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SUMMARY
This paper describes a new approach for estimating the
vehicle motion trajectory in complex urban environments
by means of visual odometry. A new strategy for robust
feature extraction and data post-processing is developed
and tested on-road. Images from scale-invariant feature
transform (SIFT) features are used in order to cope with the
complexity of urban environments. The obtained results are
discussed and compared to previous works. In the prototype
system, the ego-motion of the vehicle is computed using a
stereo-vision system mounted next to the rear view mirror
of the car. Feature points are matched between pairs of
frames and linked into 3D trajectories. The distance between
estimations is dynamically adapted based on re-projection
and estimation errors. Vehicle motion is estimated using
the non-linear, photogrametric approach based on RAndom
SAmple Consensus (RANSAC). The final goal is to provide
on-board driver assistance in navigation tasks, or to provide
a means of autonomously navigating a vehicle. The method
has been tested in real traffic conditions without using
prior knowledge about the scene or the vehicle motion. An
example of how to estimate a vehicle’s trajectory is provided
along with suggestions for possible further improvement of
the proposed odometry algorithm.

KEYWORDS: 3D visual odometry; Global localization;
Vision; SIFT.

1. Introduction
Autonomous vehicle guidance interest has increased in the
recent years, thanks to events like the Defense Advanced
Research Projects Agency (DARPA), Grand Challenge and
recently the Urban Challenge. Accurate global localization
has become a key component in vehicle navigation, following
the trend of the robotics area, which has seen significant
progress in the last decade. Accordingly, our final goal
is the autonomous vehicle outdoor navigation in large-
scale environments and the improvement of current vehicle
navigation systems based only on standard GPS. The work
proposed in this paper is particularly efficient in areas
where GPS signal is not reliable or even not fully available
(tunnels, urban areas with tall buildings, mountainous
forested environments, etc). Our research objective is to
develop a robust localization system based on a low-cost
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stereo camera system that assists a standard GPS sensor
for vehicle navigation tasks. Then, our work is focused
on stereo-vision-based real-time localization as the main
output of interest. Accurate estimation of the vehicle global
position is a key issue, not only for achieving autonomous
driving, but also for developing useful driver assistance
systems. Using stereo vision for computing the position
of obstacles or estimating road lane markers is a popular
technique in intelligent vehicle applications. The challenge
now is to extend stereo-vision capabilities to also provide
accurate estimation of the vehicle’s ego-motion with respect
to the road, and thus to compute its global position. This is
becoming more and more tractable to implement on standard
PC-based systems.

In this paper, a new approach for ego-motion com-
puting based on stereo vision is proposed, as shown in the
flow diagram depicted in Fig. 1. The use of stereo vision has
the advantage of disambiguating the 3D position of detected
features in the scene at a given frame. Based on that, feature
points are matched between pairs of frames and linked into
3D trajectories. The idea of estimating displacements from
two 3D frames using stereo vision has been previously used
in refs. [1–3]. A common feature of these studies is the use
of robust estimation and outliers rejection using RAndom
SAmple Consensus (RANSAC).4 In ref. [2], a so-called
firewall mechanism is implemented in order to reset the
system to remove cumulative error. Both monocular and
stereo-based versions of visual odometry were developed
in ref. [2], although the monocular version needs additional
improvements to run in real time, and the stereo version
is limited to a frame rate of 13 images per second. In
ref. [5] a stereo system composed of two wide field-of-view
cameras was installed on a mobile robot together with a GPS
receiver and classical encoders. The system was tested in
outdoor scenarios on different runs of up to 150 m each.
In ref. [6], trajectory estimation is carried out using visual
cues for the sake of autonomously driving a car in inner-city
conditions.

In the present work, the solution of the non-linear system
equations describing the vehicle motion at each frame is
computed under the non-linear, photogrametric approach
using RANSAC. The use of RANSAC2 allows for outliers
rejection in 2D images corresponding to real traffic scenes,
providing a method for carrying out visual odometry on-
board a road vehicle.

The rest of the paper is organized as follows: in Sec-
tion 2 the new feature detection and matching technique is
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Fig. 1. General layout of the visual odometry method based on
RANSAC.

presented; Section 3 provides a description of the proposed
non-linear method for estimating the vehicle’s ego-motion
and the 3D vehicle trajectory; implementation and results
are provided in Section 4; finally, Section 5 is devoted to
conclusions and discussion on how to improve the current
system performance in the future.

