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Raúl Quintero, Ignacio Parra, David F. Llorca, Senior Member, IEEE, Miguel Á. Sotelo, Fellow Member, IEEE

Abstract—According to several reports published by worldwide
organisations, thousands of pedestrians die in road accidents
every year. Due to this fact, vehicular technologies have been
evolving with the intent of reducing these fatalities. This evolution
has not finished yet since, for instance, the predictions of pedes-
trian paths could improve the current Automatic Emergency
Braking Systems (AEBS). For this reason, this paper proposes a
method to predict future pedestrian paths, poses and intentions
up to 1s in advance. This method is based on Balanced Gaussian
Process Dynamical Models (B-GPDMs), which reduce the 3D
time-related information extracted from keypoints or joints
placed along pedestrian bodies into low-dimensional spaces. The
B-GPDM is also capable of inferring future latent positions
and reconstruct their associated observations. However, learning
a generic model for all kind of pedestrian activities normally
provides less ccurate predictions. For this reason, the proposed
method obtains multiple models of four types of activity, i.e.
walking, stopping, starting and standing, and selects the most
similar model to estimate future pedestrian states. This method
detects starting activities 125ms after the gait initiation with
an accuracy of 80% and recognises stopping intentions 58.33ms
before the event with an accuracy of 70%. Concerning the path
prediction, the mean error for stopping activities at a Time-To-
Event (TTE) of 1s is 238.01±206.93mm and, for starting actions,
the mean error at a TTE of 0s is 331.93±254.73mm.

Index Terms—Pedestrians, automatic emergency braking sys-
tems, path prediction, intention prediction, pose prediction.

I. INTRODUCTION

ACCORDING to the Annual Accident Report 2016 pub-
lished by the European Road Safety Observatory, almost

26.000 people died in road traffic accidents in the European
Union in 2014, including 5.729 pedestrians, which represent
22.09% of all fatalities. Concerning world statistics, data are
more impressive. The Global Status Report on Road Safety
published by the World Health Organization (WHO) in 2015
indicates that more than 1.2 million people died in road traffic
accidents worldwide in 2013. About 275.000 of these fatalities
were pedestrians.

Because of the high number of fatalities, during the last
few years vehicles and infrastructures have been evolving to
become intelligent machines with advanced technologies such
as Assistive Intelligent Transportation Systems (AITS) [1],
Pedestrian Protection Systems (PPS), AEBS or other sort of
Advanced Driver-Assistant Systems (ADAS). Improving these
technological advances is imperative because, as it is asserted
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in [2], [3], the longer the braking initiation time, the higher
the impact speed and thus, the injury risk. In fact, as claimed
in the Global Status Report on Road Safety published by the
WHO in 2015, an adult has less than a 20% chance of dying
if struck by a car at less than 50 km/h but almost a 60%
risk of dying if hit at 80 km/h. Hence, a precise assessment
about the current and future pedestrian positions and an early
detection of people entering a road lane is a major challenge
in order to increase the effectiveness of AEBS. Similarly, an
early recognition of pedestrian intentions can lead to much
more accurate active interventions in the last second automatic
manoeuvres. In this way, in the last few years, with the aim of
addressing these challenges, a lot of effort has been put into
recognising pedestrian activities and predicting trajectories and
intentions.

This paper proposes a method to predict future pedestrian
paths, poses and intentions up to 1s in advance using B-
GPDMs, which reduce the 3D time-related positions and
displacements extracted from keypoints or joints placed along
the pedestrian bodies into low-dimensional latent spaces. The
B-GPDM also has the peculiarity of inferring future latent
positions and reconstructing the observation associated to a
latent position from the latent space. However, as claimed
in [4], learning a generic model for several kind of pedes-
trian activities normally provides less accurate predictions. To
overcome this, the proposed method obtains multiple models
of each type of pedestrian activity, i.e. walking, stopping,
starting and standing, and selects the most appropriate to make
predictions.

The remainder of this paper is organized as follows: Section
II presents a brief survey of previous works focused on pedes-
trian intention and path prediction. Section III describes the
dataset of pedestrian activities and the proposed system. The
activity recognition and path prediction results obtained by the
system are provided in Section IV. Finally, the conclusions and
future research lines are discussed in Section V.

II. RELATED WORKS

The problem of vision-based pedestrian detection for ADAS
has been extensively researched in the past. As a consequence,
many manufacturers have equipped their vehicles with com-
mercial systems that warn the driver when a pedestrian or ob-
ject is in front. Nonetheless, the estimation of future pedestrian
states could improve these systems, allowing the activation of
effective avoidance maneouvres earlier. Despite this, not many
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works have been published so far about intention, path and
pose prediction once pedestrians are detected.

To carry out these tasks, a wide range of features and
information can be extracted from pedestrians. However, some
of them are certainly more significant than others. In this sense,
studies such as [5]–[13] give some useful clues. According to
them, it seems that the most relevant features to compute path
and intention predictions can be extracted from two sources.
The first one corresponds to pedestrians since their motions,
positioning information, orientations and head poses determine
the variables that a driver commonly uses to infer intentions
and to know whether pedestrians are aware of oncoming
vehicles. The second source emerges from the situation crit-
icality and the environment given that vehicle-pedestrian and
curbside-pedestrian distances, existence of zebra crossing or
road width are significant data.

