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Abstract

This work presents a novel method for predicting vehicle trajectories in highway scenarios using efficient bird’s eye view
representations and convolutional neural networks. Vehicle positions, motion histories, road configuration, and vehicle
interactions are easily included in the prediction model using basic visual representations. The U-net model has been selected
as the prediction kernel to generate future visual representations of the scene using an image-to-image regression approach.
A method has been implemented to extract vehicle positions from the generated graphical representations to achieve subpixel
resolution. The method has been trained and evaluated using the PREVENTION dataset, an on-board sensor dataset.
Different network configurations and scene representations have been evaluated. This study found that U-net with 6 depth
levels using a linear terminal layer and a Gaussian representation of the vehicles is the best performing configuration. The
use of lane markings was found to produce no improvement in prediction performance. The average prediction error is 0.47
and 0.38 meters and the final prediction error is 0.76 and 0.53 meters for longitudinal and lateral coordinates, respectively,
for a predicted trajectory length of 2.0 seconds. The prediction error is up to 50% lower compared to the baseline method.

Keywords Trajectory prediction - Highways - Convolutional neural networks - Autonomous vehicles

1 Introduction

Autonomous vehicles research has experienced an impor-
tant growth in the last few years, gradually becoming a
reality on the roads at the present time. In this period,
robot-vehicles have become more and more sophisticated
pieces of hardware capable of sensing the world around
them. Simultaneously, limited automated driving functions,
such as Automatic Emergency Braking (AEB), Adaptive
Cruise Control (ACC), Lane Departure Warning (LDP),
and Lane Keeping Assist (LKA) have been successfully
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released, reaching vehicles sold in the retail market. How-
ever, autonomous driving is a completely different and more
complex task, including sensing, processing, reasoning, and
decision in a wide variety of unexpected scenarios and sit-
uations. For these reasons, highways are among the most
common driving scenarios in which autonomous vehicles
are starting to develop their autonomous capabilities. High-
way scenarios are structured environments involving vehi-
cles with relatively smooth movements, which contributes
to minimize complexity. However, despite the limited com-
plexity, the undefined evolution of the road and vehicle
configuration represents some limitations. Decision-making
has become one of the most critical tasks in this sce-
nario because of the uncertainties related to the unknown
future positions of surrounding vehicles. Thus, accurate
predictions of surrounding vehicles’ trajectories become
of paramount importance as underlying support for the
decision-making process and can greatly help to improve
comfort and safety in terms of dynamic factors, avoid-
ing sharp maneuvers in highway environments and, ideally,
minimizing the use of braking along the route, something
that could be achieved if a significant fluidity of traffic could
be reached, preventing traffic jams, congestion, and crashes.
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The uncertainty associated with the future position
of vehicles can be reduced or eliminated by using
communication technologies such as Vehicle to Vehicle
(V2V), Vehicle to Infrastructure (V2I), WiFi, or 5G to share
their trajectories. However, human-driven vehicles cannot
share their future positions because they are self-generated
in real time and unknown in advance. Unfortunately,
automated and human-driven vehicles will share the road
for a long period, being prediction skills still necessary to
forecast trajectories of human-driven vehicles.

The evolution of Autonomous Vehicles (AVs) in recent
years has been boosted by two factors: the development of
deep learning models and the increasing computing capa-
bilities of Graphics Processing Units (GPUs). Classification
tasks usually performed by hand-crafted algorithms are
now replaced by deep learning models that learn automati-
cally. The development of Convolutional Neural Networks
(CNNs) has played a major role in image processing,
enabling image classification, detection, or segmentation.
These systems have reached levels of accuracy that some-
times exceed human capability, and can also work in real
time thanks to advances in GPU computing. These two fac-
tors allow processing not only isolated images, but also
video streams in real time to classify actions as time-based
events. AVs can take advantage of these algorithms to pre-
dict the evolution of traffic scenes and anticipate critical
situations.

In this paper we extend our preliminary work [1]
presenting a novel method to predict trajectories in
highway scenarios using an efficient Bird Eye View (BEV)
representation and a state-of-the-art CNN to predict the
future state of the vehicle configuration by performing an
image-to-image regression task. The idea is that given an
input set of consecutive images the CNN can generate
an output set of consecutive images that represents the
evolution of the input set. Vehicle positions and road
structure are encoded in a simple but effective schematic
BEV representation, virtually unlimited in the number of
vehicles and number of lanes. Each time step is represented
in an individual BEV representation. A complete sequence
of images is stacked to establish the input and output
data as the way to incorporate temporal dependencies
and modeling vehicle dynamics. Interactions are implicitly
considered as spatial relationships between elements and
their temporal evolution. In addition, interactions between
vehicles are learned as the network extracts patterns from
all vehicles and the road configuration simultaneously. The
presented approach is suitable to perform predictions for
multiple surrounding vehicles and time horizons in a single
computational step.

In contrast to time-series data approaches, our method
does not require a fixed input data structure or a fixed
interaction scheme. Spatial-temporal dependencies and
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interactions are expressed by graphical representations and
are implicitly modeled by the spatial condensation of the
CNN. In addition, the nature of the input and output
data is the same, allowing a straightforward interpretation
of the results, in accordance with the requirements of
explainability and transparency [2].

Based on this interpretable approach and with a relatively
simple architecture, we achieve state-of-the-art results on
datasets obtained from in-vehicle recording systems as well
as from infrastructure or top-view recording systems.

The model proposed in this work contributes to: (1) easy
integration of any prediction feature; (2) the interactions
between vehicle and features are implicitly modeled based
on the special topology of the selected CNN architecture;
and (3) the multi-vehicle and multi-horizon prediction is
performed in a single-step fashion for an unlimited number
of vehicles.

Future application scenarios of the proposed method
are in-vehicle prediction systems as safety and comfort
enhancers, improving human reaction time and smoothing
out abrupt maneuvers. This prediction model, due to
its general formulation, can also be used as a traffic
management system tool at controlled intersections.