2. Features Detection and Matching
In most previous research on visual odometry, features are
used for establishing correspondences between consecutive
frames in a video sequence. Some of the most common
choices are Harris corner detector7 and the Kanade–Lucas–
Tomasi detector (KLT).8 Harris corners have been found
to yield detections that are relatively stable under small to
moderate image distortions.9 As stated in ref. [2], distortions
between consecutive frames can be regarded as fairly small
when using video input. However, Harris corners are not
always the best choice for landmark matching when the
environment is cluttered and repetitive superimposed objects
appear on the images. This is the situation for urban
visual odometry systems. Although Harris corners can yield
distinctive features, they are not always the best candidates
for stereo and temporal matching. Among the wide spectrum
of matching techniques that can be used to solve the
correspondence problem, the zero mean normalized cross
correlation (ZMNCC)10 is chosen for robustness reasons.
The ZMNCC between two image windows can be computed

as follows:

ZMNCC(p, p′) =

n∑
i=−n

n∑
j=−n

A · B

√√√√ n∑
i=−n

n∑
j=−n

A2
n∑

i=−n

n∑
j=−n

B2

, (1)

where A and B are defined by

A = (I (x + i, y + j ) − I (x, y)), (2)

B = (I ′(x ′ + i, y ′ + j ) − I ′(x ′, y ′)), (3)

where I (x, y) is the intensity level of pixel with coordinates
(x, y), and I (x, y) is the average intensity of a (2n +
1) × (2n + 1) window centred around that point. As the
window size decreases, the discriminatory power of the area-
based criterion gets decreased and some local maxima appear
in the searching regions. On the contrary, an increase in
the window size causes the performance to degrade due to
occlusion regions and smoothing of disparity values across
boundaries. In order to minimize the number of outliers, a
mutual consistency check is usually employed (as described
in ref. [2]). Accordingly, only pairs of features that yield
mutual matching are accepted as a valid match. The accepted
matches are used both in 3D feature detection (based on
stereo images) and in feature tracking (between consecutive
frames).

In urban cluttered environments repetitive patterns such
as zebra crossings, building windows, fences, etc. can be
found. In Fig. 2 the typical correlation response along the
epipolar line for a repetitive pattern is shown. Multiple
maxima or even higher responses for badly matched points
are frequent. Although some of these correlation mistakes can
be detected using techniques such as the mutual consistency
check or the unique maximum criterion, the input data
for the ego-motion estimation will be regularly corrupted
by these outliers which will decrease the accuracy of the
estimation. Moreover, superimposed objects limit observed

Fig. 2. Correlation response along the epipolar line for a repetitive
pattern.
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Fig. 3. Examples of matches for superimposed objects.

from different viewpoints are a source of correlation errors
for the system. Figure 3 depicts a typical example of an urban
environment in which a car’s bonnet is superimposed on the
image of the next car’s license plate and bumper. As can
be seen in Fig. 3(a), the Harris corner extractor chooses, as
feature points, the conjuncture in the image between the car’s
bonnet and the next car’s license plate and bumper. In the
image plane these are, apparently, good features to track, but
the different depths of the superimposed objects will cause
a mis-detection due to the different viewpoints. In Fig. 3(b)
and 3(c) it can be seen how the conjuncture in the image
between the number 1 on the license plate and the bonnet
is matched but they do not correspond to the same point in
the 3D space. We can see the same kind of mis-detection in
the conjuncture between the car’s bonnet and the bumper.
The error in the 3D reconstruction of these points is not big
enough to be rejected by the RANSAC algorithm so they will
corrupt the final solution.

In practice, these errors lead to local minima in the solution
space and thus to inaccurate and unstable estimations. A more
reliable matching technique is needed in order to cope with
the complexity of urban environments. In this system we
apply an approach similar to ref. [11], in which images from
scale-invariant feature transform (SIFT) features are used
for simultaneous localization and map building (SLAMB) in
unmodified (no artificial landmarks) dynamic environments.
To do so they use a trinocular stereo system12 to estimate the
3D position of the landmarks and to build a 3D map where
the robot can be localized simultaneously. Our approach uses
a calibrated stereo rig mounted next to the rear view mirror
of a car to compute the ego-motion of the vehicle. In our
system, at each frame, SIFT features are extracted from each
of the four images (stereo pair at time 1 and stereo pair at time
2), and stereo matched among the stereo pairs (Fig. 4). The
resulting matches for the stereo pairs are then, matched again
among them. Only the features finding a matching pair in the
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Fig. 4. Diagram of the features extraction method for the proposed system.

three matching processes will be used for the computation of
the ego-motion.

