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Abstract This paper presents a comparative study of
different lateral controllers applied to the autonomous
steering of automobiles. The nonlinear nature of ve-
hicle dynamics makes it a challenging problem in
the Intelligent Transportation Systems (ITS) field, as
long as a stable, accurate controller is compulsorily
needed in order to ensure safety during navigation.
The problem has been tackled under two different ap-
proaches. The first one is based on chained systems the-
ory, while the second controller relies on fuzzy logic.
A comparative analysis has been carried out based
on the results achieved in practical trials. Real tests
were conducted using a DGPS-driven electric Citroen
Berlingo in a private test circuit located at the Indus-
trial Automation Institute of the CSIC (Arganda del
Rey, Madrid). The final results and conclusions are
presented.
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1 Introduction

Lateral automatic driving has become a challenging
topic in the ITS Research field in the last years. Basi-
cally, this problem can be stated as that of determining
an appropriate control law for commanding the vehicle
steering wheel. Several research groups have already
demonstrated impressive results on this control task,
especially in the ITS field [3, 4, 9, 11, 20]. Many steer-
ing control laws are designed in the literature [1, 2, 5,
12, 13, 16], comprising both traditional and artificial
intelligence approaches. A comparative study of dif-
ferent lateral control strategies for road vehicles can be
found in [14, 19], where a linearized model of the lateral
vehicle dynamics is used for controller design based on
the fact that it is possible to decouple the longitudinal
and lateral dynamics.

The nonlinear nature of vehicles dynamics makes
it hard to design an a priori stable controller follow-
ing the schemes provided by classical control theory.
This is particularly critical for the case of automobiles
as they run at high speed. Any control algorithm de-
signed to autonomously guide a road vehicle must be
stable and highly accurate in order to ensure safety dur-
ing navigation. Otherwise small instabilities (i.e., lat-
eral error overshoot greater than 1.5 m) would derive
in lane departure in real driving conditions. As a means
to tackle the challenging problem of autonomous steer-
ing of automobiles we undertook the design of the ve-
hicle controller under two different approaches. First,
a simplified nonlinear lateral kinematic controller was
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developed based on chained systems theory. Then, a
fuzzy logic based controller was designed and tuned
to the same problem. This double strategy aimed at
gaining better understanding into the comparative per-
formance of classical and fuzzy theories applied to a
real critical problem, namely automobiles lateral steer-
ing, where the nonlinear nature of vehicle dynamics
and kinematics becomes the main issue.

Both lateral steering strategies were implemented
on Babieca, an Electric Citroen Berlingo, using DGPS
(Differential GPS) as the main sensor to measure the
position of the vehicle in the road. Real tests were car-
ried out on a private circuit emulating an urban quar-
ter, composed of streets, intersections (crossroads), and
roundabouts, located at the Industrial Automation Insti-
tute (IAI) in Arganda del Rey, Madrid. Two live demon-
strations were carried out at International Conferences
exhibiting the system capacities on autonomous steer-
ing. The first one was performed during the IEEE In-
telligent Vehicles Symposium 2002 in a private circuit
located at Satory (Versailles), France. The second took
place during the ITS World Congress 2003 in Madrid.

The work described in this paper is organised in the
following sections: Section 2 contains a description of
both the nonlinear lateral controller based on chained
systems theory as well as the fuzzy logic based lateral
controller. In Section 3 the comparative results of both
systems are presented, while a discussion including
conclusions and future work is provided in Section 4.

2 Lateral control

Considering the case of an autonomous vehicle driving
along some reference trajectory, the main goal of the
lateral control module is to ensure proper tracking of
the reference trajectory by correctly keeping the vehicle
in the center of the lane with the appropriate orienta-
tion (parallel to the desired trajectory). This constraint
can be generalized as the minimization of the vehicle
lateral and orientation errors (de, θe) with respect to the
reference trajectory, at a control point, as illustrated in
Fig. 1. To solve this controllability problem and de-
sign a stable lateral controller, a model describing the
behavior of de and θe is needed.