A. Predictions using Pedestrian Features
Regarding the first source of information, pedestrian motion

features are regularly extracted to make predictions apply-
ing image processing instead of computing only pedestrian
positions and velocities as several approaches do. E.g., in
[14], [15], only positioning information is used to predict
pedestrian-vehicle collisions and paths at short prediction hori-
zons respectively. Additionally, in [16], [17], apart from using
positioning information, augmented motion features derived
from dense optical flow fields are also processed for path and
intention predictions. The use of augmented motion features
achieves more accurate results for stopping trajectories than
using only positioning information. In these works, [16], [17],
different approaches have been implemented and compared.
An IMM-Kalman Filter (KF) is used to include two KFs
for moving and non-moving pedestrians. Besides, a trajectory
matching and filtering framework called Probabilistic Hierar-
chichal Trajectory Matching (PHTM) is developed to compare
the current pedestrian trajectory with trajectories previously
learned. Apart from the two approches described before, in
[16] two GPDMs are also trained to make predictions, one for
walking motions and the other for stopping activities. Both
models are combined using an IMM-Particle Filter (PF) to
select the most appropriate pedestrian dynamics. Another ex-
ample of the use of motion features can be found in [18] where
a method to recognise intentions from a moving vehicle is
implemented using Support Vector Machine (SVM) classifiers.
The motion features are gathered through the overlapping of
pedestrian silhouette images at consecutive time steps.

Moreover, the orientations in which pedestrians are facing
and head poses could be evaluated to predict future pedestrians
positions. These features are investigated in [19], [20] in order
to predict intentions. In [19], Histogram of Oriented Gradients
(HOG) features are fed to an 8-class SVM classifier whose
probabilities allow to model a Hidden Markov Model (HMM)
to infer future orientations. In [20] it is presented an approach
that combines intention recognition and path prediction by
means of an IMM-EKF in combination with a Latent-Dynamic
Conditional Random Field (LDCRF) to integrate positioning
information and situational awareness computed by head pose
estimation.

Furthermore, many dangerous situations arise when the
driver’s view of the road is obstructed by objects, making
impossible the detection of pedestrians from the inside the
vehicle. For this reason, infrastructure sensors in combination
with roadside units can be mounted at urban hazard spots
sending the appropriate signals to nearby vehicles through
wireless communication channels. This solution is proposed
in [21]–[23] with the aim of predicting crossing intentions
using pedestrian motion features and linear 2-class SVM
classifiers. Additionally, positioning information is extracted in
[24]–[26] to create linear and non-linear velocity-time-based
and position-based models which are able to predict paths
in the course of a gait initiation at crosswalks or for typical
pedestrian motions. Apart from using positioning information,
heading angle is also considered in [27]. The work proposes a
method based on the clustering of trajectories to avoid vehicle-
pedestrian collisions.

B. Predictions using Context Information

Despite urban environments are generally very complex,
exploiting and analysing the context information, i.e. the
situational criticality and the spatial layout of the environment
(structure of streets, sidewalks, intersections or crosswalks),
can also provide some valuable information to AEBS. In this
sense, this information and the pedestrian situational aware-
ness are assessed in [28] by the vehicle-pedestrian distance at
the expected collision point, the curbside-pedestrian distance
and the pedestrian head orientation. The authors apply a Dy-
namic Bayesian Network (DBN) and a Switching Linear Dy-
namical System (SLDS) with the aim of predicting pedestrian
paths from an approaching vehicle. Furthermore, pedestrian
features and contextual information are also combined in [29]–
[32]. The first work fuses two models to predict crossing
intentions from a moving vehicle and computes contextual
information such as lateral distances and times that pedestrians
need to reach some goals (collision point, curbstone, ego-
lane or crosswalk) and pedestrian features such as position-
ing information, velocities and directions. In [30], curbside-
pedestrian and vehicle-pedestrian distances, head orientations,
and pedestrian speeds are computed to predict intentions using
a stereo-thermal camera mounted on the front-roof of a car.
The work described in [31] is focused on identifying those
features from the environment that are necessary to determine
whether a pedestrian will cross the road at a crosswalk. Finally,
a stereo- and infrastructure-based pedestrian detection system
is presented in [32] to assess whether pedestrians will cross
or wait estimating their positions in a set of manually selected
regions corresponding to the pedestrian waiting areas and the
crossing region.

Likewise, as previously mentioned, many dangerous situ-
ations arise from the fact that the driver’s view of the road
scene may be obstructed by objects and, hence, it could be
impossible to avoid a collision. Including prior knowledge
about the scene such as objects, sidewalks, roads, entries
and destinations might provide richer information to systems
focused on predicting pedestrian trajectories. E.g., in [33], the
task of inferring paths and intentions from a static camera
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is addressed by incorporating physical scene features and
noisy tracker observations. Thereby, the effect of physical
environments on pedestrian intentions is modelled through the
information that is gleaned from physical scene features and
prior knowledge of possible destinations.

C. Discussion

Although all these works obtain interesting results in path
and intention prediction, applying pedestrian skeleton estima-
tion offers a new approach to carry out these tasks, as recently
proposed in [34]–[38]. Given that humans are not rigid objects,
the motion analysis of each body part should be taken into
account to make predictions since, e.g., whereas the motion
of the head may not be relevant in starting intentions, a slightly
motion of a knee could be indicative of that action.

Concerning modelling approaches, switching between mod-
els with different dynamics could be a successful option to
achieve accurate predictions as proposed in several works.
However, extensive experiments have not been carried out
so far in order to fix the number of different pedestrian
dynamics that could emerge in urban environments. Unlike
other works that use two dynamical behaviours, in this paper
a method based on four different pedestrian actions to obtain
predictions is proposed. In relation to approaches which take
into account past motion history to predict future paths, they
may not be effective in situations where pedestrians suddenly
appear in the vehicle trajectory. Therefore, although these
systems obtain good predictions, they could not be useful in
urban environments. The method proposed in this paper only
needs two pedestrian observations to predict paths, poses and
intentions.

Additionally, despite most works reviewed above are fo-
cused solely on predicting intentions, providing the probability
of crossing with high confidence is not enough to avoid
collisions. E.g., future pedestrian positions could be decisive in
the computation of the best collision avoidance trajectory for
an automatic steering system. In this paper pedestrian paths,
poses and intentions are predicted with the aim of improving
the AEBS.