SIFT was developed by Lowe13 for image feature
generation in object recognition applications. The features
are invariant to image translation, scaling, rotation, and
partially invariant to illumination changes and affine or 3D
projection. These characteristics make them good feature
points for robust visual odometry systems, since when mobile
vehicles are moving around in an environment, landmarks are
observed over time, but from different angles and distances.
As described in ref. [14] the best matching candidate for a
SIFT feature is its nearest neighbour, defined as the feature
with the minimum Euclidean distance between descriptor
vectors. The reliability of the nearest neighbour match can
be tested by comparing its Euclidean distance to that of the
second nearest neighbour from that image. If these distances
are too similar, the nearest neighbour match is discarded
as unreliable. This simple method works well in practice,
since incorrect matches are much more likely to have close
neighbours with similar distances than correct ones, due in
part to the high dimensionality of the feature space. The large
number of features generated from images, as well as the
high dimensionality of their descriptors, make an exhaustive
search for closest matches inefficient. Therefore the Best-
Bin-First (BBF) algorithm based on a k-d tree search15

is used. A k-d tree is constructed from all SIFT features
which have been extracted from the reference images. The
search examines tree leaves, each containing a feature, in
the order of their closest distance from the current query
location. Search order is determined with a heap-based

priority queue. An approximate answer is returned after
examining a predetermined number of nearest leaves. This
technique finds the closest match with a high probability, and
enables feature matching to run in real time. This can give
speedup by factor of 1000 while finding the nearest neighbour
(of interest) 95 % of the time. For each feature in a reference
image, the BBF search finds its nearest and second nearest
neighbour pair in each of the remaining images. Putative
two-view matches are then selected based on the nearest-
to-second-nearest distance ratio. As the SIFT best candidate
search is not based on epipolar geometry, the reliability of
matches can be improved by applying an epipolar geometry
constraint to remove remaining outliers. This is a great
advantage with respect to other techniques which rely on
epipolar geometry for the best candidate search. For each
selected image pair this constraint can be expressed as

xT
l · F · xr = 0, (4)

where F is the fundamental matrix previously computed in
an off-line calibration process and xT

l , xr are, respectively,
the homogeneous image coordinates of the matched features
in image left transposed and the homogeneous image
coordinates of the matched features in image right. Also
matches are only allowed between two disparity limits. Sub-
pixel horizontal disparity is obtained for each match. This
will improve the 3D reconstruction accuracy and therefore
the ego-motion estimation accuracy. The resulting stereo
matches between the first two stereo images are then similarly
matched with the stereo matches in the next stereo pair. No
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epipolar geometry constraint is applied at this step and an
extra vertical disparity constraint is used. If a feature has more
than one match satisfying these criteria, it is ambiguous and
discarded so that the resulting matching is more consistent
and reliable. From the positions of the matches and knowing
the cameras’ parameters, we can compute the 3D world
coordinates (X, Y, Z) relative to the left camera for each
feature in this final set. The number of final triple matches
(match in the two stereo processes and in time) for each
algorithm execution is around 50. Relaxing some of the
constraints above does not necessarily increase the number
of final matches (matches in the two stereo pairs and in time)
because some SIFT features will then have multiple potential
matches and therefore be discarded.

From the 3D coordinates of a SIFT landmark and the
visual odometry estimation, we can compute the expected 3D
relative position and hence the expected image coordinates
and disparity in the new view. This information is used
to search for the appropriate SIFT feature match within a
region in the next frame. Once the matches are obtained, the
ego-motion is determined by finding the camera movement
that would bring each projected SIFT landmark into the
best alignment with its matching observed feature. The
good feature matching quality implies very high percentage
of inliers, and therefore, outliers are simply eliminated
by discarding features with significant residual errors E
(currently 3 pixels). Minimization is repeated with the
remainder matches to obtain the new correction term.

3. Visual Odometry Using Non-linear Estimation
The problem of estimating the trajectory followed by a
moving vehicle can be defined as that of determining at frame
i the rotation matrix Ri−1,i and the translational vector Ti−1,i

that characterize the relative vehicle movement between two
consecutive frames. For this purpose a RANSAC based on
non linear least-squares method was developed for a previous
visual odometry system. A complete description of this
method can be found in ref. [16]. Nonetheless, an overview
is given in this section for self-containing purpose (also see
Fig. 1).

The estimation of the rotation angles must be undertaken
by using an iterative, least squares-based algorithm4 that
yields the solution of the non-linear equations system
that must be solved in this motion estimation application.
Otherwise, the linear approach can lead to a non-realistic
solution where the rotation matrix is not orthonormal.

The use of non-linear methods becomes necessary
since the 9 elements of the rotation matrix can not
be considered individually (the rotation matrix has to
be orthonormal). Indeed, there are only 3 unconstrained,
independent parameters, i.e. the three rotation angles θx , θy

and θz, respectively. The system’s rotation can be expressed
by means of the rotation matrix R given by Eq. (5):

R =
⎛
⎝ cycz sxsycz + cxsz −cxsycz + sxsz

−cysz −sxsysz + cxcz cxsysz + sxcz

sy −sxcy cxcy

⎞
⎠ ,

(5)

where ci = cosθi and si = sinθi for i = x, y, z. The estimation
of the rotation angles must be undertaken by using an
iterative, least squares-based algorithm4 that yields the
solution of the non-linear equations system that must
compulsorily be solved in this motion estimation application.
Otherwise, the linear approach can lead to a non-realistic
solution where the rotation matrix is not orthonormal.