2.1 Kinematics model

The kinematics model of the vehicle is the starting
point to model the kinematics of the lateral and orien-
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Fig. 1 Lateral and orientation errors at the control point

tation errors. The vehicle model is approximated by the
popular Ackerman (or bicycle) model [1], assuming
that the two front wheels turn slightly differentially and
thus, the instantaneous rotation center can be purely
computed by kinematic means. Let κ(t) denote the in-
stantaneous curvature of the trajectory described by the
vehicle.

κ(t) = 1

R(t)
= tan φ(t)

L
= dθ (t)

ds
(1)

where R is the radius of curvature, L is the wheelbase,
φ is the steering angle, and θ stands for the vehicle
orientation in a global frame of coordinates. The
temporal variation of θ is computed in Equation (2) as
a function of vehicle velocity v.

θ̇ = dθ

dt
= dθ

ds
· ds

dt
= κ(t) · v(t) = tan φ(t)

L
· v(t)

(2)

Let φ and v be the variables of the vehicle control
input space, representing the steering wheel turning
angle and vehicle velocity, respectively. On the other
hand, the vehicle configuration space is composed of
the global position and orientation variables, described
by (x , y, θ ), under the flat terrain assumption. Mapping
from the control input space to the configuration space
can be solved by using the popular Fresnel equations,
which are also the so-called dead reckoning equations
typically used in inertial navigation. Equation (3) shows
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the kinematics of (x , y, θ ).

ẋ = dx
dt

= v(t) cos θ (t)

ẏ = dy
dt

= v(t) sin θ (t) (3)

θ̇ = dθ

dt
= v(t)

tan φ(t)
L

where v(t) represents the velocity of the midpoint of
the vehicle rear axle, denoted as control point. Global
information about the position and orientation of the
vehicle (x , y, θ ) is then transformed so as to develop a
model that describes the open-loop lateral and orienta-
tion error kinematics. As observed in Fig. 1, the lateral
error de is defined as the distance between the vehicle
control point and the closest point along the vehicle
desired trajectory, described by coordinates (xd , yd ).
This implies that de is perpendicular to the tangent to
the reference trajectory at (xd , yd ). The scope of the
tangent at (xd , yd ) is denoted by θd , and represents the
desired orientation at that point. Based on this, de and
θe suffice to precisely characterize the location error be-
tween the vehicle and some given reference trajectory,
as described in Equations (4) and (5).

de = −(x − xd ) · sin θd + (y − yd ) · cos θd (4)

θe = θ − θd (5)

Computing the derivative of de with respect to time
yields Equation (6), while the time derivative of θe

is shown in Equation (7). Thus, the complete nonlin-
ear kinematics model for de and θe is formulated in
Equation (8).

ḋe = −ẋ sin θd + ẏ cos θd

= −V cos θ sin θd + V sin θ cos θd

= V sin(θ − θd ) = V sin θe (6)

θ̇e = d(θ − θd )

dt
= θ̇ − θ̇d = θ̇ (7)

ḋe = V sin θe

θ̇e = V
L

tan φ (8)

The solution to the lateral control of a road vehicle
has been tackled under two different approaches. On

the one hand, a nonlinear lateral controller has been
designed based on chained systems theory. On the other
hand, another controller has been designed based on
fuzzy logic. The description of both systems is provided
in the following sections.

2.2 Nonlinear control law

The control objective is to ensure that the vehicle will
correctly track the reference trajectory. For this pur-
pose, both the lateral error de and the orientation error
θe must be minimized. A fuzzy velocity controller is
used in order to keep the vehicle velocity at a given ref-
erence value. The velocity profile is a priori designed
depending on the mission that the vehicle has to exe-
cute. Thus, the reference velocity is selected among a
set of constant values depending on the trajectory char-
acteristics. According to the selected profile, and due
to the action of the velocity controller, the vehicle ve-
locity v can be assumed to be constant during a given
trajectory despite the fact that significant acceleration
or deceleration may occur in practice. Additionally, the
constant velocity assumption helps simplify the con-
troller design stage. The design of the control law is
based on general results in the so-called chained sys-
tems theory. An excellent example on this topic can be
found in [7]. Nevertheless, these results are extended
and generalized in this paper so as to provide a stable
nonlinear control law for steering of Ackerman-like ve-
hicles based on local errors. From the control point of
view, the use of the popular tangent linearization ap-
proach is avoided as it is only locally valid around the
configuration chosen to perform the linearization, and
thus, the initial conditions may be far away from the
reference trajectory. On the contrary, some state and
control variables changes are posed in order to convert
the nonlinear system described in Equation (8) into a
linear one, without any approximation (exact lineariza-
tion approach). Nevertheless, due to the impossibility
of exactly linearizing systems describing mobile robots
dynamics, these nonlinear systems can be converted in
almost linear ones, termed as chained form. The use
of the chained form permits to design a control law
using linear systems theory to a high extent. In partic-
ular, the nonlinear model for de and θe (Equation (8))
can be transformed into chained form using the state
diffeomorphism and change of control variables, as in
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Equation (9).