After the introduction section, the state of the art is
reviewed in Section 2, analyzing the most relevant works in
trajectory prediction and the available datasets to develop
and test them. The problem approach and the description of
the proposed model are detailed in Section 3, describing the
encoding and decoding information process and the network
architecture. This section provides training strategies and
parameters, as well as the definition of a baseline method
for comparison purposes. Section 4 presents quantitative
and qualitative trajectory prediction results derived from the
developed model. Finally, conclusions and future work are
exposed in Section 5.

2 Related work

This section reviews vehicle trajectory prediction works in
highway scenarios by analyzing input data, algorithms, the
type of generated prediction and, especially, the prediction
target.

Prediction target can be classified into two categories
for trajectories recorded from on-board sensors: the ego-
vehicle and the surrounding vehicles. The main difference
between ego and surrounding vehicles is the accuracy and
availability of data in their neighborhood. The ego-vehicle
has precise measures of its state and the state of the nearest
neighbors. However, the surrounding vehicles’ state could
be accurate but the estimated state of their neighbors can
be degraded or even not available due to the sensors’
range limitations or physical occlusions. For trajectories
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recorded from a static and exterior point of view, such as
infrastructure acquisition systems or drones, the ego vehicle
does not exist and the accuracy and availability of data is
the same for all the vehicles. Conceptually, the prediction
target definition fits better into the ego-vehicle description,
because the accuracy and availability of data is guaranteed
for each vehicle and their neighbors, reason for which the
problem is simplified.

The trajectory prediction problem addresses the forecast-
ing of one or several future positions of an analyzed vehicle
or a group of them. Trajectories denote a set of positions
with a corresponding timestamp, but a single predicted posi-
tion combined with the current position of the vehicle can
define a trajectory. Positions are used to define a precise
location, either in 2D or 3D reference systems, in local
or global frameworks. Independently of the reference sys-
tem, positions are described by numbers and commonly
trajectory predictions are tackled from numeric approaches.
Almost all of the works reviewed are based on variables that
describe the motion history of vehicles by representing their
state in numerical form, either in a continuous [3-9, 11, 14,
15, 17-19, 21, 22] or discretized [12, 13, 20] space. Only
one approach addressed the trajectory prediction problem
from a graphical perspective [16], generating predictions
directly over images.

The state of the art is reviewed regarding these three
categories: data used as input and how it is structured, type
of generated data, and databases used to develop the models.

The input variables range from simple position sequences
to complex road representations. Based on the nature of the
data, they can be classified into three major groups.

Kinematic and dynamic variables such as position,
speed, acceleration, heading, and yaw rate define the state
vector in a detailed manner. Early works used this vehicle
representation (in whole or in part) considering only the
prediction target by itself [3, 4, 6]. These approaches learn
simple physical-based motion models that cannot anticipate
any maneuver until it has been explicitly observed in
the input sequence. Usually Kalman Filter (KF), Gaussian
Mixture Models (GMM), Artificial Neural Network (ANN),
and Recurrent Neural Network (RNN) are used in these
approaches. Although these methods performed properly,
they are based on a explicit physical model, so scaling
and generalization capabilities are limited. To address these
shortcomings, contextual variables were included, such
as lateral and longitudinal positions, lateral speed and
acceleration, or heading error. These variables represent the
combination of the vehicle state and the road parameters.
The transformation includes lane information indirectly,
which allows models to learn road-based vehicle trajectories
[9, 11].

Vehicles interactions are even more conditioning than
road configurations, but their integration can be considered

in many different ways. The main problem adding
interactions is the varying number of involved vehicles.
A simple method to include interactions was addressed
in [11], where the Time To Collision (TTC) is appended
to the vehicle state input. TTC represents in a single
number if one vehicle is approaching another and arises
the need for a lane change or a speed reduction. However,
the decision of changing lanes depends on many factors,
such as the availability of the adjacent lanes or social
agreements (i.e., overtaking is only allowed in one direction
in most countries). TTC is also used in [18] to define
a risk map around the ego-vehicle. In [15] a simple
vehicle-centric structure is proposed to integrate adjacent
vehicle interactions at six tentative positions around the
centered prediction target. A fixed spatial configuration is
proposed in [12] to incorporate existing vehicles into the
algorithm. The road space is divided into small and equal
areas to define a lattice where the state vector (position
and speed) of each possible existing vehicle is included
together with the ego-vehicle state vector. However, this
technique follows a vehicle-centered approach and only
models how surrounding vehicles affect the ego-vehicle.
In [13] the same philosophy is adopted, dividing the
road area into many small rectangular divisions. The state
vector of each vehicle is included in each corresponding
division. The difference arises with the use of a so-called
Convolutional Social Pooling (CSP) block. This block
uses spatial connections between the existing divisions and
learns motion patterns to assess how the surrounding vehicle
configuration affects the prediction target. In contrast with
[12], this approach is vehicle-centered. This method can be
applied to any other traffic participants, but the availability
or the quality of the measures could change. The same
spatial grid is applied in [20] in which multiple LSTMs
are combined with spatial-temporal attention mechanisms.
Interactions are also modeling in [17] by using multi-head
attention mechanisms. The impact of the future trajectories
planned by the ego-vehicle on the future trajectories of
the surrounding vehicles can be explicitly included as an
input [19]. Other proposals, such as [7, 8], store road
configuration examples generating a knowledge database
using trajectory stretches and/or the road occupancy
configuration.

Vehicles’ state, road configuration, interactions, and
context are needed for a precise scene understanding and
all of them are included under visual appearance in images.
In [16], video sequences are used to generate future vehicle
locations at the image reference system by means of a
Generative Adversarial Network (GAN). This approach
leads with the limitations to model road configuration,
context, or interactions; on the other hand, predictions are
limited to the image domain. Another approach is to extract
features from bird’s-eye view images using a CNN model,
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and obtain the predictions using LSTM-based systems [21].
We also highlight work originally designed for pedestrian
trajectory prediction, which has been successfully adapted
for vehicle trajectories in highways environments, such as
Social LSTM [23], Convolutional Social Pooling LSTM
[24] or Social GAN [25].

Prediction models are clearly conditioned by road
structure and vehicle configuration. Based on this, different
kinds of trajectories can be predicted, attending to the nature
of the used algorithms.