III. SYSTEM DESCRIPTION

The proposed method is based on B-GPDMs, which reduce
the 3D time-related positions and displacements extracted
from keypoints or joints placed along the pedestrian bodies
into low-dimensional latent spaces. The B-GPDM also has
the peculiarity of inferring future latent positions and recon-
structing the observation associated to a latent position from
the latent space. Therefore, it is possible to reconstruct future
observations from future latent positions. However, as claimed
in [4], learning a generic model for all kind of pedestrian
activities or combining some of them into a single model nor-
mally provides inaccurate estimations of future observations.
For that reason, the proposed method learns multiple models
of each type of pedestrian activity, i.e. walking, stopping,
starting and standing, and selects the most appropriate one to
estimate future pedestrian states at each time step. A general
description of the method is shown in Fig. 1. A training dataset

of motion sequences, in which pedestrians perform different
activities, is split into 8 subsets based on typical crossing
orientations and type of activity. Then, a B-GPDM is obtained
for each sequence with one activity contained in the dataset.
After that, in the online execution, given a new pedestrian
observation, the current activity is determined using a HMM.
Thus, the selection of the most appropriate model among the
trained ones is centred solely on that activity. Finally, the
selected model is used to predict the future latent positions
and reconstruct the future pedestrian path and poses.

Training 
Dataset
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Activity 
Recognition
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Fig. 1. General description of the method proposed. The algorithm is divided
into two stages: offline training (top) and online execution (bottom).

A. Dataset Description

Two of the main goals of this work are to train accurate
models with different pedestrian dynamics and to test the fea-
sibility and limits of the proposed method in an extensive way
under ideal conditions. For that purpose, a high frequency and
low noise dataset published by Carnegie Mellon University
(CMU) [39] has been used. On the one side, the high frequency
of the dataset helps the algorithms to properly learn the
dynamics of different activities and increases the probability
of finding a similar test observation in the trained data without
missing intermediate observations. On the other side, low noise
models improve the prediction when working with noisy test
samples. The dataset contains sequences in which people are
simulating typical pedestrian activities. 3D coordinates of 41
joints located along their bodies are gathered at 120 Hz. An
example of a walking pedestrian observation from different
points of view is shown in Fig. 2. Nevertheless, not all gath-
ered joints offer discriminative information about the current
and future pedestrian activities. In fact, joints located along
the arms do not contribute to distinguish walking, starting,
stopping or standing activities. For that reason, a subset of 11
joints was selected in order to infer future pedestrian states.
An example of a pedestrian observation of this subset from
different points of view is shown in red markers in Fig. 2.
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Fig. 2. Pedestrian observation extracted from the dataset published by CMU in
which 41 joints, represented in blue markers, are shown. The subset composed
of 11 joints is represented in red markers.

The CMU dataset contains a considerable number of differ-
ent activities, including human interaction of several subjects.
We pre-select and filter the available sequences according
to the following criterion: only sequences including walking,
starting, stopping and standing activities without orientation
changes of the subjects are selected. This way, a total of
490 sequences composed of 302,470 pedestrian poses from
31 different subjects were extracted. Hereafter, this set of
sequences will be named as CMU-UAH dataset.

After this extraction, the CMU-UAH dataset was divided
into 8 subsets. The first division was based on the orientation
of typical crossing activities, i.e. left-to-right and right-to-
left. The second one was based on the type of activity, i.e.
walking, starting, stopping and standing. Those sequences with
more than one activity were cropped into subsequences with
only one action. However, none of the works reviewed on
Section II offers a discussion on how to identify the instant
that a pedestrian starts walking or finishes an activity of
crossing, starting or stopping. Consequently, a guideline will
be proposed in this paper later on. A breakdown of the CMU-
UAH dataset based on the number of sequences and pedestrian
observations is shown in Table I.

TABLE I
NUMBER OF SEQUENCES AND NUMBER OF OBSERVATIONS FOR EACH

TYPE OF ACTIVITY.

Sequences
Orientation Walking Starting Stopping Standing Total

Left-right 240 142 56 224 662
Right-left 191 121 27 156 495

Total 431 263 83 380 1157

Observations
Orientation Walking Starting Stopping Standing Total

Left-right 107324 10732 2522 43151 163729
Right-left 95113 10940 1276 31412 138741

Total 202437 21672 3798 74563 302470

It is worth remarking that each pedestrian observation is
composed of pose and displacements. The former is concerned
with the 3D position of each joint and the latter are associated
with the displacement of each joint between two consecutive
iterations. In practice, the joint displacements are key features
since they increase the feasibility of reconstructing future

pedestrian paths and improve the accuracy of the pedestrian
activity classification.

1) Event-labelling Methodology: The guideline of event-
labelling proposed in this paper allows to identify the instant
that a pedestrian starts or finishes an activity. Specifically,
a starting activity is defined as the action that begins when
the pedestrian moves one knee to initiate the gait and ends
when the foot of that leg touches the ground again. A walking
activity is defined as the action that happens after a starting
activity and before a stopping activity. Moreover, a stopping
activity is defined as the action that begins when a foot is
raised for the last step and finishes when that foot treads
the ground. Finally, standing activities are defined as the
actions that happen after stopping activities and before starting
activities. These criteria were adopted because these transitions
are easily labelled by human experts, thus enabling the creation
of reliable groundtruths.

B. Pedestrian Skeleton Estimation

A pedestrian skeleton estimation algorithm based on point
clouds extracted from a stereo pair and geometrical constraints
was implemented to test the proposed method with noisy
observations. This algorithm is a variation of the method
proposed in [35], [40] and it is described in [38]. An example
of a pedestrian skeleton estimation is shown in Fig. 3.

(a) (b)

(c) (d)

Fig. 3. Example of a pedestrian skeleton estimation. Green markers corre-
spond to left joints, blue markers to right joints and red markers to head, centre
of shoulders and centre of hips. The lines represent the pedestrian heading
computed from each body part.

