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Summary. Different solutions have been proposed for multiple objects tracking
based on probabilistic algorithms. In this chapter, the authors propose the use of a
single particle filter to track a variable number of objects in a complex environment.
Estimator robustness and adaptability are both increased by the use of a clustering
algorithm. Measurements used in the tracking process are extracted from a stereo-
vision system, and thus, the 3D position of the tracked objects is obtained at each
time step. As a proof of concept, real results are obtained in a long sequence with a
mobile robot moving in a cluttered scene.

1 Introduction

Probabilistic algorithms in their different implementations (Multi-Hypothesis
Techniques — MHT — [1], Particle Filters — PF — [2,3] and their diversifications
[4,5]) have fully shown their reliability in estimation tasks. Nowadays these
methods are widely applied to solve positioning problems in robot autonomous
navigation [6, 7].

The idea of tracking multiple objects appeared with the first autonomous
navigation robot to overcome the obstacle avoidance problem, and soon prob-
abilistic algorithms, such as PFs [8,9] and Kalman Filters (KFs) [10,11], were
applied to achieve this aim. The objective is, in any case, to calculate the pos-
terior probability (p(Z:|¢1.¢)!) of the state vector #;, that informs about the
position of the objects to track, in the recursive two steps standard estima-
tion process (prediction-correction), in which, at least, some of the involved
variables are stochastic, and by means of the Bayes rule.

To solve the multiplicity problem, the use of an expansion of the state
vector (X; = {#},7%,...,7F}) that includes the model of all objects to track
was the first solution proposed in [12].

! Definition of all variables is included in Table 1.
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Table 1. Variables definition

Variables Definition

Tt State vector. In the tracking application this vector
contains the 3D position and the 2D ground speed
in Cartesian coordinates

Tyje—1 State vector prediction

o Measurements vector. In the tracking application

f(fh ﬁt» 6t)
P(Z4]Tr—1)
P(Yi:t)
h(ftv Ft)

P4 | %)

P(Te|T1:e)
P(Ze|Gre-1)

. . n
s ={#, e’}

i=1

q(ft|50:t71g'1;t)

m

k

Gk = {G1kyes Liike }

N
{di,j};i1,j:1

this vector contains the 3D position in Cartesian co-
ordinates

Transition model. @ is the input vector and &; is the
noise vector related with the states

Transition model in the model Markovian definition
Measurements distribution

Observation model. 7; is the noise vector related with
the measurements

Observation model in the model Markovian defini-
tion. This density informs about measurements like-
lihood

Belief or posterior distribution. Result of the state
vector probabilistic estimation

Prior distribution. Probabilistic prediction of the
state vector

Particle set. Discrete representation of the belief
used in the PF. Defined by n normal weighed "™

evaluations of the state vector = (%"

Prediction of the particle set

Total number of particles

Number of particles to be inserted at the
re-initialization step

Importance sampling function. Continuous represen-
tation of the weights array w;

Best approximation to the belief

Number of measurements in the set

Measurements set

Number of clusters

Clusters set. Each cluster is defined by its centroide
Gu:x,¢ in the clustering characteristics space, and its
member set Lq.j ¢

Distance defined in the clustering characteristic
space between the centroides gi.x,: and the data set
Y: = {g};", in the tracking application

The computational load of the resultant estimator does not allow achieving
a real time execution of the algorithm for more than four or five objects [13].
Another solution for the multiple objects tracker is to use a standard
estimator to track each object but, apart from the inefficiency of the final
algorithm [14], it cannot deal easily with a dynamic number of objects [15].
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In any case, in order to achieve a robust multi-tracking system, it is nec-
essary to include an association algorithm to correctly insert the information
included in the observation model to the estimation process. Most of the asso-
ciation solutions are based on the Probabilistic Data Association (PDA) the-
ory [16], such as the Joint Probabilistic Particle Filter (JPDAF) like in [17]
or in [18]. Again, the problem related to these techniques is the execution
time.