3.1. Non-linear least squares
Given a system of n non-linear equations containing p

variables: ⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2, . . . , xp) = b1

f2(x1, x2, . . . , xp) = b2
...

fn(x1, x2, . . . , xp) = bn

, (6)

where fi , for i = 1, . . . , n, is a differentiable function from
�p to �. In general, it can be stated that

(1) if n<p, the system solution is a (p − n) dimensional
sub-space of �p,

(2) if n= p, there exists a finite set of solutions,
(3) if n > p, there exists no solution.

As can be observed, there are several differences with
regard to the linear case: the solution for n < p does not form
a vectorial sub-space in general. Its structure depends on the
nature of the fi functions. For n=p a finite set of solutions
exists instead of a unique solution as in the linear case.
To solve this problem, an underdetermined system is built
(n > p) in which the error function E(x) must be minimized:

E(x)
�=

N∑
i=1

(fi(x) − bi)
2. (7)

The error function E : �p → � can exhibit several
local minima, although in general there is a single global
minimum. Unfortunately, there is no numerical method that
can assure the obtaining of such global minimum, except for
the case of polynomial functions. Iterative methods based on
the gradient descent can find a global minimum whenever the
starting point meets certain conditions. By using non-linear
least squares the process is in reality linearized following
the tangent linearization approach. Formally, function fi(x)
can be approximated using the first term of Taylor’s series
expansion, as given by Eq. (8):

fi(x + δx) = fi(x) + δx1
∂fi

∂x1
(x) + · · ·

+ δxp

∂fi

∂xp

(x) + O(|δx|)2 ≈ fi(x) + ∇fi(x) · δx, (8)

where ∇fi(x) = ( ∂fi

∂x1
, . . . ,

∂fi

∂xp
)t is the gradient of fi calcu-

lated at point x, neglecting high order terms O(|δx|)2. The
error function E(x + δx) is minimized with regard to δx given
a value of x, by means of a iterative process. Substituting
Eqs. (8) in (6) yields:

E(x + δx) =
N∑

i=1

(fi(x + δx) − bi)
2

≈
N∑

i=1

(fi(x) + ∇fi(x) · δx − bi)
2 = |Jδx − C|2, (9)
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where

J =

⎛
⎜⎝∇f1(x)t

. . .

∇fn(x)t

⎞
⎟⎠ =

⎛
⎜⎝

∂f1

∂x1
(x) . . .

∂f1

∂xp
(x)

. . . . . . . . .
∂fn

∂x1
(x) . . .

∂fn

∂xp
(x)

⎞
⎟⎠ , (10)

and

C =
⎛
⎝b1

. . .

bn

⎞
⎠ −

⎛
⎝f1(x)

. . .

fn(x)

⎞
⎠ . (11)

After linearization, an overdetermined linear system of n

equations and p variables has been constructed (n < p):

Jδx = C. (12)

System given by Eq. (12) can be solved using least squares,
yielding

δx = (JtJ)−1JtC = J†C. (13)

In practice, the system is solved in an iterative process, as
described in the following lines:

(1) An initial solution x0 is chosen,
(2) While (E(xi) >emin and i < imax)

– δxi = J(xi)
†C(xi)

– xi+1 = xi + δxi
– E(xi+1) =E(xi + δxi) = |J(xi)δxi − C(xi)|2,

where the termination condition is given by a minimum value
of error or a maximum number of iterations.

3.2. Three-dimensional trajectory estimation
Between instants t0 and t1 we have:

⎛
⎝ 1xi

1yi

1zi

⎞
⎠ = R0,1

⎛
⎝ 0xi

0yi

0zi

⎞
⎠ + T0,1, i = 1, . . . , N, (14)

Considering Eq. (5) it yields a linear six-equations system
at point i, with six variables w = [θx, θy, θz, tx, ty, tz]t :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1xi = cycz · 0xi + (sxsycz + cxsz) · 0yi

+ (−cxsycz + sxsz) · 0zi + tx
1yi = −cysz · 0xi + (−sxsysz + cxcz) · 0yi

+ (cxsysz + sxcz) · 0zi + ty
1zi = sy · 0xi − sxcy · 0yi + cxcy · 0zi + tz

.