C. Learning Pedestrian Activities

As mentioned above, this paper describes a method based
on the B-GPDM, which is a modified version of the Gaussian
Process Dynamical Model (GPDM), to learn 3D time-related
information extracted from pedestrian joints in order to predict
paths, poses and intentions. The GPDM, described in [4],
[41], provides a framework for transforming a sequence of
feature vectors, which are related in time, into a low dimen-
sional latent space. In order to apply this transformation, the
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observation and dynamics mappings are computed separately
in a non-linear form, marginalising out both mappings and
optimising the latent variables and the hyperparameters of the
kernels. The incorporation of dynamics not only allows to
make predictions about future data but also helps to regularise
the latent space for modelling temporal data. Therefore, if
the dynamical process defined by the latent trajectories in
the latent space is smooth, the models will tend to make
good predictions. Likewise, given a latent position from the
latent space, the associated observation can be reconstructed.
Nonetheless, learning a generic model for all kind of pedes-
trian activities or combining some of them into a single model
could produce poor dynamical predictions as claimed in [4].
For that reason, the proposed method learns multiple models
for each type of pedestrian activity, i.e. walking, stopping,
starting and standing, and selects the most appropriate among
them to predict future pedestrian states at each time step.
The learning stage starts loading all sequences contained in
the CMU-UAH dataset. Because of the coordinate system of
these sequences is referenced to the sensor, the 3D translation
parameters of each observation are removed so that the origin
of the reference system is relocated in the pedestrian. This
allows the algorithms to deal with pedestrians regardless of
their positions with respect to the sensors. After that, the
variables are scaled by subtracting the mean and dividing each
one by its standard deviation in order to have zero-mean and
unit-variance data.

Since the B-GPDM requires iterative procedures for min-
imising the log-posterior function, the latent positions X, the
hyperparameters θ and β, and the constant κ have to be
properly initialised. On the one hand, the latent coordinates
are initialised by PCA and, on the other hand, the kernel
parameters and κ are initialised by using the values proposed
in [4]. Finally, a B-GPDM is learned for each sequence. An
example of a model corresponding to a pedestrian that is
walking 6 steps is shown in Fig. 4. The green markers indicate
the projection of the pedestrian observations onto the subspace.
The model variance is represented from cold to warm colours.
Whereas a high variance (warm colours) indicates that illogical
pedestrian observations can be reconstructed, a low variance
(cold colours) indicates that pedestrian observations similar to
the learned sequence may be obtained from a latent position.

D. Activity Recognition

Since several models with different dynamics are previously
trained, the activity recognition for the current pedestrian ob-
servation allows to select afterwards the most accurate model
to estimate future pedestrian states. Naı̈ve-Bayes classifiers,
as proposed in [37], or the maximum similarity between the
current observation and each observation of the training dataset
may determine the activity. Nevertheless, in the last case,
if the maximum similarity was applied directly, i.e., without
modelling the evolution of the pedestrian activity, higher errors
would be achieved when selecting the most appropriate model
due to the likeness between observations of different dynamics.
E.g., an observation of a pedestrian that is walking may be
similar to an observation belonging to the beginning of a
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Fig. 4. B-GPDM corresponding to a pedestrian that walks 6 steps. The
projection of the pedestrian motion sequence onto the subspace is represented
by green markers. The model variance is indicated from cold to warm colours.

stopping sequence or to the end of a starting sequence. Thus, if
the previous activity were recognised as walking, then the next
dynamics would be determined as walking or stopping, not as
starting. Thereby, the process of how a pedestrian changes its
dynamics over time can be described by a Markov Process.
At any time, the pedestrian can do one of a set of 4 distinct
actions (s). These activities or states are not observable since
only 3D information from joints belonging to the pedestrian
is available. Therefore, the states can be only inferred through
the observations (x). For this reason, the implementation of
a first-order HMM allows to model the transitions between
activities and to recognise the correct one taking into account
the previous dynamics.

The Viterbi algorithm is a dynamic programming procedure
for finding the most likely state sequence given an observation
sequence. This way, choosing sequences of a single element,
the probability of an observation x of being in the j-th state
of s at an instant of time t is formulated as:

p(stj |xt) =
p(xt|stj)p(stj)
4∑

i=1

p(xt|sti)p(sti)
(1)

where p(stj) represents the prior probability and p(xt|stj) the
emission probability.

The prior probability is computed as:

p(stj) ∝
4

max
i=1

[p(stj |st−1
i )p(st−1

i |xt−1)], t > 1 (2)

where p(stj |s
t−1
i ) corresponds to the probability of changing

from the i-th to the j-th state defined by means of a Transition
Probability Matrix (TPM). The values of transitions between
states were experimentally fixed maximising the success rate.
p(st−1

i |xt−1) corresponds to the probability of being in the
i-th state of s at the previous instant. The initial probability
p(st) is uniformly distributed since the pedestrian activity is
unknown in t = 1.

The emission probability p(xt|stj) is defined as:

p(xt|stj) ∝
N

max
i=1

(
1

1 + αi
+

1

1 + βi

)
(3)
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where αi ∈ [0,∞] and βi ∈ [0,∞] correspond to the Sum
of Squares Errors (SSE) for the pedestrian pose and the joint
displacements respectively. The SSE are computed between
the current pedestrian observation xt and the N observations
of the training data subset belonging to the j-th state of s.
Before computing αi, the pose of the current pedestrian ob-
servation and the poses of the training observations are scaled
and referenced to the same joint. The scale factor applied to
each observation is obtained by the sum of ankle-knee and
knee-hip distances. The displacements are not scaled with the
intent of finding pedestrians with similar joint velocities.

E. Path, Pose and Intention Prediction
Once the pedestrian activity in t has been estimated, the se-

lection of the most appropriate model allows to make accurate
predictions about paths, poses and intentions. For these tasks,
a search of the most similar training observation and its model
is computed. This observation corresponds to the i-th element
for the activity s in Equation 3. After that, the latent position
that represents the most similar observation is used as the
starting point for a more accurate search in the selected model
applying a gradient descent algorithm. Due to the fact that
close points in the latent space are also close in the data space,
it is expected that a more similar non-trained observation
can be found around this starting point. The function that is
minimised in the gradient descent algorithm is defined as:

ε(x) =

d∑
j=1

((y − µ)2) +
1

2

q∑
j=1

(x2) (4)

where y is the current pedestrian observation and µ represents
the pedestrian observation reconstructed from the latent posi-
tion x. Both observations are previously scaled and referenced
to the same joint. Finally, d corresponds to the dimension of
the original observation and q to the dimension of the model.

