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Abstract: In this paper, we present a method for computing velocity using a single camera onboard a road 

vehicle, i.e. an automobile. The use of computer vision provides a reliable method to measure vehicle 

velocity based on ego-motion computation. By doing so, cumulative errors inherent to odometry-based 

systems can be reduced to some extent. Road lane markings are the basic features used by the algorithm. 

They are detected in the image plane and grouped in couples in order to provide geometrically constrained 

vectors that make viable the computation of vehicle motion in a sequence of images. The applications of 

this method can be mainly found in the domains of Robotics and Intelligent Vehicles. 
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1. Introduction 

 
Accurate estimation of the vehicle ego-motion with regard to the road is a key element for computer 
vision-based assisted driving systems. In this method, we propose the use of a single camera onboard a 
road vehicle in order to provide an estimation of its longitudinal velocity by computational means. 
There are some clear benefits derived from the use of computer vision for ego-motion computation. On 
the one hand, vision is not subject to slippery, contrary to odometry-based systems. This permits to 
reduce cumulative errors to some extent. On the other hand, it allows the integration of ego-motion data 
into other vision-based algorithms for intelligent vehicles, avoiding thus the need for maintaining 
calibration between different sensors. Some drawbacks must nonetheless be mentioned, such as the 
small number of feature points normally present in typical road scenes.  Conversely, the problem 
becomes quite the opposite in urban scenes, where really cluttered images must be handled. In this case, 
the number of feature points increases although most of the information contained in the image is due 
to outliers.  We propose to obtain couples of road features, mainly composed of road markings, as the 
main source of information for computing vehicle ego-motion. Road markings are normally found in 
highways and country side roads, where the estimation of vehicle velocity is most useful. Additionally, 
the use of lane markings allows avoiding the use of complex direct methods [1], [2], [3] for motion 
estimation. Instead, motion stereo techniques are considered. Motion stereo has great practical 
advantages as a means for a vehicle to determine its precise distance from external objects. This 
technique has previously been deployed in the field of indoor robotics [4]. The method is based on 
sampling a dynamic scene rapidly (e.g., 25 images per second) and measuring the displacements of 
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features relative to each other in the image sequence. Accuracy is another advantage of the method. 
While the vehicle continues to approach the detected features the accuracy of the measurement 
improves quickly as the distance decreases. In the sequel an extension of the method for road vehicles 
and some experimental results will be presented.  

 

2. Description of the method 
 
2.1. Depth measurement 
 
In outdoor scenes where many artificial objects and structures exist, a couple of static points that 
belong to the same object and are equally distant from the image plane may be observed and measured 
simultaneously. Points lying on the road are an example, if a camera mounted onboard an automobile is 
considered. In particular, the left and right edges of lane markings constitute a clear example of coupled 
points that can be used for computing vehicle ego-motion using perspective projection laws. Let us, 
then, assume that there are two road points, P1 and P2, with coordinates (X1, Y1, Z1) and (X2, Y2, Z2), 
where Z stands for the point depth (distance from the image plane). Let us assume that Z1=Z2=Z, which 
means that both points are equally distant from the image plane. The coordinates of the points in the 
image plane, p1 and p2, can then be computed as 
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where uc and vc represent the coordinates of the principal point in the image plane (optical center), and 
fu and fv are the camera focal length, given in pixels units, in the u (horizontal) and v (vertical) axes, 
respectively. Let B=|X1-X2| be the horizontal distance between the road points and b=|x1-x2| the 
horizontal distance between the corresponding image points. Based on the previous statement, b=fu·B/Z. 
Finally, let us consider that the camera is translated causing the two road points to move relative to the 
camera with the velocity (dX/dt, dY/dt, dZ/dt) while fu and B remain constant. In general, the derivative 
of b with respect to time can be computed as  
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For a couple of road points, the distance from the image plane Z can be computed under the planar road 
assumption as follows 

 

( )αθ

θ

−⋅=







= −

tan

tan 1

vfv
Z
H

                                                              (3) 

 
where " stands for the camera pitch angle with respect to the horizontal line parallel to the road, v is the 
vertical coordinate of the coupled road points in the image plane, and H is the camera height with 
respect to the road plane. Let us remark that coordinate v can be directly measured from the image, 
while parameters H and " are supposed to be known.  
 