At each iteration k of the regression method the following
linear equations system is solved (given the 3D coordinates
of N points in two consecutive frames):

J(ω)δxk = C(xk), (15)

with

J(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1,11 J1,12 J1,13 J1,14 J1,15 J1,16

J1,21 J1,22 J1,23 J1,24 J1,25 J1,26

J1,31 J1,32 J1,33 J1,34 J1,35 J1,36

J2,11 J2,12 J2,13 J2,14 J2,15 J2,16

J2,21 J2,22 J2,23 J2,24 J2,25 J2,26

J2,31 J2,32 J2,33 J2,34 J2,35 J2,36

...
...

...
...

...
...

JN,11 JN,12 JN,13 JN,14 JN,15 JN,16

JN,21 JN,22 JN,23 JN,24 JN,25 JN,26

JN,31 JN,32 JN,33 JN,34 JN,35 JN,36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

δxk = [δθx,k, δθy,k, δθz,k, δtx,k, δty,k, δtz,k]t ,

C(xk) = [c1,1, c1,2, c1,3, . . . , cN,1, cN,2, cN,3]t .

Let us remark that the first index of each Jacobian matrix
element represents the point with regard to whom the function
is derived, while the other two indexes represent the position
in the 3 × 6 sub-matrix associated to such point. Considering
Eq. (10) the elements of the Jacobian Matrix that form sub-
matrix Ji for point i at iteration k are

Ji,11 = (cxksykczk − sxkszk) · 0yi

+ (sxksykczk + cxkszk) · 0zi,

Ji,12 = −sykczk · 0xi + sxkcykczk · 0yi − cxkcykczk · 0zi,

Ji,13 = −cykszk · 0xi + (−sxksykszk + cxkczk) · 0yi

+ (cxksykszk + sxkczk) · 0zi,

Ji,14 = 1,

Ji,15 = 0,

Ji,16 = 0,

Ji,21 = −(cxksykszk + sxkczk) · 0yi

+ (−sxksykszk + cxkczk) · 0zi,

Ji,22 = sykszk · 0xi − sxkcykszk · 0yi + cxkcykszk · 0zi,

Ji,23 = −cykczk · 0xi − (sxksykxkzk + cxkszk) · 0yi

+ (cxksykczk − sxkszk) · 0zi,

Ji,24 = 0,

Ji,25 = 1,

Ji,26 = 0,

Ji,31 = −cxkcyk · 0yi − sxkcyk · 0zi,

Ji,32 = cyk · 0xi + sxksyk · 0yi − cxksyk · 0zi,

Ji,33 = 0,

Ji,34 = 0,

Ji,35 = 0,

Ji,36 = 1.
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After computing the Jacobian matrix the iterative process
is implemented as described in the previous section.

3.3. RAndom SAmple Consensus
RANSAC17,18 is an alternative to modifying the generative
model to have heavier tails to search the collection of data
points S for good points that reject points containing large
errors, namely ‘outliers’. The algorithm can be summarized
in the following steps:

(1) Draw a sample s of n points from the data S uniformly
and at random.

(2) Fit to that set of n points.
(3) Determine the sub-set of points Si for whom the distance

to the model s is bellow the threshold t . Sub-set Si

(defined as consensus sub-set) defines the inliers of S.
(4) If the size of sub-set Si is larger than threshold T the

model is estimated again using all points belonging to
Si . The algorithm ends at this point.

(5) Otherwise, if the size of sub-set Si is below T , a new
random sample is selected and steps 2, 3 and 4 are
repeated.

(6) After N iterations (maximum number of trials), draw
sub-set Sic yielding the largest consensus (greatest
number of “inliers”). The model is finally estimated
using all points belonging to Sic.

RANSAC is used in this work to estimate the rotation
matrix R and the translational vector T that characterize
the relative movement of a vehicle between two consecutive
frames. The input data to the algorithm are the 3D coordinates
of the selected points at times t and t + 1. Notation t0 and
t1 = t0 + 1 is used to define the previous and current frames,
respectively, as in the next equation:

⎛
⎝ 1xi

1yi

1zi

⎞
⎠ = R0,1

⎛
⎝ 0xi

0yi

0zi

⎞
⎠ + T0,1, i = 1, . . . , n. (16)

After drawing samples from three points, in step 1 models
R̃0,1 and T̃0,1 that best fit to the input data are estimated using
non-linear least squares. Then, a distance function is defined
to classify the rest of points as inliers or outliers depending
on threshold t : {

Inlier e < t

Outlier e ≥ t
. (17)

In this case, the distance function is the square error
between the sample and the predicted model. The 3D
coordinates of the selected point at time t1 according to the
predicted model are computed as:

⎛
⎝ 1x̃i

1ỹi

1z̃i

⎞
⎠ = R̃0,1

⎛
⎝ 0xi

0yi

0zi

⎞
⎠ + T̃0,1, i = 1, . . . , n. (18)

The error vector is computed as the difference between the
estimated vector and the original vector containing the 3D

coordinates of the selected points (input to the algorithm):

e =
⎛
⎝ ex

ey

ez

⎞
⎠ =

⎛
⎝ 1x̃i

1ỹi

1z̃i

⎞
⎠ −

⎛
⎝ 1xi

1yi

1zi

⎞
⎠ . (19)

The mean square error or distance function for sample i is
given by

e = |e|2 = et · e. (20)

In the following sub-sections, justification is provided for
the choice of the different parameters used by the robust
estimator.