Regarding the number of trajectories predicted they
could be classified into two categories. The first category
is the single-vehicle prediction, where the prediction is
focused only on one vehicle and surrounding vehicles
actuate as conditioning factors. These approaches need to
repeat the prediction process for each existing vehicle.
However, despite its limitations, it is the most widely
used technique. The second category is the multi-vehicle
predictions, where the trajectories of all the involved
vehicles are predicted at the same time.

The datasets used to develop the trajectory prediction
works are limited to some private custom datasets and two
public datasets. Some works, such as [3, 6, 12], use their
own datasets, that are not publicly available. In these cases,
the datasets were recorded from on-board sensors. The main
public dataset used for trajectory predictions is the NGSIM

Table 1 Analisys of Trajectory Prediction Works

dataset [26, 27], which has been used widely [5, 9, 11,
13-15]. A small minority used the PKU dataset [7, 8], an
on-board recorded dataset. The NGSIM is the most used
dataset to develop trajectory prediction systems because
of its simplicity and antiquity, as it can be observed in
Table 1. This dataset offers precise and non-occluded data
from an infrastructure point of view in a straight stretch
of highway. Recent works have brought novel datasets
trying to fulfill the limitations of the existing datasets. The
HighD [28] is a drone-recorded dataset that provides a
massive number of trajectories in German highways. The
PREVENTION dataset [29] is an on-board recorded dataset
including LiDAR, front and back cameras, radars, and an
RTK GPS featuring Inertial Navigation System (INS). Other
datasets, non limited to highways, have been released in the
last years, such as the Argoverse, Waymo, inD, rounD, and
INTERACTION [30-34] datasets to encourage trajectory
predictions on urban areas.

It is important to note that when data is obtained from
on-board sensors, including cameras, it is possible to detect
[35] and track [36] vehicles from a realistic perspective,
and include additional appearance information that is not
possible to obtain from sensors on the infrastructure or
drones.

Table 1 presents a summary of the analyzed works
providing key features and distinguishing factors. Note that

Work Input Prediction

Authors Year  Dataset Kinematics Context  Interaction Model Target
Hermes et al. [3] 2009 Own Ego-vehicle - - ANN-RBF Ego-vehicle
Ammoun et al. [4] 2009 Own Ego-vehicle - - KF Ego-vehicle
Ranjeet et al. [5] 2010 NGSIM Single v - NN Center
Wiest et al. [6] 2012 Own Ego-vehicle - - GMM Ego-vehicle
Houenou et al. [7] 2013 PKU Ego-vehicle - All surr. CYRA Ego-vehicle
Yao et al. [8] 2013 PKU Ego-vehicle - All surr. Database Ego-vehicle
Yoon et al. [9] 2016 NGSIM Single - - ANN Center
Izquierdo et al. [10] 2017 PKU Ego-vehicle - - ANN + SVM Single
Altché et al. [11] 2017 NGSIM Single v TTC LSTM Single

Kim et al. [12] 2017  Own Ego-vehicle + Surr. v/ 36X21 Grid LSTM Surrounding
Deo et al. [13] 2018 NGSIM Center + Surr. v 3X13 Grid LSTM + CSP Center

Hu et al. [14] 2018 NGSIM Center + Surr. v SIMP CVAE All

Benterki et al. [15] 2018 NGSIM Center v 3X2 Grid LSTM-GRU Center

Roy et al. [16] 2019  VISDRONE Single v Appearance GAN Single

Kim et al. [17] 2020  HighD Surrounding v Attention Attention Surrounding
Khakzar et al. [18] 2020 NGSIM & HighD  Center + Surr. v Spatial + TTC ~ LSTM All

Song et al. [19] 2020 NGSIM & HighD  Center + Surr. v Ego-vehicle LSTM + CSP Surrounding
Lin et al. [20] 2021 NGSIM Center + Surr. v 3X13 Grid LST™M Center
Nejad et al. [21] 2021  HighD Center + Surr. v Appearance CNN + CSP+LSTM  Center

@ Springer



Vehicle trajectory prediction on highways using bird eye view representations and deep learning

references to the ego vehicle are related to works that
addressed the ego-trajectory prediction problem for on-
board sensors. In the case of works based on external
sensors (NGSIM), the label single is used to denote
single trajectories that could be considered equivalent
to ego trajectories. Reference to center is relative to a
vehicle considering all their surrounding vehicles, which are
abbreviated with notation surr.

3 Problem approach

Trajectory prediction addresses the problem of knowing the
future position of a vehicle or group of them.

The proposed method employs a deep learning image-
to-image regression approach to forecast the position of the
vehicles in a given scene. Conceptually, road configuration
and vehicle positions are represented in a schematic
BEV image. Then, a set of consecutive representations
are stacked to create a simplified video sequence. The
prediction core, a CNN, generates the video sequence that
follows the corresponding input video sequence.

3.1 System description

The U-net [37] model has been selected as the prediction
core to perform the trajectory prediction through an
image-to-image regression process. This model is similar
to a CNN, which was developed to perform semantic
segmentation in biomedical imagery. U-Net architecture is
based on four different blocks: pre-processing, encoder,
decoder, and post-processing. Finally, application layers
adapt the network’s output to the desired topology problem,
such as semantic segmentation or image regression.

The U-net receive as input an image with dimensions
H x W x D, where H is the height, W is the width, and D is
the number of channels. Note that BEV representations are
single-channel images and consecutive representations are
stacked over the channel dimension D. The pre-processing
block generates K features from the input data, producing
an output volume with dimensions H x W x K. The encoder
concentrates spatially the feature volume by reducing the
input size by four and increasing the depth by two. The
first encoder produces an output size H/2 x W/2 x 2K.
The decoder blocks perform the opposite action, increasing
the output size by four and reducing the depth by two. The
last decoder produces an output size H x W x K. Encoder
and decoder blocks are in pairs and the same number of
each one is needed to preserve the consistency of the data
sizes. The depth of the U-net is defined by the number of
encoder-decoder pairs and defined by n. The feature volume
generated by an encoder is forwarded to the input of the next
encoder and its decoder pair, where it is combined with the

output of the previous decoder to combine low-level with
high-level features. The post-processing block is equivalent
to the pre-processing block, it generates M output channels
from its input volume.