In this context the authors propose in [19] another solution to the multi-
tracking problem based on a PF. In this case, the multi-modality of the filter is
exploited to perform the estimation task for various models with a single PF,
and a clustering algorithm is used as association process in the multi-modal
estimation, whose deterministic behavior is also exploited in order to increase
the multi-tracker robustness.

The algorithm obtained is called Extended Particle Filter with Clustering
Process (XPFCP). This solution has been tested in complex indoor environ-
ments with sonar [19] and vision data [20] with good results.

The choice of vision sensors to implement the observation system of the
tracking application guarantees a rich amount of information from the objects
in the world. For this reason, the final development described here is based
on visual information.

In this chapter, a general revision of the global tracking system is included
and a complete analysis of the results obtained with the multi-tracking pro-
posal is exposed.

2 System Description

The complete obstacle detection and tracking system proposed is described in
Fig. 1. The objective is to design a tracker that detects and predicts the move-
ment and position of dynamic and static objects in complex environments, so
two main constraints are taken into account in the development:

e Indoor environment is unknown, because no map information is available,
and complex, because hard dynamic and crowded situations are frequent.

e A real time application in a modular organization has to be achieved, in
order to attach it to any robotic autonomous navigator.

As it can be noticed in Fig. 1, three main processes are included in the
global tracking system:

1. A stereovision system is used to obtain 3D position information from the
elements in the environment.

2. The extracted 3D position data is then classified in two types: mea-
surements related with the objects to track; and information from the
environmental structure that can be used in a partial-reconstruction
process.
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Fig. 1. Block diagram of the global tracking system

3. A probabilistic algorithm, the XPFCP, with two main components:

e An extended PF is used to implement the multi-modal tracker. Using
this kind of algorithm it is possible to estimate a variable number of
probabilistic non-linear and non-Gaussian models with a single density
function.

e A clustering algorithm is inserted in the PF to develop the association
process task and to increase the robustness and adaptability of the
multi-modal estimator.

Descriptions of each one of the modules presented are completed in the
following sections.

3 The Estimation Model

The main objective of XPFCP is to estimate the movement of objects around
an autonomous navigation platform. In order to develop the tracking process
a position estimation model has to be defined.

State vector encoding the objects position and speed in Cartesian coordi-
nates at time t is represented by Z;.

From a probabilistic point of view, this state vector can be expressed by
a density function p(#¢|#1.+), also called belief.

The evolution of this belief p(Z:|71.t—1) is defined by a Markov Process,
with transition kernel p(Z:|Z;—1), as follows:

P(Flfur) = / P(ENF 1) - P(Fer|Fris) - OF (1)
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The transition kernel is derived from a simple motion model, which can
be expressed as follows:

P(Z|Y1:4-1) = Topp—1 = f(@—1,00-1),
100t O
010 0 tg (2)
Fro1= 10010 0| Ty +35
00010
0000 1

On the other hand, the measurements vector ¥; contains the 3D position
information sensed by the vision system (see Table1).

The probabilistic relation between this vector ¢; and the state one Z; is
given by the likelihood p(%;|%:), that defines the observation model from a
stochastic approach.

The observation model, that describes the deterministic relation expressed
by the likelihood, is defined as follows:

000
00 0| -2+ (3)

Both observation and motion models are used to estimate the state vector over
time. As commented in the introduction section, different algorithms can be
used in order to achieve this functionality. Our contribution in this point is to
use a single PF to obtain a multi-modal distribution p(Z|¢;.:) that describes
the estimated stochastic position of every object being tracked at each sample
time .

4 The Stereovision Classifier

Most of tracking systems developed in last years for autonomous navigation
and surveillance applications are based on visual information; this is due to
the diverse and vast amount of information included in a visual view of the
environment.

Developing obstacle tracking tasks for robot’s navigation requires 3D in-
formation about the objects position in the robot moving environment.