3.3.1. Distance threshold t. According to this threshold
samples are classified as ‘inliers’ or ‘outliers’. Prior
knowledge about the probability density function of the
distance between ‘inliers’ and model d2

t is required. If
measurement noise can be modelled as a zero-mean Gaussian
function with standard deviation σ , d2

t can then be modelled
as a chi-square distribution. In spite of that, distance threshold
is empirically chosen in most practical applications. In this
work, a threshold of t = 0.005 was chosen.

3.3.2. Number of iterations N. Normally, it is inviable or
unnecessary to test all the possible combinations. In reality,
a sufficiently large value of N is selected in order to assure
that at least one of the randomly selected s samples is outlier-
free with a probability p. Let ω be the probability of any
sample to be an inlier. Consequently, ε = 1 − ω represents the
probability of any sample to be an outlier. At least, N samples
of s points are required to assure that (1 − omegas)N = 1 −
p. Solving for N yields:

N = log(1 − p)

log(1 − (1 − ε)s)
. (21)

In this case, using samples of three points, assuming
p = 0.99 and a proportion of outliers ε = 0.25 (25 %), at
least nine iterations are needed. In practice, the final selected
value is N = 10.

3.3.3. Consensus threshold T. The iterative algorithm ends
whenever the size of the consensus set (composed of inliers)
is larger than the number of expected inliers T given by ε

and n:

T = (1 − ε)n. (22)

3.4. Two-dimensional approximation
Under the assumption that only 2D representations of the
global trajectory are needed, like in a bird’s-eye view, the
system can be dramatically simplified by considering that
the vehicle can only turn around the y-axis (strictly true for
planar roads). It implies that angles θx and θz are set to 0,
being θy estimated at each iteration.

A non-linear equation with four unknown variables
w = [θy, tx, ty, tz]t is obtained where T = [tx, ty, tz] is the
translational vector.
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Fig. 5. Examples of SIFT matches. In green SIFT feature at time t1 in blue matched feature at time t2, in white the movement of the feature.

After an iterative process using all the points obtained from
the matching step the algorithm yields the final solution w =
[θy, tx, ty, tz]t that describes the relative vehicle movement
between two consecutive iterations.

This approximation, along with the RANSAC outliers
rejection step, allows the system to cope with moving objects
such as pedestrians or other cars. On the one hand RANSAC
will reject every minimal solution as long as the number of
stationary points being tracked is higher than the outliers
(pedestrians or other moving cars). On the other hand the
2D approximation adds some information about the car
dynamics to the model. Future versions of the system will
filter the final trajectory using the vehicle dynamics in a
Kalman filter.

3.5. Data post-processing
This is the last stage of the algorithm. In most previous
research on visual odometry, features are used for
establishing correspondences between consecutive frames
in a video sequence. However, it is a good idea to
skip the frames yielding physically incorrect estimations
or with a high mean square error to get more accurate
estimations.

We have found there to be two main sources of errors in
the estimation step:

(1) Solutions for small movements (5 cm or less) where
the distance between features is also small (one or two
pixels), are prone to yield inaccurate solutions due to the
discretized resolution of the 3D reconstruction (Fig. 5b).

(2) Solutions for images where the features are in the
background of the image (Fig. 5a) are inaccurate for the
same reason as previously mentioned: 3D reconstruction
resolution decreases as long as depth increases. Although
the features extraction algorithm sorts the features
depending on its depth and it uses the closest ones, at
some frames it is not able to find enough features close to
the car.

SIFT features have proven to be robust to pose and
illumination changes, so they are good candidates for
matching, even if there are some skipped frames between
the matching stereo pairs and thus, the appearance of the
features has changed (Fig. 5d). Also the fact that they do not
rely on the epipolar geometry for the matching process makes
its computational time independent on the disparity between
features. Using a correlation based matching process it would
be necessary to increase the disparity limits in order to find
the features which will probably be further away from each
other. According to this some ego-motion estimations are
discarded using the following criteria:
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Fig. 6. (a) Prototype vehicle, (b) stero-camera platform on-board the vehicle.

(1) High root mean square error e estimations are discarded.
(2) Meaningless rotation angles estimations (non-physically

feasible) are discarded.