Figure 1 shows a generic representation of the U-net
architecture, indicating how data sizes are modified by
different blocks through n depth levels. It can be seen
that the original input image with dimension H x W x
D is transformed to an H x W x M image, where
spatial dimensions are preserved and the channels (used as
temporal dimension) can be adjusted to set up the desired
number of prediction steps.

This network has the particularity of connecting each
pixel at the output with its counterpart at the input and an
adjacent region determined by the number of depth levels n.
With an adequate number of depth levels, any pixel at the
output can be connected to all pixels at the input, ensuring
a total interconnection. In general, the receptive field can be
expressed as in (1) where r is the semi-length of the contact
square. The network architecture and the depth levels n
determine the minimum input size that can be expressed as
2" x 2". Table 2 summarizes the main features of the U-net
model for common depth levels.

r=iz(3+25.2"—2> (1)

i=2
The receptive field has a crucial role to play, the longer

the receptive field the longer the interaction range between
vehicles.

3.2 Input and output representation

Vehicle positions and road configuration are represented in a
schematic BEV representation. As mentioned before, BEV
representations are single-channel images with dimensions
H x W. The transformation between world or local
coordinates to an BEV image defines a Pixel per Meter
(PPM) conversion factor. This parameter can be equal or
different for X and Y dimensions and affects the interaction
area between vehicles directly as a result of the conversion
between meters and pixels.

The single-channel BEV representations need to manage
efficiently the gray-scale values to create understandable
images. The vehicles are represented using one of the
following options:

e Rectangular representation. It uses a fixed size rectangle
w,y X hy to populate the BEV with a fixed value 7. This
representation is closer to reality, as it matches better
vehicles’ shape.

® Bi-dimensional Gaussian distribution. The Gaussian
distribution represents the probability of being a vehicle
using a specific tile in the BEV, according to (2).

@ Springer



R. Izquierdo et al.

Fig.1 U-net architecture with n
depth levels
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Table 2 U-net structure based
on Depth levels. Contact Area,

minimum input size, and the
number of parameters

Depth levels n 4 5 6

Contact Area 152 x 152 312 x 312 624 x 624
Min. input size 16 x 16 32 x 32 64 x 64
Parameters 56k 116k 235k

The mean value of each bi-dimensional Gaussian
distribution p is set using the vehicle’s position. The
standard deviation o is composed of half of the
rectangle size.

2 2
X — Uy, Y — Ky

Ly(x,y) = I, exp ( V2o, ) + < Vo, ) @)

At the point where two vehicles’ representations overlap,
there are two options to merge the area shared by them.
They can be added, generating values up to 21, or they can
be limited to the maximum of each vehicle representation
according to (3). The second option to combine the shared
areas represents the real scene in a more reliable way, and
the maximum value of the representation keeps limited to
1.

Iy(x,y) Zm\f}x{lv,i(xa )} (3)

Additionally, road structure is represented into the
BEV to provide context information. Road markings are
represented with a fixed value 1. If the complete image
span (from O to 255) is used for representation, as in the
case of the Gaussian distributions, /; can match with some
points of the vehicle’s representation.

Figure 2 illustrates an example of the BEV represen-
tation. Different combinations of Gaussian and rectangle
vehicle representations are combined with lane markings.
For this representation, 7, is set to 255 for Gaussian rep-
resentation and 128 for the rectangular representation. Iy,
is set to 255 for lane markings representation. Note that
the two right images do not show lane markings because
of I = 0. This has been carried out on purpose to illus-
trate differences between input (two left) and output (two
right), as output representations are used to forecast vehicle
positions and not lane positions.

Both input and output images are generated in the same
way, but output images do not include lane representations.
The complete input and output data consist of D consecutive
samples stacked by creating an input/output volume with
size¢ H x W x D. When D time samples of data are
stacked, a new problem arises in the output block. The
output block represents future vehicle positions and three
kinds of vehicles coexist:

®  Vehicles that are present in the input and output block.
This is the most common case. In this case, predicting
their positions is achievable.

e  Vehicles that appear in the input block but do not appear
in the output block. These are vehicles that abandoned
the represented area, thus predicting their positions is
unnecessary.

®  Vehicles that do not exist in the input block, but they do
exist in the output block. These are vehicles that enter
the study area, therefore the prediction of their positions
is unfeasible.

Predict positions of vehicles whose existence is unknown
is like performing some magic. Output representations are
generated considering only vehicles present in the latest of
the input representations.

3.3 Vehicle position extraction

The codification procedure transforms numeric positions
into visual representations. The inverse procedure, trans-
forming visual representations into numeric positions is
needed to compute the performance of the prediction pro-
cess. For each input image, n different predictions are
generated at different time horizons. The number of exist-
ing vehicles in a future scene representation is a priori

Fig. 2 Example of four BEV vehicles’ position representation using
Gaussian and Rectangular shapes with and without lane information.
H =512,W = 256, PPM, =02, PPM, = 0.1,1, = 255, =
255

@ Springer



R. Izquierdo et al.

unknown, so the way used to extract numeric positions must
be able to produce an unknown amount of them. It can only
consider the vehicles in the future should be the same or
fewer than in the latest input representation.

The algorithm proposed in 1 is used to extract the
position of the vehicles. The output data represents the
probability of each pixel to be part of a vehicle in a certain
future sample. The algorithm finds the pixel with the highest
probability first. This pixel is denoted as P = (R, C), and it
is used as the discrete location of the vehicle. The proposed
algorithm extracts the position with sub-pixel resolution
in a second step. The position of the vehicle is refined
using a scoring function. Each pixel p; included in the area
defined by a rectangle with dimension R = 2W x 2H
around P contributes weighting the probability by its pixel
coordinates according to (4). Note that discrete positions
are conditioned by the resolution used to define the BEV
representation.

r=R+h c=C+w

PR,OY= Y > plro-(ro )

r=R—hc=C—w

After computing the sub-pixel position, the area used
to compute it is cleared, setting the probability to zero.
This procedure is repeated as many times as pixels with a
probability higher than p,,;, persist in the representation.
According to the limits of the representation, being 0 a
non-used pixel and 255 the maximum value for a used
pixel, pmin is set to 128, which is the limit to consider
that a pixel represents a possible vehicle. Figure 3 shows
the codification of an arbitrary vehicle using the Gaussian
representation. The red cross represents the actual center
of the vehicle, the blue plus symbol represents the discrete
found position of the vehicle, and the green one is the
obtained sub-pixel position. Note that the image has been
amplified by 16 to illustrate the differences between discrete
and sub-pixel detection.