Once the final latent position has been estimated, predictions
of N latent coordinates are iteratively made and their associ-
ated observations are reconstructed. Thereby, given the current
pedestrian location with respect to the sensor, the future pedes-
trian path can be computed adding the consecutive N predicted
displacements. It is noteworthy that the reference point to
reconstruct the path is the right hip since it corresponds to
a point close to the centre of gravity. Additionally, given the
N future pedestrian observations, the future intentions can be
estimated through the application of the activity recognition
algorithm, explained in Section III-D, to these observations.

IV. RESULTS

Throughout this section, the main results of the algorithms
described above are discussed. All algorithms were tested
using the CMU-UAH dataset adopting a one vs. all strategy.
This means that all the models generated by one test subject
were removed from the training data before performing tests
on this subject. Because of the pedestrian displacements are
computed from two consecutive poses, 301.980 observations
are finally analysed. Additionally, the activity recognition and
prediction algorithms were also tested using a sequence of
pedestrian data extracted by the skeleton estimation algorithm.

A. Activity Recognition Results

The activity recognition results are summarised on a confu-
sion matrix shown in Table II. Nonetheless, a more exhaustive
data assessment is represented in Table III where the different
activity recognition performances are compared taking into
account the pedestrian features, number of joints and activity.

TABLE II
CONFUSION MATRIX USING 11 PEDESTRIAN JOINTS.

Predicted
Standing Starting Stopping Walking

Actual

Standing 72011 1396 174 682
Starting 1451 13313 13 6875
Stopping 126 0 1951 1720
Walking 262 494 1508 200004

TABLE III
EVALUATION OF ACTIVITY RECOGNITION PERFORMANCE WITH RESPECT

TO PEDESTRIAN FEATURES, NUMBER OF JOINTS AND ACTIVITY.

Features Pose + Disp Pose Disp

Joints 41 11 41 11 41 11

Accuracy 90.69% 95.13% 88.39% 91.28% 94.76% 94.23%

Precision

Standing 89.77% 97.51% 88.93% 95.54% 97.27% 98.04%
Starting 77.88% 87.57% 66.30% 79.38% 82.79% 83.96%
Stopping 44.59% 53.51% 41.78% 40.06% 35.79% 35.72%
Walking 92.50% 95.57% 89.89% 91.35% 94.90% 94.81%

Recall

Standing 88.85% 96.97% 84.31% 87.86% 97.01% 97.19%
Starting 48.60% 61.49% 31.33% 39.14% 52.62% 54.90%
Stopping 36.45% 51.38% 32.87% 37.11% 41.14% 40.90%
Walking 96.90% 98.88% 97.04% 99.13% 98.43% 98.36%

F1-Score

Standing 89.31% 97.24% 86.56% 91.54% 97.14% 97.61%
Starting 59.85% 72.25% 42.55% 52.43% 64.34% 66.39%
Stopping 40.11% 52.42% 36.79% 38.53% 38.28% 38.13%
Walking 94.65% 97.20% 93.33% 95.08% 96.63% 96.55%

1) Joints Influence on the Performance: The results verify
that shoulder and leg motions, which are associated with the
11 joints, are more valuable sources of information than other
body parts to recognise the current pedestrian action. E.g.,
including the arms and upper body parts do not improve
the results, probably because they do not introduce distintive
information about them. Specifically, the maximum accuracy,
95.13%, is achieved when the observations are composed of
poses and displacements from only 11 joints. However, the
accuracy falls to 90.69% when 41 joints are used. Considering
only body poses, a similar conclusion is drawn since the
maximum accuracy is 91.28% and 88.39% for 11 and 41 joints
respectively. Finally, when the observations are composed
solely of pedestrian displacements, the activity recognition
results are not significantly influenced by the number of joints.

2) Features Influence on the Performance: Regarding the
distinction among activities, the displacements perform a bet-
ter recognition of standing actions from the rest of activities.
However, with respect to starting and stopping actions, a
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higher number of critical missclassifications are produced.
This means that the displacements do not allow to reliably
distinguish whether a pedestrian is carrying out the first or last
step. The poses and displacements offer a more discriminative
information in these cases.

Considering the body pose as the only feature, standing
actions are repeatedly recognised as walking activities since,
when the pedestrian legs are closed, the poses from both
states are very similar in those instants of time. Therefore,
the displacements are valuable information in these cases.

Regarding the observations composed of body poses and
displacements, the most frequent missclassifications are pro-
duced by delays or pedestrians with low-speed motions. The
first cause is related to the event-labelling methodology se-
lected by the human expert. It seems that the first half of
the first step and the second half of the last step contain
the most perceptible information to determine starting and
stopping actions respectively. Hence, the rest of these steps is
normally recognised as walking action. Concerning the second
cause, walking activities are recognised as starting or stopping
actions when pedestrians with low-speed motions are tested.
All these last missclassifications are not critical from the point
of view of the path estimation since these actions have similar
dynamics. Likewise, the beginning of a starting action and
the ending of a stopping motion contains body poses which
are equivalent to poses labelled as standing actions. Hence,
a significant number of missclassifications are also produced
between these activities.

Fig. 5. Example of activity recognition using poses and displacements
extracted from 11 joints. Top: pedestrian poses at significant instants of time.
Middle: probabilities for each activity. Bottom: zoom in of the transitions.