A maximum value of e has been set to 0.5. Similarly,
a maximum rotation angle threshold is used to discard
meaningless rotation estimations. In such cases, the ego-
motion is computed again using frames t i and t(i + 1 + shift)
where shift is an integer which increases by one at every
iteration. This process is repeated until an estimation meets
the criteria explained above or the maximum temporal shift
between frames is reached. The maximum temporal shift
has been fixed to 5. By doing so the spatial distance between
estimations remains small and thus the estimated trajectory is
accurate. Using this maximum temporal shift the maximum
spatial distance between estimations will be around 0.5–
2.5 m. If the system is not able to get a good estimation after
five iterations the estimated vehicle motion is maintained
according to motion estimated in the previous correct frame
assuming that the actual movement of the vehicle can not
change abruptly. The system is working at a video frame rate
of 30 fps which allows to skip some frames without losing
precision in the trajectory estimation.

4. Implementation and Results
The visual odometry system described in this paper has
been implemented on a Core II Duo at 2.16 GHz running
Kubuntu GNU/Linux 6.1 with a 2.6.20-16 SMP kernel
version. The algorithm is programmed in C using OpenCV
libraries (version 0.9.9). A stereo-vision platform based on
Fire-i cameras (IEEE1394) was installed on a prototype
vehicle, as depicted in Fig. 6. After calibrating the stereo-
vision system, several sequences were recorded in different
locations including Alcalá de Henares and Arganda del Rey
in Madrid (Spain). The stereo sequences were recorded using
a non-compression algorithm at 30 frames/s with a resolution
of 320 × 240 pixels. All sequences correspond to real traffic
conditions in urban environments with pedestrians and other
cars in the scene. In the experiments, the vehicle was driven
below the maximum allowed velocity in cities, i.e. 50 Km/h.

Theoretically, the ego-motion estimation is not affected by
the vehicle’s speed as long as there are enough linked features
between every two frames. In fact, as explained in Section
3.5, a temporal shift is used when the estimation is not
good enough. From the system’s point of view this has the
same effect as if the car were moving faster. The average
computation time is 1 frame/sec but no effort has been put on
code optimization, and real time is feasible by implementing
on hardware some key parts of the algorithm. Glares on the
windscreen are the main source of outliers caused by changes
on the illumination conditions. It is absolutely necessary to
place a sun-shade-like device on the camera lenses to protect
them from glares. These types of devices are used in the
automotive industry. The intrinsic and extrinsic parameters
of the cameras and the distortion parameters are obtained
using the method implemented in the Camera Calibration
Toolbox from Matlab.19 This method requires the use of
a chessboard and is performed in two steps. In the first
step, intrinsic parameters are estimated without considering
distortion parameters using a linear approximation in closed
form. In the second step, a non-linear optimization method
is applied based on iterative gradient descent. The list of
parameters obtained after calibration is provided bellow:

(a) Left camera: fxl, fyl, (u0l,v0l): 423.908295, 423.838776,
(163.685577,113.995888),

(b) Right camera: fxr, fyr, (u0r,v0r): 426.694031,427.
079895, (152.329453,120.181602),

where fxi and fyi represent the focal length in x and y
dimensions for the i camera (left or right) in pixel/mm, and
u0i and v0i stand for the optical centre coordinates in the i
camera (left or right).

4.1. Visual odometry results
The results of a first experiment are depicted in Fig. 7. The
vehicle starts on a trajectory in which it first turns slightly
to the left. Then, the vehicle runs along a straight street
and, finally, it turns right at a strong curve with some 90oof
variation in yaw. The upper part of Fig. 7 shows an aerial
view of the area of the city (Alcalá de Henares) where the
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Fig. 7. Above, trajectory in the city for experiment 1. Below
estimated trajectory for the previous Harris feature extractor
(triangles) and for the new SIFT strategy (no markers).

experiment was conducted (source: http://maps.google.com).
The bottom part of the figure illustrates the 2D trajectory
estimated by the visual odometry algorithm presented in this
paper (no marker) and the previous version of the system
using Harris corners and ZMNCC (triangles).16

As can be observed, the system provides reliable
estimations of the path run by the vehicle in all the sections.
As a matter of fact, the estimated length run in Fig. 7
is 147.37 m, which is very similar to the ground truth
(165.86 m). Compared to the previous system the trajectory
is more accurate and closer to the actual length of the
run. Taking into account that 13.84 % of the frames were
discarded in the post-processing step, the actual length of the
run is quite close to the real one.