2.2. Velocity estimation 
 
Based on relations (2) and (3), an equation can be formulated for each couple i of road points equally 
distant from the image plane. Equation (4) shows a mathematical relation from which vehicle velocity 
(v=dZ/dt) can be computed. 
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Let Nt represent the number of road point couples found by the algorithm at frame t. The optimal 
estimation of vehicle velocity v can be done by optimizing the system formed by the Nt equations that 
can be written at each iteration of the algorithm. Based on the previous statement, the problem can be 
mathematically formulated as the minimization of the estimation square error SE, represented in 
equation 5. 
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where ib

)
represents the estimation of b for couple i, and bi,t stands for the measurement of b for couple i 

at frame t. The minimization of SE must be done with respect to vehicle velocity v, as follows 
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where ib

)
at frame t can be computed based on measurements carried out at frame t-1 as in equation 7 
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where )t stands for the total execution time and the estimation of vehicle velocity is considered to 
remain constant between two consecutive iterations of the algorithm. The difference between the 
estimation and measurement of bi can be then expressed as follows 
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Likewise, the derivate with respect to vehicle velocity can be computed as 
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This leads to equation (10). 
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From equation (10), and considering that vt- can be approximated by vt-1, the final estimation of vehicle 
velocity is provided by equation (11). 
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3. Results and Future Work 
 
The algorithm was implemented on a PC onboard a real automobile in a test circuit. A Firewire camera 
was mounted on the test car, providing 640x480 Black&White images in IEEE 1394 format. The 
couples of road points detected by the algorithm in a real experiment are depicted in green on the left 
hand side of Figure 1. It must be remarked that the correspondence of road points between two 
consecutive images is carried out by implementing an optical flow method based on correlation 
techniques [5]. As can be observed, although most of the points belong to road markings other road 
artifacts can also provide useful information for vehicle estimation, as long as the detected features 
correspond to real road points.  In the same figure, the instantaneous estimation of vehicle velocity at 
the current frame is provided (37.24 km/h), as well as the accumulated length of the path run by the car 
(292.78m in this example). Similarly, the estimation of vehicle velocity is provided in the right hand 
side of Figure 1 for the complete duration of the experiment. The vertical axis represents vehicle 
velocity in km/h. The red curve depicts vehicle velocity estimation without filtering, while the blue 
curve depicts vehicle velocity estimation using a kalman filter. The final result issued by the algorithm 
demonstrated to be very similar to the vehicle velocity measured by odometry means (around 40 km/h). 
 

 
Figure 1: Detection of coupled road points (left); estimation of vehicle velocity using vision (right). 

 
At present, the estimation of vehicle velocity is being used in the prediction stage of kalman filtering in 
Lane Departure Warning (LDW) Systems developed by the authors. Similarly, the estimation of 
vehicle ego-motion is currently being extended to a 6-component vector providing the complete ego-
motion information, including vehicle longitudinal and angular displacement in X, Y, and Z. This 
intends to enhance the accuracy of global vehicle positioning by fusing GPS data with position 
estimation provided by visual means.  
 

Acknowledgments 
 

This work has been supported by grant DPI2005-07980-C03-02 from the Spanish MEC. 
 

References 
 

[1] G. P. Stein, O. Mano and A. Shashua, A robust method for computing vehicle ego-motion., In 
Proceeding of the IEEE Intelligent Vehicles Symposium, Parma, 2004. 

 
[2] B. K. P. Horn and E. J. Weldon, Jr., Direct methods for recovering motion, International 

Journal of Computer Vision, 2 51-76, 1988.  
 

[3] P. Meer, D. Mintz, D. Kim and A. Rosenfeld, Robust regression methods for computer vision: 
A review. International Journal of Computer Vision, 6(1) 59-70, 1991. 

 
[4] J. Huber and V. Graefe, Motion stereo for mobile robots, IEEE Transactions on Industrial 

Electronics, 41 (4) 378-383, 1994. 
 
[5] A. Giachetti, M. Campani and V. Torre, The use of optical flow for road navigation, IEEE 

Transactions on Robotics and Automation, 14 (1) 34-48, 1998. 