Y =
[

y1

y2

]
= �(X ) =

[
de

tan θe

]

W =
[

w1

w2

]
= ϒ(U ) =

⎡⎣ v cos θe

v tan φ

L cos2 θe

⎤⎦ (9)

These transformations are invertible whenever the
vehicle speed v is different from zero, and the ori-
entation error θe is different from π

2 . This implies
that the singularities of the transformations can be
avoided by asuring that the vehicle moves (v > 0) and
that its orientation error is maintained under 90 de-
grees (the vehicle orientation must not be perpendicu-
lar to the reference trajectory). These conditions are
reasonably simple to meet in practice. From Equa-
tion (9) the vehicle model can be rewritten as in
Equation (10), considering y1 and y2 as the new state
variables.

ẏ1 = ḋe = v sin θe = w1 y2

ẏ2 = d(tan θe)

dt
= 1

cos2 θe
· θ̇e = v tan φ

L cos2 θe
= w2 (10)

In order to get a velocity independent control law, the
time derivative is replaced by a derivation with respect
to ς , the abscissa along the tangent to the reference tra-
jectory as graphically depicted in Fig. 2. Analytically,
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Fig. 2 Graphical description of ς

ς is computed as the integral of velocity vς , measured
along axis ς .

ς =
∫

vςdt =
∫

v cos θedt ⇒ ς̇ = dς

dt

= v cos θe = w1 (11)

The time derivative of the state variables y1 and y2

is expressed as a function of ς in Equation (12).

ẏ1 = dy1

dt
= dy1

dς
· dς

dt
= y′

1 · ς̇

(12)

ẏ2 = dy2

dt
= dy2

dς
· dς

dt
= y′

2 · ς̇

where y′
1 and y′

2 stand for the derivative of y1 and y2

with respect to ς . Solving for y′
1 and y′

2 yields Equation
(13).

y′
1 = ẏ1

ς̇
= v sin θe

v cos θe
= tan θe = y2

y′
2 = ẏ2

ς̇
= v tan φ

L cos2 θev cos θe
= tan φ

L cos3 θe
= w2

w1
= w3

(13)

As observed in the previous equation, the trans-
formed system is linear and thus, state variables y1 and
y2 can be regulated to zero (so as to yield de = de,ref = 0
and θe = θe,ref = 0) by using the control low proposed
in Equation (14).

w3 = −Kd y2 − K p y1 (Kd , K p) ∈ �+2 (14)

Using Equations (13) and (14) and solving for vari-
able y1 yields Equation (15), where the dynamic be-
havior of y1 with respect to ς is proved to be linear.

y′′
1 + Kd y′

1 + K p y1 = 0 (15)

Under the assumption of positive values of constants
Kd and K p, variable y1 tends to zero as long as variable
ς grows. In fact, variable y1 has a second-order linear
dynamic behavior dominated by two poles with nega-
tive real components. According to this, y1 tends to zero
as the independent variable (ς in this case, not time)
tends to infinite. This statement ensures that de tends to
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zero as ς tends to infinite, as dictated by Equation (9)
(y1 = de). From Equation (13), if y1 is zero, then y2 is
also zero (y2 = y′

1). Likewise, if y2 is zero then θe is zero
from Equation (9) (y2 = tan θe). Thus, both variables,
y1 and y2 tend to zero as variable ς grows. The previous
statement is analytically expressed in Equation (16).

lim
ς→∞ de = lim

ς→∞ θe = 0 (16)

Accordingly, variable ς must always grow so as to
ensure that both de and θe tend to zero. This condition is
met whenever v > 0 and −π/2 < θe < π/2. In other
words, the vehicle must continuously move forward
and the absolute value of its orientation error should be
below π/2 in order to guarantee proper trajectory track-
ing. Thus, the non linear control law is finally derived
from Equations (13) and (14).