Fig. 3 Position extraction from graphic representation. The red cross
represents the actual center of the vehicle, the blue plus symbol
the discrete found position, and the green plus symbol the sub-pixel
position. Image augmented 16 times
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Algorithm 1 Multi-vehicle location extraction.

1: function P = EXTRACTION(p(r, ¢), Pmin, W, h)

2 P=9

3 while 3(r, ¢) | p(r, ¢) > pmin do

4: P=(R,C)| p(R,C) > p(r,c)¥V(r,c)

5: I3(I§, é) = SubPxLocation(p(r,c), w, h, P)
6 PeP

7 Y(r,c) € P+ (h,w)do p(r,c) =0

8 end while

9: end function

10: function P = SUBPXLOCATION(p(r, ¢), w, h, P)
1: R=C=0

12: forR—h<r <R+ hdo

13: forC—w<c<C+wdo
14: R+ = pr,c)-r

15: C’—l—zp(r,c)«c

16: end for

17: end for

18: P =(R/2h, C)2w)
19: end function

Table 3 shows the position extracted from the vehicle
shown in Fig. 3. The vehicle is represented in the BEV using
the same resolution in both axes, PPM, = PPM, = 1.
The position of the vehicle is at coordinates X = 6.63 and
Y = 3.21. The resolution used in the representation defines
the error generated for the maximum method. However, the
sub-pixel resolution method shows an error 100 times lower
than the resolution parameter.

3.4 Association of extracted positions

Extracted positions need to be associated with the corre-
sponding vehicle. A simple procedure based on a Hungarian
matrix [38] is used to associate the extracted positions with
the positions used in the latest input representation. The
number of elements that can be matched is the minimum
between the number of extracted positions from the output
image or the number of vehicles represented in the latest
input representation. The value used as the distance param-
eter to associate elements is the Euclidean distance between
extracted points and the provided samples. This method is
good enough as predicted positions do not differ from their
current positions.

Table 3 Error of extracted vehicle position for Maximum and Sub-
pixel methods

X /Y [m]/[m] X /'Y Error [m]/[m]

Original 6.63/3.21 -/-
Maximum 713 0.37/0.21
SubPixel 6.615/3.216 0.015/0.006
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3.5 Training strategy

The training procedure was carried out using the PRE-
VENTION dataset [29] which includes on-board vehicle
detections on highway scenarios. The dataset consists of
11 sequences recorded at 16 Hz. The number of frames
accounts for a total of 345k samples representing more than
6 hours of traffic recordings. The amount of data is massive
and allows us to train models with a wide variety of samples
and situations.

The original frame rate has been reduced from 16Hz
to 4Hz, discarding three consecutive samples out of four
because it is too high to appreciate relevant displacements
from one sample to the next one. The lowered frame
rate allows the input and output data to cover a larger
period using the same number of samples. The number of
consecutive input and output samples has been set to 8
(D = M = 8). According to the lowered data rate the
input block represents the period from t - 1.75 seconds to
t and the output block represents future vehicle locations
in the period from t + 0.25 to t + 2.0 seconds. The range
of the vehicle positions contained in the dataset is limited
to 100 meters in longitudinal and up to 12 meters in both
lateral directions. The BEV representation has been defined
as a grid with H = 512 by W = 256 pixels representing
an area of 102,4 by £12,8 meters, respectively. The size
of the grid has been established based on three criteria:
memory size when it is allocated in the GPU for training
purposes, a convenient resolution to understand the scene,
and compatibility with the proposed network architecture.
The lateral and longitudinal resolution is PPMyx = 5 and
P PMy = 10 respectively. The lateral resolution is bigger
in order to amplify lateral displacements. Rectangle size
wy X hy for vehicle representation has been set to standard
vehicle dimensions 1.8 x 5.0 meters. Equivalently, o0 =
0.9,2)5).

The dataset was split from sequence 1 to 9 as the training
set and from sequence 9 to 11 as the test set. The hyper-
parameters used in the training process were: optimizer
Adam, mini-batch 1, epochs 1, initial learning rate 1076, 1.2
regularization 10~*, momentum 0.9, and gradient threshold
1. The Root Mean Square Error (RMSE) has been used as a
loss function for the image-to-image regression problem.

Several trainings have been conducted to figure out the
best performing configuration. The effect of the rectangle
and Gaussian vehicle representations, the use of lane
markings, the U-net depth levels, and the terminal layer of
the network has been evaluated. Input and output images
with discrete values ranging from O to 255 have been
converted into floating-point values ranging from 0 to 1 for
the training process.

The tested U-net’s depth levels were limited to 4, 5, and
6. Level 7 and above exceeded the GPU memory size and

the training could not be conducted. Depth levels below 4
were discarded, as they offered a very limited contact area.
Three different terminal layers were tested in these
experiments. The objective was to identify the best-
performing one. The linear layer does not apply a
transformation to the network’s output. The tanh layer
applies the hyperbolic tangent function ranging the output
from -1 to 1, with a nonlinear transformation. The
clippedReLU layer limits the output below 0 and above a
user-defined value, which is set to 1 for this problem.
Figure 4 illustrates a complete input-output sequence. For
simpler understanding vehicles have been represented as
rectangles using the same P P M factor for both axes. Lanes
are only used in the input set of images (8 leftmost images).
The output images (8 rightmost) have no lane markings,
given that the desired output is the vehicles’ positions only.

