
also computed the percentage of time that the tag is correctly
associated or associated to a near pedestrian who is walking
or waiting in parallel (CNA, Correct-Near Association) to
the tagged one. In addition, we have measured the average
association delay (D, Delay), that is, the average number
of frames that the system needs to correctly associate each
detected tag with its corresponding 3D object. Note that the
system is currently running at 30Hz, so we can easily convert
D to time in seconds.

We provide results corresponding to the standard approach
and the directional one for both RFID and BLE technologies

TABLE I
DESCRIPTION OF THE SEQUENCES, DURATION AND IDENTIFIER.

Identifier Duration Sequence Description
(frames)

1 8230 Calibration
2 3270 One Tagged Pedestrian Crossing
3 2710 One Tagged / One Non-tagged Pedestrians

Opposite Crossing
4 2380 One Tagged / One Non-tagged Pedestrians

Paralell Crossing
5 4740 One Tagged / Two Non-tagged Pedestrians

Mixed
6 1270 Two Tagged Pedestrians Opposite Crossing
7 1250 Two Tagged Pedestrians Paralell Crossing
8 9180 One Tagged / Five Non-tagged Pedestrians

Mixed

in Table II. On the one hand, comparing the RSSI-distance
model, in most cases, the directional approach clearly out-
performs the results provided by the standard one. Thus, CA
increases by 6.9% (RFID) and 6.1% (BLE) for sequences
in which one tagged and one non-tagged pedestrian cross in
parallel, 8.4% (RFID) for cases where two tagged pedestrians
cross in opposite directions, 5.5% (RFID) and 14.7% (BLE)
for sequences where two tagged pedestrians cross in parallel,
and 5.7% (RFID) and 4.82% (BLE) in cases where there
is one tagged pedestrian among several non-tagged ones in
mixed conditions. In addition, the delay considerably de-
creases for those cases which on average decrease by 5.0
frames (RFID) and 3.9 (BLE) frames from the standard model
to the directional one. The increase in the CA metric is mainly
due to the superior performance of the directional model
when associating the tag between close pedestrians crossing
in parallel. On average CA increases by 3.3% (RFID) and
3.2% (BLE) for the directional approach. However, the greater
lateral discrimination capacity of the directional model does
not involve a considerable increase in the CNA metric, which
on average is only 0.4% (RFID) and 1.7% better for the
directional model than for the standard approach.

On the other hand, considering the radio frequency identifi-
cation technology, we observe that RFID clearly outperforms
BLE in its lateral discrimination capacity, since CA metric
is 7.7% (standard) and 4.5% (directional) better for RFID
than for BLE. However, when considering parallel and close
pedestrians as correct associations, BLE technology provides a
considerable improvement in CNA metric which increases by
8.3% for the standard model and 10.0% for the directional one,
obtaining a CNA= 91.5% as the best result. This improvement
is mainly due to the delay variable, which on average decreases
18.6 frames for the standard model and 22.5 frames for the
directional one, and the NA metric, which on average decreases
by 7.5% for the standard approach and 8.6% for the directional
model.

In other words, if the association between the tag and
the tagged pedestrian is a critical issue in order to allow
the infrastructure to provide an effective assistive action, the
RFID directional model provides the best results, correctly
associating the tag to its corresponding pedestrian 78% of the
time, with an average delay of 1.4 seconds. However, if tag
associations to pedestrians near the tagged one, waiting or



TABLE II
STEREO-RSSI DATA ASSOCIATION RESULTS.

RFID BLE
Std. Dir. Std. Dir.

Seq. CA CNA NA D CA CNA NA D CA CNA NA D CA CNA NA D
Id. (%) (%) (%) fr. (%) (%) (%) fr. (%) (%) (%) fr. (%) (%) (%) fr.
1 99.4 99.4 0.6 22.0 99.5 99.5 0.5 5.0 100 100 0.0 0.0 100 100 0.0 0.0
2 87.5 87.5 12.5 35.0 87.6 87.6 12.4 34.8 98.0 98.0 2.0 4.8 96.8 96.8 3.2 7.9
3 67.0 67.0 33.0 94.0 67.0 67.0 33.0 93.8 90.0 90.0 7.2 19.2 89.9 89.9 7.9 21.2
4 68.3 76.5 23.5 60.0 75.2 77.7 22.3 57.5 28.4 98.5 1.5 15.0 34.5 98.8 1.2 8.5
5 57.1 84.2 14.4 52.0 59.5 77.8 13.1 44.3 70.2 86.2 4.6 9.2 75.8 87.2 4.8 6.4
6 59.6 59.6 35.1 48.8 68.0 68.0 32.0 43.0 82.1 82.1 17.9 45.0 81.7 81.7 18.3 46.4
7 58.1 58.1 41.9 46.9 63.7 63.7 36.3 31.9 44.7 83.9 16.1 58.0 59.4 85.0 15.0 56.3
8 62.6 75.5 8.7 31.0 68.3 74.6 5.2 39.6 43.0 79.1 7.0 46.0 47.8 85.3 2.5 19.5

Avg. 74.8 81.1 14.7 48.7 78.0 81.5 12.9 43.7 70.3 89.8 5.4 25.1 73.5 91.5 4.3 21.3

(a)

(b)

Fig. 10. (a) Standard and (b) directional results. Upper row: left image with color-coded identification (squares). Lower row: XZ-map (top-view without
road points), detected blobs and RSSI circumferences/curves. Each tag is labeled with a different color (green or blue).

walking in parallel, may be considered to be correct given that
the action taken by the infrastructure shall not suffer from it,
then BLE technology with the directional model shall be the
best solution, correctly associating the tag to its corresponding
pedestrian 91.5% of the time, with an average delay of 0.7
seconds. It is important to highlight the fact that these results
were obtained with a suboptimal antenna configuration as
described in Section III-B and illustrated in Fig. 2.