In a second experiment, the car starts turning left and then
runs along an almost straight path for a while. After that, a
sharp right turn is executed. Then the vehicle moves straight
for some metres and turns slightly right until the end of
the street. Figure 8 illustrates the real trajectory described
by the vehicle (above) and the trajectory estimated by the
visual odometry algorithm (below). The estimated trajectory
reflects the exact shape of the real trajectory executed by
the vehicle quite well. The system estimated a distance of
197.89 m in a real run of 216.33 m. Similar to the first
experiment, 9.51 % of the estimations were discarded by the
post-processing step, thus the actual length of the run is again
very close to the real one.

4.2. Discussion
After observation of the results provided in the previous
section, it can be stated that the 3D visual odometry described
in this paper provides approximate trajectory estimations
that can be useful for enhancing GPS accuracy, or even
for substituting GPS in short outage periods. Nonetheless,

Fig. 8. Above, trajectory in the city for experiment 2. Below
estimated trajectory for the previous Harris feature extractor
(triangles) and for the new SIFT strategy (no markers).

the system provides estimations that exhibit cumulative
errors. Thus, it can not be realistically expected that a
3D visual odometry system be used as a stand alone
method for global positioning applications. Apart from this
obvious fact, other problems arise especially in altitude
estimation. The reason for this stems from the fact that
estimations of pitch and roll angles become complex using
visual means, since variations of these angles in usual car
displacements are really small and difficult to measure in
the 2D image plane. These difficulties produce a non-real
altitude change in estimated 3D trajectories. Besides, the
estimation of pitch and roll angles leads to a decrease in
the accuracy of yaw angle estimation with regard to the
2D simplified method. As a consequence of that a greater
error in estimated distance occurs. In addition, the 3D visual
odometry method needs higher computational requirements
to maintain performance at frame rate. Another problem
arises when features corresponding to non-stationary objects
are detected and used by the system. Non-stationary features
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lead to unrealistic motion estimation. This effect is observed
with greater magnitude when the car is not moving. So, for
instance, if the car is stopped at an intersection or a traffic
signal, and other cars or pedestrians appear in the scene,
the visual odometry method tends to produce unreal motion
estimation in a direction that is contrary to the objects’
movements. Though small, this is an upsetting effect that
must be removed in future developments.

Finally, considering the possibility of a future commercial
implementation of a visual odometry system for GPS
enhancement, the simplified 2D estimation method
described in this paper is a realistic, viable option that
can help increase conventional GPS accuracy or even
support GPS in short outage periods. Video sequences
showing the results obtained in several experiments
in urban environments can be anonymously retrieved
from ftp://www.depeca.uah.es/pub/vision/visualodometry.
The videos show a compound image in which the original
input image and the estimated car trajectory image are
synchronized and depicted together for illustrative purpose.

5. Conclusions and Future Work
We have described a method for improving the estimation of a
vehicle’s trajectory in urban environments by means of visual
odometry. To do so, SIFT feature points are extracted and
matched along pairs of frames and linked into 3D trajectories.
The resolution of the equations of the system at each frame
is carried out under the non-linear, photogrametric approach
using least squares and RANSAC. This iterative technique
enables the formulation of a robust method that can ignore
large numbers of outliers as encountered in real traffic scenes.
Fine grain outliers rejection methods have been experimented
with, based on the root mean square error of the estimation
and the vehicle dynamics. An adaptive temporal shift which
tries to avoid bad estimations has also been developed.
The resulting method is defined as visual odometry and
can be used in conjunction with other sensors, such as
GPS, to produce accurate estimates of the vehicle global
position.

Real experiments have been conducted in urban envir-
onments in real traffic conditions with no prior knowledge
of the vehicle movement or the environment structure. We
provide examples of estimated vehicle trajectories using the
proposed method. Although preliminary, the first results are
encouraging since it has been demonstrated that the system is
capable of providing approximate vehicle motion estimation.

As part of our future work we envision the development
of a method for discriminating stationary points from those
which are moving in the scene. Moving points can correspond
to pedestrians or other vehicles circulating in the same area.
Vehicle motion estimation will mainly rely on stationary
points. The system can benefit from other vision-based
applications currently under development and refinement
in our lab, such as pedestrian detection20 and ACC (based
on vehicle detection). The output of these systems can
guide the search for stationary points in the 3D scene. Also
a tracking of the features has to be addressed using the
information of the movement estimations and a Kalman
filter which will estimate the feature’s next position. This

information will be used to determine a region of interest
for the feature extraction algorithm and also to compute the
features’ probability of being stationary points. This will
allow to better deal with pedestrians, cars and other moving
objects in the scene. This probability will be used for the
resolution of the system using a weighted non-linear least
squares method in which every point in the system will be
weighted by its probability of being a stationary point.

The obvious application of the method is to provide a
means for autonomously navigating a vehicle or to provide
on-board driver assistance in navigation tasks. For this
purpose, fusion of GPS and vision data will be accomplished.
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