A graphical example of several of the previous statements
is shown in Fig. 5 where the classification probabilities using

11 joints along with the groundtruth are illustrated. Several
examples of pedestrian poses at different instants of time are
illustrated at the top of the figure. These poses are represented
in different colours according to the classification result. Black
represents standing, green starting, red walking and blue stop-
ping. In the middle, the probabilities of each activity at each
instant of time are shown. Finally, at the bottom, a zoom in of
the transitions is illustrated. The graph shows short delays in
the standing-starting and stopping-standing transitions. These
delays will be discussed later. On the other hand, throughout
walking actions, local maxima and local minima of walking
probabilities appear in the graph when the pedestrian legs are
open and closed respectively.

3) Labelling Influence on Delays: In Table IV and Fig.
6, the transitions from activities are analysed in detail. This
analysis is focused on the accuracy of transition detection
and its delays. The evaluation criteria fixes a range of
[−500, 500]ms around the event labelled by the human expert.
Within this range, a multiframe validation algorithm is applied
in order to ensure the transition detection and reduce false
positive changes produced by missclassifications. The number
of frames is fixed to 6 (50ms). Thereby, the algorithm detects
a transition when 6 consecutive pedestrian observations are
recognised as the same activity but this is different to the
action classified in t− 6. Finally, the activity detection delay
is computed from the instant of time where the event was
marked by the human expert and the instant of time where
the transition was detected by the algorithm.

TABLE IV
ACCURACY OF DETECTED AND NON-DETECTED TRANSITIONS.

Transition Accuracy

41 Joints 11 Joints

Standing - Starting 71.60% 97.94%
Starting - Walking 83.97% 95.42%
Walking - Stopping 62.20% 74.39%
Stopping - Standing 78.85% 91.25%

Overall 76.16% 93.25%

When 11 joints are used, the number of transitions correctly
and incorrectly detected is 622 and 45 respectively, i.e. the
accuracy is 93.25%. Most of the transitions which are not
detected corresponds to walking-stopping changes. This occurs
due to the fact that the number of observations in the dataset
belonging to a stopping activity is significantly smaller than
other actions and stopping steps are usually faster than starting
steps. The mean lengths of time of starting and stopping steps
along with their standard deviations are 686.06± 202.91 and
381.22± 78.92ms respectively.

Regarding the delays of the detected transitions, the results
show that these are not significantly influenced by the number
of joints since the multiframe validation algorithm filters most
of the missclassifications. It should also be pointed out that
starting-walking transitions have negative delays since the first
half of the first step contains the most perceptible information
to determine starting actions.
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(a) Standing-starting transitions.
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(b) Starting-walking transitions.
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(c) Walking-stopping transitions.
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(d) Stopping-standing transitions.

Fig. 6. Delays in seconds of detected transitions when 11 joints are used.
The graphs show the delays of each transition along with the mean, median
and standard deviation values.

The method proposed in this document recognises starting
intentions 125ms after the gait initiation with an accuracy
of 80% when 11 joints are considered. These results are
similar to the delays achieved in [18], [21]. Nonetheless, a
multiframe validation of 50ms is carried out in order to filter
missclassifications and a higher number of different dynamics
are modelled in the proposed method. This means that the
consideration of only one transition, i.e. standing-walking,
instead of two dynamical changes, i.e. standing-starting and
starting-walking, could accomplish better results. However, if
only two states were considered the path prediction could be

negatively influenced.

10 20 30 40 50 60

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Number of Transition

D
e

la
y
 (

s
e

c
o

n
d

s
)

 

 
Delays

Mean

Median

Mean ± Std

Fig. 7. Delays from walking-stopping transitions to standing events.

Additionally, an analysis of delays from walking-stopping
transitions to the standing events labelled by the human expert
was done and showed in Fig. 7. This analysis is important
in order to know the delay from a stopping detection until
the real standing event. The analysis shows that a mean
delay of −279.92± 158.59ms is achieved in the detection of
walking-stopping transition before a standing event. In fact,
most standing events can be predicted a few tens of ms in
advance. Specifically, the method proposed in this document
recognises stopping intentions 58.33ms before the event with
an accuracy of 70% when 11 joints are considered. This data is
slightly worse than the results accomplished in [16]–[18] due
to the non-detection of walking-stopping transitions previously
discussed.

B. Activity Recognition using Vision-based Skeletons
The activity recognition were also examined using a se-

quence of noisy observations extracted by the pedestrian
skeleton estimation algorithm. In Fig. 8, it is represented
images extracted from the sequence that corresponds to a
pedestrian that stops walking and starts walking again on a
zebra crossing from the right to left.

Fig. 8. Frames of a sequence in which a pedestrian crosses a road.

In Fig. 9, the activity recognition is represented. At the
top of the figure, the pedestrian point clouds extracted by the
pedestrian segmentation algorithm and the skeleton estimation
at different instants of time are shown. The graph shows
that the standing action at the curb was correctly recognised.
However, the walking-stopping was not detected due to the
usage of noisy observations.

C. Pedestrian Path Prediction Results
Throughout this section, the evaluation of path prediction re-

sults is performed considering 11 joints. Firstly, the outcomes
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0.6 sec 1.1 sec 1.6 sec 2.1 sec

Fig. 9. Activity recognition when poses and displacements extracted from the
skeleton estimation algorithm are used. Top: pedestrian poses at significant
instants of time. Bottom: probabilities for each activity.

of this task using the CMU-UAH dataset are shown. After
that, the path prediction using noisy observations extracted by
the skeleton estimation algorithm is analysed.

1) Pedestrian Path Prediction Results: As explained in
Section III-E, once the pedestrian activity is estimated, the
most appropriate model is selected and the prediction of
future observations is iteratively performed using that model.
Accordingly, a good path prediction depends strongly on a
good activity recognition. The path prediction evaluation is
performed using the activity recognition results discussed in
Section IV-A. In this evaluation, the Mean Euclidean Distance
(MED) between the predicted pedestrian locations and the
groundtruth for time horizon values up to 1s are analysed.
Due to the fact that the most dangerous traffic situations
usually happen when the pedestrians start to cross or when
they stop before crossing, the evaluation is done around these
situations. Thereby, the MED are computed at different TTE,
i.e. time to start walking and time to stop walking. Positive
TTE values make reference to instants of time before the event
and negative values to instants of time after the event.