3.6 Baseline

For comparison purposes, a KF with a Constant Speed
model has been used to process vehicle positions and
generate predictions. State vector X, and the observation
vector Y, are defined in (5) where x, and y are vehicle
positions, v, and v, are vehicle speeds in both axis.
The process model A, and the observation model H are
described in (6) and (7) where At represents the time step.

X:[x Y Uy vy]T Y:[x Y Uy vy]T (®)]

X = AXk—1 Yy = HXx (6)
10Ar 0 1000

eforral aeforel o
000 1 0001

4 Trajectory prediction results

This section presents the results generated by the proposed
trajectory prediction model. This section is divided into
two subsections, Section 4.1 provides quantitative results
using different commonly accepted metrics and Section 4.2
presents graphic representations as qualitative results.

4.1 Quantitative results

The quantitative results of trajectory prediction are evalu-
ated in this subsection. For trajectory prediction evaluation,
two metrics are used to evaluate the quality of each model.
The RMSE and the MAE are used as performance met-
rics and they are provided in both longitudinal and lateral
coordinates.
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Fig.4 Example of BEV input (8 leftmost) and output (8 rightmost) block sequences. This sequence represents a total of 4.0 seconds of trajectories.
From t-1.75 seconds to t as input data and from t to t+2.0 seconds as output data

The RMSE is computed according to (8) where subindex
k denotes each prediction step and subindex i represents
each individual trajectory in a set with a total of N
trajectories.

N

RMSEy = Z
i=0

The Mean Absolute Error (MAE) represents the
unweighted average error as it is defined in (9).

(ki — xk.i)?

N (®)

N .
Xk,i — Xk,i
MAE = —_ ©)]
2y

The literature evaluates commonly the performance
of trajectory predictive models providing the Average
Displacement Error (ADE) and the Final Displacement
Error (FDE). In this work, RMSE and MAE are provided
for each prediction step, consequently, FDE is the MAE at
the last prediction step and the ADE is directly computed as
the MAE’s average value according to (10) where M is the
total number of prediction steps.

M
1
ADE:M;MAEk (10)

The input block provides a video sequence representing
1.75 seconds of past information and the predictive model

generates an output block that represents the scene 2.0
seconds in advance. This output block has 8 samples at 0.25
second time intervals.

First, all the configurations related to the U-net
architecture were tested. For these trainings, the Gaussian
representation of vehicles with no lane markings was used.
Table 4 presents the RMSE for these configurations at
different prediction intervals. U-net has been tested with
4, 5, and 6 depth levels together with the linear and
clippedRelLU final layers. The tanh configuration produced
unstable trainings, generating divergence and aborting
because of computation errors. This configuration has been
removed from tables due to their consistent null results.
U-net models are denoted as U-net-4 for the configuration
with 4 depth levels, and similarly for 5 and 6 depth levels.
Longitudinal and lateral error are denoted as &, and ey,
respectively and expressed in meters for all tables.

First row in Table 4 presents results for KF which is
used as baseline method for comparison purposes. The KF
has been used to predict positions at the same prediction
horizons as the CNN-based models.

Comparing the effect of the terminal layers there
is a huge difference between experiments. The error
is nearly half for the linear layer compared with the
clippedReLU. This difference gets smaller when less
complex models where fewer depth levels are used. A priori,
the clippedReLU was expected to offer a better fitting for the

Table 4 Trajectory prediction error as RMSE for different network depth and terminal layer configurations

t =0.25 t=10 t=20
Model ex /| &y ex /| &y ex /| &y

1.20/0.47 1.76 / 0.94 1.98/1.44
U-net-4, linear 1.24 /0.65 1.65/0.97 2.39/1.40
U-net-4, clipReLU 1.36/0.71 1.68/1.04 2.51/1.39
U-net-5, linear 0.43/0.23 0.62/0.55 1.06/0.81
U-net-5, clipReLU 0.74/0.38 0.95/0.68 1.93/0.94
U-net-6, linear 0.35/0.22 0.56/0.52 0.93/0.69
U-net-6, clipReLU 0.65/0.27 0.94/0.71 1.72/0.87

Bold entries denote the best-performing configuration
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output data. However, this layer introduces a zero gradient
area out of the defined response interval (0-1).

Figure 5 shows the RMSE for the baseline method and
the U-net model with the linear terminal layer and different
depth levels as a visual complement of the values presented
in Table 4. It can be observed that the deeper the model the
lower the RMSE. The best performing model is the U-net-6
with the linear terminal layer, followed closely by the U-
net-5 with the same configuration. U-net-4 and the baseline
method present similar results.

The similarity of the U-net-4 and the KF performance can
be explained because the U-net-4 has a small receptive field
and the future positions of the vehicles are inferred based
only on near objects, basically the ego vehicle itself. U-net-
5 or U-net-6 increases their receptive field exponentially
enabling vehicle interactions. This could be the reason why
they perform better than the KF, which does not include any
other information than vehicle dynamics.

U-net-6 prediction errors are 53% and 52% lower
compared to the baseline method in longitudinal and lateral
coordinates for 2.0 seconds prediction horizon. The U-
net-5 prediction errors are 46% and 44% lower for the
longitudinal and lateral errors respectively.

Table 5 shows the MAE for the linear set of U-net
configurations only. As an unweighted metric, it is easier
to understand expected errors at each prediction step.
Moreover, ADE and FDE are provided as common literature
metrics.

MAE values have been notably reduced compared with
the RMSE values. However, the RMSE arguments are
valid for the MAE. The deeper the network the better
the predictions. KF’s errors are comparable to the U-net-4

model again. As remarkable points, the ADE for the U-
net-6 is 0.51 and 0.40 meters for lateral and longitudinal
respectively. The FDE for the U-net-6 reaches 0.76 and 0.53
meters in longitudinal and lateral errors on average for a 2.0
seconds prediction horizon.

The MAE of U-net-6 with the linear terminal layer is
33% and 49% lower in longitudinal and lateral with respect
to the baseline method for 2.0 seconds prediction horizon.
If the ADE is used to compare models, the U-net-6’s ADE
is 30% and 44% lower than the KF’s ADE for longitudinal
and lateral coordinates respectively.