As shown in Fig. 1, position information obtained with the stereovision
system is related both with the environment and the objects to track. There-
fore it is needed a classification algorithm in order to organize measurements
coming from the vision system in two groups or classes:

e Objects class. Formed by points that inform about position of objects.
These conform the data set that is input in the multiple objects tracker
as the measurement vector ;.
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Fig. 2. Block diagram of the stereovision classifier and object detector

Structure class. Formed by points related to elements in environmental
structure (such as floor and walls). This data set can be used to implement
a partial reconstruction of the environment in which the tracked objects
and the robot itself are moving.

Figure 2 shows the proposal to classify the measurements extracted with

the stereovision system. The detection and classification process is deeply
described by the authors in [21], but a slight revision of its functionality is
included in the following paragraphs:

1.

The stereovision system proposed is formed by two synchronized black and
white digital cameras statically mounted to acquire left and right images.
As the amount of information in each image is too big, a canny filter is
applied to one of the pair of frames.

The classification process is performed to the edge pixels that appear
in the canny image. Environmental structures edges have the common
characteristic of forming long lines in the canny image. Due to this fact,
the Hough transform has been chosen as the best method to define the
pixels from the canny image that should be part of the structure class.
The rest of points in the canny image are assigned to the objects class.
Two correlation processes are used in order to find the matching point of
each member in both classes. 3D position information is obtained with a
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matching process applied to the pixels of each pair of frames, using the
epipolar geometry that relates the relative position of the cameras.

With the described functionality, the classification process here proposed
behaves as an obstacle detection module.

Also, this pre-processing algorithm selects wisely the most interesting data
points from the big set of measurements that is extracted from the environ-
ment. This fact is especially important in order to achieve the real time spec-
ification pursuit. In fact, a processing rate of 15-33 fps has been achieved in
different tests run with this classifier.

Some results of the classification process described are included in the
results section of this chapter.

5 The Estimation Algorithm

A particle filter (PF) is used as a multi-modal tracker to estimate position and
speed of objects in the environment, from the measurement array obtained in
the classification process.

PF is a particularization of the Bayesian estimator in which the densities
related to the posterior estimation (also called belief) is discretized. A detailed
description of the PF mathematical base can be found in [2] and in [5].

As the state vector is not discretized, like it is in most of Bayes filter
implementations, the PF is more accurate in its estimation than the KF or
estimators based on a grid (MonteCarlo estimators). Moreover, due to the
same reason, the computational load of this Bayes filter form is lower in this
than in other implementations, and thus more adequate to implement real
time estimation.

Finally, PFs include an interesting characteristic for multi-tracking ap-
plications: the ability of representing multiple estimation hypotheses with a
single algorithm, through the multi-modality of the belief. This facility is not
available in the optimal implementation of the Bayes estimator, the KF.

For all these reasons, the PF has been thought as the most appropriated
algorithm to develop a multi-tracking system.

5.1 The XPFCP

Most of the solutions to the tracking problem, based on a PF, do not use the
multi-modal character of the filter in order to implement the multiple objects
position estimation task. The main reason of this fact is that the association
process needed to allow the multi-modality of the estimator is very expensive
in execution time (this is the case of the solutions based on the JPDAF) or
lacks of robustness (as it is the case in the solution presented in [22]).

The XPFCP here presented is a multi-modal estimator based on a single
PF that can be used with a variable number of models, thanks to a clustering
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process that is used as association process in the estimation loop. The func-
tionality of the XPFCP is presented in the following paragraphs.
The main loop of a standard Bootstrap PF [12] based on the SIR algo-

rithm [13] starts at time ¢ with a set S;_1 = {fgl)l, ~§ )1} of n random

particles representing the posterior distribution of the state Vector estimated
p(Zi—1|¥1.4—1) at the previous step. The rest of the process is developed in
three steps, as follows:

1. Prediction step. The particles are propagated by the motion model

. n
p(Z¢|Z;_1) to obtain a new set Sy = {"Elzz . wt( )1} that represents

the prior distribution of the state vector at time ¢ p(:rt|y1 1)

2. Correction step. The weight of each particle w; = {wt(l)} = w(Zo.t)
i=1
is then obtained comparing the measurements vector ¢; and its predicted
value based on the prior estimation h(Zy;—1). In the Bootstrap version of
the filter, these weights are obtained directly from the likelihood function
(| %), as follows:

w(Zo) = w(Toip—1) - p(Ge|Z¢) - (T4 |To-1)

q( ] o — 1,y1t) (4)

(%
w(Zo:) = w(Zo:-1) - PG| Tr)

q(Zt|Zort—1,G1:0)cp(Te|Ti—1)

. n
3. Selection step. Using the weights vector w; = {wt(z)} , and applying a
i=1

. n
re-sampling scheme, a new set S; = {:z’?,wt(“} is obtained with the
i=1
most probable particles, which will represent the new belief p(&|71.¢).

The standard PF can be used to robustly estimate the position of any
kind of a single object defined through its motion model, but it cannot be
directly used to estimate the position of appearing objects because there is
not a process to assign particles to the new estimations.

In order to adapt the standard PF to be used to track a variable number of
elements, some modifications must be included in the basic algorithm. In [22]
an adaptation of the standard PF for the multi-tracking task is proposed. The
algorithm described there was nevertheless not finally used because it is not
robust enough.

The extension of the PF proposed by the authors in [20] includes a clus-
tering algorithm to improve the behavior of the first extended PF, giving as
a result the XPFCP process, shown in Fig. 3.

The clustering algorithm, whose functionality is presented in next section,
organizes the vector of measurements in clusters that represent all objects in
the scene. These clusters are then wisely used in the multi-modal estimator.
Two innovations are included in the standard PF to achieve the multi-modal
behavior:
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A4

Re-initialization Step: Inserting » , , particles in the posterior
S,-1 = p(X,_; | ¥y,-) from clustered measurements Gy, ,_; = p(¥,_|)
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v
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v

Correction step: Obtaining particles weight with the clustering information
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Selection step: Obtaining the posterior bell S, = p(¥" | 7,)

Only n—n,,, particles are resampled

Fig. 3. Description of the XPFCP functionality

With a new re-initialization step. n,, . from the n total number of par-
ticles that form the belief p(Z|y1.+) in the PF are directly inserted from
the measurements vector y; in this step previous to the prediction one.
With this modification, measurements related to newly appearing objects
in the scene have a representation in the priori distribution p(Zi—1|71.4—1)-
To improve the robustness of the estimator, the inserted particles are not
selected randomly from the array of measurements ;1 but from the k
clusters G.;+—1. Choosing measurements from every cluster ensures a
probable representation of all objects in the scene, and therefore, an in-
creased robustness of the multi-tracker. Thanks to this re-initialization
step the belief dynamically adapts itself to represent the position hypoth-
esis of the different objects in the scene.

At the Correction step. This step is also modified from the standard PF.
On one hand, only n—n,, ; samples of the particle set have to be extracted



540 M. Marrén et al.

in this step, as the n,,, resting ones would be inserted with the re-
initialization. On the other hand, the clustering process is also used in
this step, because the importance sampling function p;( 7| :E’,gz)) used to
calculate each particle weight wt(l) is obtained from the similarity between
the particle and the k cluster centroides §. . Using the cluster centroides
to weight the particles related to the newly appeared objects, the proba-
bility of these particles is increased, improving the robustness of the new
hypotheses estimation. Without the clustering process, the solution pro-
posed in [22] rejects these hypotheses, and thus, the multi-modality of the
PF cannot be robustly exploited.

Figure 3 shows the XFPCP functionality, described in previous paragraphs.
Some application results of the multi-modal estimator proposed by the authors
to the multi-tracking task are shown at the end of this chapter. The robustness
of this contribution is demonstrated there.