In Table V and Fig. 10, the combined longitudinal and
lateral MED along with the standard deviation are shown.
Regarding starting activities, the errors before the event are
mainly produced due to to the fact the algorithm assumes
zero displacements when the pedestrian activity is recognised
as standing, however, this is not the case in the groundtruth
since small motions were gathered. The errors after the event
exponentially grows up since the recognition of a starting
activity has a mean delay around 60ms and the pedestrian is
accelerating. However, when the pedestrian finishes to speed
up, the MED tend to be linear. Additionally, due to the fact
that the B-GPDM is a dimensionality reduction technique, the
errors are not significantly influenced by the number of joints.
In order to contextualise the errors, the mean displacement
for starting activities belonging to the CMU-UAH dataset was
computed. Throughout a starting activity, the pedestrian has
a mean displacement value of 193.98±78.52mm. Likewise,

the mean displacement at 1s after and before the event is
467.92±264.97 and 41.24±67.91mm respectively. It is worth
mentioning that other dynamical changes could happen within
the TTE range of [1-0] ss. E.g., a stopping-standing transition
could be carried out by the pedestrian a few hundreds of ms
before the event.

TABLE V
COMBINED LONGITUDINAL AND LATERAL MED±STD IN MM AT

DIFFERENT TTE FOR PREDICTIONS UP TO 1S USING 11 JOINTS.

Standing-Starting Stopping-Standing

TTE (sec)
Prediction (sec)

0.5 1 0.5 1

1
15.33
±17.55

38.86
±54.07

90.94
±103.91

238.01
±206.93

0.5
28.33
±33.52

141.79
±140.89

150.83
±223.89

462.06
±567.53

0
89.10
±88.38

331.93
±254.73

100.66
±88.64

244.23
±250.99

-0.5
116.00
±113.39

296.23
±228.83

20.16
±19.49

64.34
±95.74

-1
79.17
±93.07

161.14
±186.36

51.24
±67.85

183.66
±183.17

The results focused on starting activities are similar to
the results achieved in other works reviewed in Section II.
Specifically, in [25] a MED value of 315mm is accomplished
for a time horizon of 1.2 ss. This value is similar to the value
obtained by the approach described in this paper for a TTE
of 0s and a time horizon of 1s (331.93mm). Nonetheless,
the event-labelling and prediction evaluation methodologies
proposed in that work changes with respect to the described in
this document. In [24], the MED at a starting event for a time
horizon of 0.6s is 80mm. The method described in this paper
achieves a MED value of 89.1mm at the instant of a starting
event for a time horizon of 0.5 ss. In [26], a RMSE value of
334mm at 1s is obtained, this value is slightly lower than the
RMSE obtained by the approach described in this document
for a TTE of 0s and a time horizon of 1s (418.09mm).
However, the predictions of this work are evaluated for all
time steps instead of being assessed at different TTE and need
a temporal window of n trajectory points to be performed
instead of using two observations as the method described in
this paper does.

Regarding stopping activities, the errors before the event
tend to be linear since the mean length of stopping steps
are 381.22±78.92ms and the second half of the last step
contain the most perceptible information to determine stopping
actions. Thereby, an appropriate model could not be chosen
until a few hundreds of ms before the event. After the event,
the error decreases and tends to be logarithmic. However, at
a TTE value of -1s, the errors grow up due to the fact that a
new pedestrian dynamical change could happen. Once again,
in order to contextualise the errors, the mean displacement
for stopping activities belonging to the CMU-UAH dataset
was computed. Throughout these activities, the pedestrian has



10

(a) For starting events and 11 joints

(b) For stopping events and 11 joints

Fig. 10. Combined longitudinal and lateral MEDs in mm at different TTEs
for predictions up to 1s.

a mean displacement value of 164.37±63.33mm. Likewise,
the mean displacement at 1s after and before the event is
102.15±63.50 and 679.15.37±306.77mm respectively.

Comparing the results with the outcomes achieved by other
works, these are similar. In particular, in [25], a MED value
of 224mm is accomplished for stopping activities at 1.2 ss.
The method proposed in this paper achieves a MED value
of 238.01mm for a TTE of 1s and a time horizon of 1s. In
[26], a RMSE value of 292mm at 1s is obtained, this value
is slightly lower than the RMSE obtained by the approach
described in this document for a TTE of 1s and a time
horizon of 1s (314.5mm). However, the algorithm described in
that work needs a temporal window of n trajectory points to
performed the predictions instead of using two observations
as the method described in this paper does. Moreover, the
predictions are evaluated for all time steps instead of being
assessed at different TTE. In [20], the lateral MED for a time
horizon of 1s at 1s before the event is 140±180mm. The
method described in this document achieves a lateral MED
value of 226.99±208.01mm.

D. Path Prediction using Vision-based Skeleton Estimation

In this section, the path prediction is examined using the
sequence of noisy observations described in [38]. In Fig.
11, the MED in mm for predictions up to 1s when poses
and displacements computed from the sequence by using the
skeleton estimation algorithm are represented. The method
achieves lateral MED values of 131.71±57.89, 250.95±89.00,
355.80±123.37 and 448.84±157.39mm at 0.25, 0.5, 0.75
and 1s respectively. However, larger combined lateral and
longitudinal MED are obtained. This is due to the fact that

the pedestrian is not walking perpendicular to the sensor. As
explained in Section III-A, the training dataset is composed
of people with left-to-right and right-to-left heading with a
variance in the longitudinal component close to zero. Hence,
the future path reconstruction is corrupted by the predicted
displacement vectors. To solve this problem, the observations
in the training set and test set should be normalised by means
of rotations to have the same orientation with respect to the
sensor. In this way, the method could predict future paths
regardless of the pedestrian direction.
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(a) Lateral MED.
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(b) Height MED.
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(c) Longitudinal MED.
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Fig. 11. MED in mm for predictions up to 1s using a sequence of noisy
observations.