After the evaluation of different U-net configurations, the
best performing model (U-net-6 and linear terminal layer)
is tested with different scene representations in order to
figure out the best one. Vehicle Gaussian and rectangular
representations together with or without lane markings have
been evaluated. Table 6 shows the MAE, FDE, and ADE for
these configurations.

As observed, the rectangular representation does not
provide any improvement compared with the Gaussian
representation of vehicles. This fact can be explained
because the Gaussian representation models the probability
of being a vehicle using a specific area, which seems more
robust, in contrast with the binary input of the rectangular
representation.

The representation of lane markings in the input images
does not produce any significant effect on the prediction
performance. It was expected that its use would reduce
the prediction error, but no significant changes have been
observed. Lane markings are represented by single-pixel
lines to avoid occluding vehicle positions. This fact may be
the cause to produce no performance changes.

Fig.5 Effect of depth levels in 1.6
the trajectory prediction —KF
performance. Longitudinal (left) 9.5 ||——depth = 4
and lateral (right) RMSE for depth = 5 14
different depth levels using the —depth =6
linear terminal layer 1.9
= 2
5 ENS
% =
— 15 =
Sos
el <
'é E 0.6
> 1 0
9]
=
0.4+
0.5}
0.2F
0 1 1 1 ] 0 L L L .
0.5 1 1.5 2 0.5 1 1.5 2

Prediction time [s]
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Table 5 Trajectory prediction error as a Mean Absolute Error for different network depth configurations using the linear terminal layer

FDE ADE
t =025 t=1.0 r=20
Model ex /| &y ey /| &y ex [ &y ex /| &y
KF 0.24/0.22 0.58 /0.65 1.13/1.04 0.67/0.68
U-net-4 0.35/0.18 0.57/0.46 1.43/0.85 0.69/0.49
U-net-5 0.23/0.15 0.44/0.39 0.84/0.59 0.51/0.40
U-net-6 0.20/0.14 0.42/0.38 0.76 / 0.53 0.47/0.38

Bold entries denote the best-performing configuration

In conclusion, the U-net model trained with 6 depth
levels and the linear terminal layer using the vehicle’s
Gaussian representation produces the lowest errors from all
the trained models. This configuration overcomes in both
longitudinal and lateral coordinates the KF model which
has been used as a baseline. U-net with 7 or more depth
levels could produce better results due to the observed trend,
however, it is impossible to be trained with the currently
available hardware.

4.2 Qualitative results

This subsection provides qualitative results and examples of
the scenes predicted using the U-net architecture.

Figure 6 shows predictions 2.0 seconds ahead using
different network configurations and input representations.
In general, the higher the peak value (warmer color) and
rounded the output objects the better the predictions.

Figure 6-1 shows the desired output for this particular
prediction example. The positions of each vehicle are
denoted by a 255 intensity peak value. This is the output
that the predictive model must generate at a certain time
step based on the corresponding input. The remaining
images show the prediction for a U-net-6 with different
input and terminal layers. Figure 6-II shows the output
generated with the linear terminal layer and the Gaussian
vehicle representation in the input block. This is the

most likely desired output compared with the remaining
representations, and numerically it is, as it was exposed in
Tables 6 and 5. The following representations, from Figs. 6-
IIT to 6-VI, show configurations with worse results both
numerically and visually. Figure 6-III shows the effect of
the clippedReLU terminal layer. The prediction seems quite
similar for both terminal layers, however, the image loses
definition, and positions extracted with the linear layer
are two times more precise. Figure 6-IV shows differences
between the Gaussian and the rectangle representation of
vehicles. The output image has lower definition but still
performs quite well in comparison with the clippedReLU
variation. Figure 6-V shows the output including lanes
together with the Gaussian representation. The definition is
similar whether or not the lanes are used. Finally, Fig. 6-
VI shows the output generated using rectangles and lanes in
the input block. As when using Gaussian representation, the
existence of lanes does not provide any improvement.
Figure 7 shows an example of a sequence prediction. The
images shown in this figure are cumulative past and future
samples on a heat map representation. The trajectory of each
vehicle is represented as a kind of worm where the first
half (8 dots) represents past positions and the second part
(8 dots) the future positions. Left image shows the first part
of the trajectory which corresponds to the input data used
to predict the trajectories. Central image shows the input
data representation together with the expected output data,

Table 6 Trajectory prediction error as a Mean Absolute Error for different input configurations using the U-net-6 model with the linear terminal

layer
FDE ADE
=025 t=10 t=20

Input Config. ex /| &y ex | &y &x /| & &x /| &y
Gaussian 0.20/0.14 0.42/0.38 0.76 /0.53 0.47/0.38
Rectangle 0.26/0.14 0.48/0.39 1.04/0.59 0.53/0.41
Gauss.+lanes 0.19/0.16 0.43/0.40 0.75/0.56 0.48/0.41
Rect.+lanes 0.24/0.15 0.49/0.37 1.07/0.55 0.53/0.40

Bold entries denote the best-performing configuration
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Fig. 6 Network configuration and Input representation’s effect on
output images. From left to right: target output, the Linear layer
with the Gaussian representation, the ClippedReLU layer with the

this is the ground truth. Right image shows the input and
the predicted positions. Predictions become less defined for
longer prediction periods.

Note that this particular sequence shows three vehicles
driving at different speeds compared with the ego-vehicle,
otherwise, consecutive vehicle positions would be stacked
in a small area and trajectories cannot be appreciated.

Figure 8 shows a detailed view of two trajectories,
one corresponding with the sequence above and the other
is an example that illustrates the level of generalization
for predicting lane changes. The two left images are a
long trail sequence in which the FDE is 0.22 and 0.24
meters for longitudinal and lateral directions respectively.
The predictions become less defined with higher prediction
horizons. The two images on the right show two lane
changes with a large displacement. Note that the zoom level
is lower for these images. It can be seen that the predicted
trajectory follows a natural path that avoids obstacles and

0

Fig. 7 Time series visualization of a trajectory example. From left to
right representation of the input positions, the input and the desired
positions, and finally, the input and the predicted positions

N

50

Gaussian representation, the Linear layer with the rectangle represen-
tation, the Linear layer with the Gaussian and lanes representation, and
the Linear layer with Rectangles and lanes representation

tends to stabilize in a direction parallel to the direction of
movement.