5.2 The Clustering Process

Two different algorithms have been developed for clustering the set of mea-
surements: an adapted version of the K-Means for a variable number of clus-
ters; and a modified version of the Subtractive fuzzy clustering. Its reliability
is similar, but the proposal based on the standard K-Means shows higher
robustness rejecting outliers in the measurements vector. A more detailed
comparative analysis of these algorithms can be found in [23].

Figure 4 shows the functionality of the proposed version of the K-Means.
Two main modifications to the standard functionality can be found in the
proposal:

1. It has been adapted in order to handle a variable and initially unknown
number k of clusters Gy.x, by defining a threshold distM in the distance
di,1.1 used in the clustering process.

2. A cluster centroides’ prediction process is included at the beginning of
the algorithm in order to minimize its execution time. Whit this informa-
tion, the process starts looking for centroides near their predicted values
Go,1:kt = Gk t)t—1-

A validation process is also added to the clustering algorithm in order
to increase the robustness of the global algorithm to spurious measurements.
This process is useful when noisy measurements or outliers produce a cluster
creation or deletion erroneously. The validation algorithm functionality is the
following:

e When a new cluster is created, it is converted into a candidate that will
not be used in the XPFCP until it is possible to follow its dynamics.

e The same procedure is used to erase a cluster when it is not confirmed
with new measurements for a specific number of times.
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Fig. 4. Description of the K-Means clustering algorithm

The validation process is based in two parameters, which are calculated
for each cluster:

o Distance between the estimated and the resulting clusters centroide. The
centroides estimation process, already commented, is also used in the vali-
dation process. The estimated value of the centroides .y ¢,—1 is compared
with its final value at the end of the clustering process gi.x ¢, in order to
obtain a confidence value for the corresponding cluster validation.

e C(Cluster likelihood. A cluster probability value is calculated as a function
of number of members in each cluster Lq...

The effectiveness of the clustering proposal is demonstrated in the follow-
ing section, with different results.



542 M. Marrén et al.
6 Results

The global tracking algorithm described in Fig. 1 has been implemented in a
mobile platform. Different tests have been done in unstructured and unknown
indoor environments. Some of the most interesting results extracted from these
tests are shown and analyzed in this section.

The stereovision system is formed by two black and white digital cameras
synchronized with a Firewire connection and located on the robot in a static
mounting arrangement, with a gap of 30 cm between them, and at a height of
around 1.5m from the floor.

The classification and tracking algorithms run in an Intel Dual Core
processor at 1.8 GHz with 1 GB of RAM, at a rate of 10fps. The mean exe-
cution time of the application is 80 ms.

6.1 Results of the Stereovision Classifier

Figure 5 shows the functionality of the classifier. Three sequential instants of
one of the experiments are described in the figure by a pair of images organized
vertically, and with the following meaning:

e Upper row shows the edge images obtained from the canny filter directly
applied to the acquired frame. Both obstacles and environmental structure
borders are mixed in those images.

e Bottom row shows the final frames in which points assigned to the objects
class are highlighted over obstacle figures.

From the results shown in Fig. 5, it can be concluded that the classification
objective has been achieved. Only points related to the obstacles in the scene
have been classified in the obstacles class. As it can be noticed, the analyzed
experiment has been developed in a complex and unstructured indoor envi-
ronment, where five static and dynamic objects are present and cross their

Fig. 5. Results of the classification algorithm in a real situation



A Bayesian Solution to Robustly Track Multiple Objects from Visual Data 543

paths generating partial and global occlusions. In any case, the proposed clas-
sification algorithm is able to extract 3D position points from every object in
the scene.

The set of 3D position points assigned to the objects class can now be
used in the multi-tracking task.

Nevertheless, the number of objects present in each final frame in Fig.5
cannot be easily extracted from the highlighted set of points.

Furthermore, it can be noticed that the set of points are not equally distrib-
uted among all objects in the environment, and hence, the tracking algorithm
should be able to manage object hypotheses with very different likelihood.