E. Processing Time

This section resumes the processing times of each step
carried out by the method. The training stage has been
performed using MATLAB 2014 64-bits with a processor Intel
i7-2600K 3.40GHz. As mentioned in [4], the computational
bottleneck for the B-GPDM is the inversion of the kernel
matrices, which is necessary to evaluate the likelihood function
and its gradient. As expected, the longer the sequence, the
higher the processing time due to the fact that the dimensions
of the kernel matrices depends on the number of samples in
the sequence. For this reason, the processing time tends to be
exponential with the number of samples in the sequences.

TABLE VI
PROCESSING TIMES IN MS OF EACH STEP PER PEDESTRIAN OBSERVATION.

Joints 41 11

Activity Recognition
Mean 85.0 43.6
Std 29.7 21.0

Path Prediction
Mean 868.3 829.7
Std 1284.4 1232.6

Total
Mean 741.5 670.5
Std 1183.2 1129.8

The path prediction and activity recognition has been per-
formed by means of MATLAB 2016 64-bits with a processor
Intel i7-7700K 4.20GHz. The processing times are showed in
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Table VI. The path prediction depends on the model selected
in order to estimate the future pedestrian trajectory. If this
model corresponds to a long sequence, the processing time is
higher because the path prediction compute the inversion of
the kernel matrix, which is necessary to evaluate the likelihood
function and its gradient between the test observation and
the reconstructed observation from the model. The mean total
processing time is shorter than the the mean path prediction
time due to the fact that when the activity is recognised as
standing, the path prediction is not performed.

V. CONTRIBUTIONS AND FUTURE WORK

This paper proposes a method to predict future pedestrian
paths, poses and intentions up to 1s in advance using B-
GPDMs. Additionally, an exhaustive assessment about ac-
tivity recognition and path prediction algorithms has been
performed. Concerning activity recognition, the results verify
that shoulder and leg motions are more valuable sources of in-
formation than other body parts to recognise the current pedes-
trian action. Specifically, the maximum accuracy, 95.13%, is
achieved when observations composed of a few joints placed
along these body parts are taken into consideration.

Moreover, at least two types of features are needed in the
action recognition when more than two dynamical behaviours
are considered, i.e. body poses and displacements. Regarding
this task, the method proposed in this document detects start-
ing intentions 125ms after the gait initiation with an accuracy
of 80% and recognises stopping intentions 58.33ms before the
event with an accuracy of 70% when joints from shoulders and
legs are considered.

Concerning the path prediction results, similar errors are
obtained with respect to other works. The measure of accuracy
chosen for the path evaluation is the MED at different TTE that
gives objective information of the path prediction performance.
Although other works accomplished slightly smaller errors
than the method proposed in this document, their prediction
algorithms need a temporal window of n trajectory points
instead of using two observations and the errors are evaluated
for all time steps instead of being assessed at different TTE.

From the results and conclusions of the present work,
several lines of work can be proposed. E.g., a higher number
of sequences should be considered including in the dataset
children or elderly people. It is also necessary testing all
algorithms with different type of features or combining them.
Since the performance of the stopping activity is not satisfac-
tory enough due to the low number of samples, some method
for imbalance data can be adopted to solve this problem. In
a higher level, the combination of context-based information
along with a situation criticality evaluation and a pedestrian
body language analysis would allow to develop more reliable
AEBS. Thus, scene understanding, pedestrian detection and
prediction algorithms are interesting lines of research in the
ITS field. In order to obtain more accurate pedestrian skele-
tons, markerless motion capture approaches or pose estimation
based on CNN such as the algorithms proposed in [42], [43]
could be developed instead of algorithms based on geometrical
constrains. On the other hand, creating a extensive dataset

of real pedestrian situations would make possible to compare
different approaches in similar conditions. The event-labelling
methodology proposed in this paper would help to human
experts determine the different pedestrian activities. Finally,
it is necessary to test the algorithms in moving vehicles and
cluttered backgrounds.
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[26] M. Goldhammer, S. Köhler, K. Doll, and B. Sick, “Camera based
pedestrian path prediction by means of polynomial least-squares approx-
imation and multilayer perceptron neural networks,” in SAI Intelligent
Systems Conference (IntelliSys), 2015, Nov 2015, pp. 390–399.

[27] Z. Chen, D. C. K. Ngai, and N. H. C. Yung, “Pedestrian behavior
prediction based on motion patterns for vehicle-to-pedestrian collision
avoidance,” in 2008 11th International IEEE Conference on Intelligent
Transportation Systems, Oct 2008, pp. 316–321.

[28] J. F. P. Kooij, N. Schneider, F. Flohr, and D. M. Gavrila, “Context-
based pedestrian path prediction.” in ECCV (6), ser. Lecture Notes in
Computer Science, vol. 8694. Springer, 2014, pp. 618–633.

[29] S. Bonnin, T. H. Weisswange, F. Kummert, and J. Schmuedderich,
“Pedestrian crossing prediction using multiple context-based models,”
in 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), Oct 2014, pp. 378–385.

[30] J.-Y. Kwak, E.-J. Lee, B. Ko, and M. Jeong, “Pedestrian’s intention
prediction based on fuzzy finite automata and spatial-temporal features,”
Electronic Imaging, vol. 2016, no. 3, pp. 1–6, 2016.

[31] B. Völz, H. Mielenz, G. Agamennoni, and R. Siegwart, “Feature
relevance estimation for learning pedestrian behavior at crosswalks,” in
2015 IEEE 18th International Conference on Intelligent Transportation
Systems, Sept 2015, pp. 854–860.

[32] D. F. Llorca, I. Parra, R. Quintero, C. F. Lopez, R. Izquierdo, and M. Á.
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