Different examples are depicted for both the standard and
the directional RFID approach in Figs. 10(a) and 10(b) respec-
tively. The upper row shows the images of the left camera
with a color-coded square that represents the associated tag
next to the detected pedestrian. The lower row depicts the
XZ-map (bird’s eye view) without road points, including the
detected blobs and the corresponding RSSI circumferences or
curves for each antenna depending on the model (standard or
directional). Each tag is labeled with a different color (green or

blue). It may be observed, in most cases that the RSSI curves
of the directional model are closer to the tagged pedestrian
than the RSSI circumferences of the standard approach. In
the third example the standard approach incorrectly associates
each tag for two tagged-pedestrians crossing and in the fourth
example the model is unable to correctly associate one of the
tags to its corresponding pedestrian.

As described in Section I, once the infrastructure is able
to localize the user with disabilities, a set of different actions
may be taken to enhance the functional capabilities of the
disabled pedestrian while crossing. Some examples are the
adaptive green phase for pedestrians with mobility or cognitive
impairments (see Fig. 11), variable audible messages, variable
visual messages to both pedestrians and drivers (see Fig. 12),
etc. Note that more in-depth analysis of the performance and
efficiency of these solutions extend beyond of the scope of
this paper.



Fig. 11. Adaptive green phase for pedestrians with mobility or cognitive
disabilities.

Fig. 12. Variable visual messages provided to drivers to alert them about
the presence of pedestrians with special needs.

VII. CONCLUSIONS

In this paper, for the first time, we have extended the range
of applications of the Assistive Technology to the context
of Intelligent Transportation Systems. This new concept, As-
sistive Intelligent Transportation System, involves the need
for localizing disabled users and identifying their specific
type of impairment. Thus, the AITS shall be able to de-
velop different actions to enhance the functional capabilities
of disabled users while interacting with the transportation
infrastructure or vehicle. A specific procedure that ensures the
individual’s anonymity while identifying the type of disability
was proposed and a set of distinct AITS examples have been
described.

In order to illustrate the needs of AITS, a specific example,
an assistive intelligent pedestrian crossing, was developed.
The crosswalk was equipped with a stereo vision system
to accurately localize all pedestrians in the waiting and
crossing areas. Users with special needs shall carry a small,
lightweight (passive -RFID- or active -BLE-) tag, that contains
the identifier of their type of disability. The infrastructure
was equipped with radio-frequency antennas (and a reader
in the case of the RFID), and a processing unit shall be
responsible for performing stereo-based object detection and
RSSI-stereo data association. A new and automatic RSSI-
distance calibration procedure was proposed by combining
stereo vision with RFID/BLE identification technologies. Two
different models, standard and directional, were defined and
tested. A specific solution to the problem of user localization
and anonymous disability identification was presented based
on a new probabilistic metric and a general nearest neighbor
technique that associates pedestrians detected by the stereo
system and the distance values given by the radio-frequency
tag RSSI and at least two antennas. Results were obtained
in a real crosswalk scenario. The RFID tags were correctly
associated to their corresponding pedestrians the 78% of the

time, with an average delay of 1.4 seconds. Considering asso-
ciations to close or parallel non-tagged pedestrians as correct,
the BLE tags were correctly associated to their corresponding
pedestrians the 91.5% of the time, with an average delay of
0.7 seconds. A set of assistive examples were presented in the
context of adaptive pedestrian crossings. This approach may
be easily extended to other types of AITS, depending on the
localization accuracy requirements and the range of operation
of the specific application.

Future works shall examine the use of more than two
antennas located as far as possible from one another, so as to
improve the association between tags and tagged pedestrians
(users with special needs) or even combine both RFID and
BLE technologies. The sensitivity of the tag position shall
be also analyzed. Furthermore, user acceptance and other
AITS shall be explored in order to extrapolate the insight
derived from this experience, attempting to advance in the
development of new assistive technologies so as to enhance the
functional capabilities of transportation users with disabilities.
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in 2003 and 2008 respectively. He currently works
as Associate Professor at UAH. He is the author of
more than 90 refereed publications in international
journals, book chapters and conference proceedings.
His research interests are focused on computer vi-
sion and intelligent transportation systems. Dr. F.-
Llorca is currently an Associate Editor of the IEEE
Transactions on Intelligent Transportation Systems.

He received the IEEE ITSS Outstanding Application Award 2013, the Best
Young Researcher Award from the UAH in 2013, the Best PhD Award by
the UAH in 2008, the Best Research Award in the domain of Automotive
and Vehicle Applications in Spain in 2008, the 3M Foundation Awards under
the category of eSafety in 2009, the MSc Thesis Award in eSafety from
ADA Lectureship at the Technical University of Madrid in 2004, and the
Best Telecommunication Engineering Student Award by IVECO in 2004.

Raúl Quintero Mı́nguez received the M.S. degree
in computer science engineering from the University
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