6.2 Results of the Estimation Algorithm

Figure 6 displays the functionality of the XPFCP in one of the tested situa-
tions. Three sequential instants of the estimation process are represented by
a pair of images.

e Upper row displays the initial frames with highlighted dots representing
the measurement vector contents obtained from the classification process,
and rectangles representing the K-Means output.

e Lower row shows the same frame with highlighted dots representing each
of the obstacle position hypotheses that the set of particles define at the
XPFCP output. This final set of particles has also been clustered using
the same K-Means proposal in order to obtain a deterministic output for
the multi-tracker. Rectangles in this lower frame represent the clustered
particles.

Fig. 6. Results of the multi-tracking algorithm XPFCP in a real situation
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Table 2. Rate of different types of errors obtained with the XPFCP at the output of
the K-Means, and at the end of the multi-tracking task in a 1,054 frames experiment
complex situations with five and six objects

K-Means (% frames XPFCP (% frames with

with error) error)
Missing 10.9 2.9
Duplicates 6.1 0
2as 1 3.9 0
Total 20.9 2.9

Comparing the upper and lower image in Fig. 6, it can be noticed that the
tracker based on the XPFCP can solve tracking errors such as object dupli-
cations generated in the input clustering process. An example of an object
duplication error generated by the K-Means and successfully solved by the
XPFCP can be seen in the third vertical pair of images (on the right side, in
the last sequential instant) of Fig. 6.

Table 2 shows a comparison between the errors at the output of the clus-
tering process and at the end of the global XPFCP estimator. In order to
obtain these results an experiment of 1,054 frames of complex situations sim-
ilar to the ones presented Figs. 5 and 6 has been run. The results displayed in
Table 2 demonstrate the reliability and robustness of the tracker facing up to
occlusions and other errors.

Figure 7 displays the tracking results extracted from the XPFCP output
in another real time experiment. In this case 9 sequential instants of the
experiment are shown, and each image represents one of them, from (a) to
(i). The meaning of every frame is the same as in the lower row in Fig. 6.

The results displayed in Fig. 7 show that the tracker estimates correctly
each obstacle position in the dynamic and unstructured indoor environment.

7 Conclusions

In this chapter the authors describe the functionality of a global tracking sys-
tem based on vision sensors to be used by the navigation or obstacle avoidance
module in an autonomous robot.

In order to achieve this objective, a specific classification algorithm for
stereovision data has been developed. This process is used to separate visual
position information related with obstacles from the one related with the
environment.

An algorithm, called XPFCP, is used to estimate obstacles’ movement and
position in an unstructured environment. It has been designed as the kernel
of the multi-tracking process. The XPFCP is based on a probabilistic multi-
modal filter, a PF, and is completed with a clustering process based on a
standard K-Means.
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Fig. 7. Sequential images of a real time experiment with stereovision data

Results of the different processes involved in the global tracking system

have been presented, demonstrating the successful behaviour of the different
contributions. The main conclusions of these proposals are:

The proposed tracking system has shown high reliability in complex situati-
ons where a variable number of static and dynamic obstacles are constantly
crossing, and no preliminary knowledge of the environment is available.

It has been demonstrated that the estimation of a variable number of
systems can be achieved with a single algorithm, the XPFCP, and without
imposing model restrictions.

The use of a clustering process as association algorithm makes possible a
robust multi-modal estimation with a single PF, and without the compu-
tational complexity of some other association proposals such as the PDAF.
Thanks to the simplicity of its functional components (a PF and a modified
K-Means) the XPFCP accomplishes the real time specification pursuit.
Though vision sensors are used in the tracking process presented in the
chapter, some other e XPFCP designed can easily handle data coming up
from different kinds of sensors. This fact makes the tracker proposed more
flexible, modular, and thus, easy to use in different robotic applications
than other solutions proposed in the related literature.
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