Finally, Fig. 9 shows a sort of samples in a sequence,
using both input and output representation to understand the
scene as better as possible. Note that lanes have been used in
the predictions only for representation purposes. The actual
position of the vehicle is represented with a gray rectangle
in all images. The last known position of each vehicle is
represented with a blue rectangle. Predicted positions of
vehicles are denoted by the yellow Gaussian distributions.
The center of each vehicle prediction corresponds with the
mass-center of each Gaussian according to Algorithm 1.
Images have been converted back to their natural aspect
ratio.

4.3 Benchmarking

The proposed model has been trained using the HighD
dataset [28], which features top-view static-sensor recorded
scenes in German highways. This dataset has become pop-
ular among trajectory prediction works and is commonly
used as a benchmark. For comparison purposes, the input
and output data has been subsampled from 25 Hz to 5 Hz,
covering a 3 seconds prediction horizon. Table 7 presents
the RMSE for both the longitudinal and lateral coordi-
nates using the HighD dataset for different depth levels and
terminal layer configurations.

Note that the results are in the same line as those
achieved with the PREVENTION dataset (see Table 4).
The best performing configuration is the U-net-6 using the
linear terminal layer. The longitudinal error is quite similar
compared with the PREVENTION dataset results. However,
the lateral error is exceptionally low, which suggests that
the lateral displacements are more reduced in the HigHD
dataset.
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Fig.8 Detail of trajectory
prediction. From left to right
images | and 3 represents the
input data and the desired output
denoted by + symbols for two
different trajectories. Images 2
and 4 represents the same input
data and the predicted positions
denoted by + symbols for the
same trajectories showed in
images 1 and 3 respectively

Table 8 shows the performance of different trajectory
prediction models reviewed in Section 2 expressed as the
RMSE for different prediction horizons.

It can be observed that the performance of the proposed
model in the early stage of the prediction (1 sec) is
not as good as the one achieved by other state-of-the-art
methods. This faulty behavior at short prediction horizons
could be motivated by the handicap of performing graphic
predictions and the associated encoding and decoding
procedures. This effect is particularly prominent in data
obtained from long distances (e.g. from infrastructure or
from a drone) where we have lower longitudinal and

Fig. 9 Trajectory prediction results for different prediction horizons
(from left to right t + 0.25, t + 1.0, t + 1.5, and t + 2.0 seconds).
Last known vehicle positions represented with blue rectangles, current
vehicle positions represented with gray rectangles, and predicted
vehicle positions represented by yellow blobs. Predictions were
performed with the U-net-6 with the linear terminal layer and using
the Gaussian vehicle representation in the input representation
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lateral accuracy. This gap is narrower for a 2 seconds
prediction horizon and the performance is comparable to
other methods for 3 seconds.

5 Conclusions and future work

This approach is unlimited in the number of considered
vehicles and includes vehicle interactions without any
constraints. Context, understood as road configuration
is also considered by representing lane markings. The
predictions are generated for all the vehicles in a single step,
unlike most of the state-of-the-art works, where a single
vehicle is considered as the prediction target and the others
actuate as conditioning factors.

The U-net has been selected as prediction core due to
its expandable reception field. It can generate a contact
area between each single output pixel and a configurable
area at the input side. Several configurations have been
explored including different kinds of vehicle representa-
tions, context, and network depth levels. Results suggest the
deeper the network the better the prediction performance.
Gaussian representations of vehicles show better perfor-
mance compared with rectangular vehicle representations.
The representation of the road configuration has no rele-
vant effects on the prediction performance, showing similar
results for the experiments conducted with or without lane

Table 7 Trajectory prediction error as Root Mean Square Error for
different network depth and terminal layer configuration using the
HighD dataset

t=1.0 t=20 t=3.0
Predictive model ey /| &y ex /| &y ex /| &y
U-net-5, linear 1.17/0.27 1.57/0.36 2.36/0.54
U-net-6, linear 0.53/0.02 0.82/0.04 1.23/0.07
U-net-5, clipReLU 1.35/0.52 1.67/0.63 2.51/0.94
U-net-6, clipReLU 1.01/0.33 1.37/0.41 2.06/0.62

Bold entries denote the best-performing configuration
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Table 8 Quantitative results for

the HighD benchmark Prediction Horizon

expressed as RMSE over 3 Prediction Horizon t=1.0 t=20 t=3.0

seconds prediction horizon
S-LSTM [23] 0.19 0.57 1.18
CS-LSTM [24] 0.19 0.57 1.16
S-GAN [25] 0.30 0.78 1.46
Multi-head Att. [17] 0.43 0.47 0.90
DLM [18] 0.22 0.61 1.16
PiP [19] 0.17 0.52 1.05
CNN+CSP+LSTM [21] 0.42 0.88 1.26
Ours 0.53 0.82 1.23

markings. The best performing configuration has 6 depth
levels and uses Gaussian representations of vehicles without
lane representations. The prediction error is up to 50% lower
than the baseline method. This system has been trained
using on-board sensor data which enables its direct integra-
tion on automated vehicles. The HighD has been used as
benchmarking dataset to compare the performance of the
proposed method with others. Our approach achieves state-
of-the-art results on datasets obtained from infrastructure
or top-view recording systems and states a baseline for the
PREVENTION dataset.

After the review of the state-of-the-art and based on
results and conclusions derived from this work, several
research lines can be followed to improve the performance
of the system or either take advantage of this system
in other applications. Trajectory prediction results have
shown that prediction performance grows with the U-net
depth levels. Due to hardware limitations, higher depth
levels could not be either trained or tested. More efficient
representations will allow trying these deeper models.
Hardware improvements will also help to try these models.
The general definition of the problem, which exploits visual
representations, allows the use of this model in other similar
scenarios, such as urban intersections with on-board or
external sensor data.
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