φ = arctan[−L cos3 θe · (Kd tan θe + K pde)] (17)

The control law is then modified by a sigmoidal
function as shown in Equation (18), to account for phys-
ical limitations in the vehicle wheels turning angle and
prevent from actuator saturation. On the other hand, the
use of sigmoidal functions preserves the system stabil-
ity [10].

φ = arctan

[
−K L cos3 θe · 1 − exp−K (Kd tan θe+K pde)

1+ exp−K (Kd tan θe+K pde)

]
(18)

The control law is saturated to φmax by properly tun-
ing parameter K . The stability of the saturated system
is ensured as demonstrated in [15, 18]. Thus, the maxi-
mum value of Equation (18) isφmax = ± arctan(−K L).
Therefore, K is chosen to ensure that φmax = ±π

6 rad
(physical limitation of the vehicle), given the wheelbase
L = 2.69 m, yielding a practical value K = 0.2146.

K = tan π
6

L
(19)

From observation of Equation (15), the dynamic re-
sponse of variable y1 can be considered to be a second-
order linear one. In practice, it is not indeed linear due to
the sigmoidal function used to saturate the control law,
although it can be reasonably approximated as such.
Thus, an analogy between constants Kd , K p, and the
parameters of a second-order linear system ξ (damping

coefficient) and ωn (natural frequency) can be estab-
lished, yielding Equation (20).

ωn = √
K p

ξ = Kd

2
√

K p
(20)

Likewise, system overshoot Mp and settling distance
ds (given that the system error dynamics is described as
a function of space variable ς , not time) can be obtained
from Equation (21).

Mp = exp
−ξπ√
1−ξ2

ds|2% = 4

ξωn
(21)

The design of constants Kd and K p is undertaken
considering that the system overshoot must not exceed
10% of the step input, and that the settling distance
should be below some given threshold. Thus, for a typ-
ical settling time ts = 20 s, and given a vehicle velocity
v, the proper settling distance can be computed as in
Equation (22).

ds = ts · v = 20v (22)

The value of Kd is derived from Equations (20)
and (21) yielding the velocity dependant expression
in Equation (23).

Kd = 8

ds
= 0.4

v
(23)

Likewise, dumping coefficient ξ is derived from
Equations (20) and (21), as shown in Equation (24).

ξ =
√

1[
π

ln 0.1

]2 + 1
= Kd

2
√

K p
= 4

ds
√

K p
(24)

Finally, K p is deduced from the previous equation,
yielding Equation (25).

K p =
[

6.766

ds

]2

=
[

0.3383

v

]2

(25)

The dependence of K p and Kd on vehicle veloc-
ity v permits to ensure proper dynamic response. In
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particular, vehicle turning angle will be smooth at high
speeds, therefore avoiding possible oscillations due to
physical constraints in steering dynamics.

2.3 Fuzzy control law

Due to the impossibility of exactly linearizing systems
that describe mobile robots dynamics, in this case, a car,
two solutions appear in order to solve the control law
design problem. The first of all is the transformation
of the nonlinear system in a set of linear systems and
deal with them, as described in Section 2.2. The second
solution is to use Artificial Intelligence control meth-
ods that overcome the nonlinearity limitations of the
classical control methods and base their performance
in the human knowledge and experience. The latter is
the solution we are presenting here. In our case, we
have added to the system an alternative AI-based lateral
controller, using fuzzy logic, which is a widely studied
subject with a well-known use as control method, since
the experiments of Sugeno at late 80s [21]. The main
feature of this kind of control is that it does not try to
model the system, the steering of a vehicle, rather, it
tries to model the management of the system, this is,
the human driver actions. This makes this method very
useful for treating uncertainty. In a fuzzy system, we do
not work with the crisp values of the elements to con-
trol, instead we use fuzzy or linguistic values. These
values indicate the degree of truth that a variable of the
process has in any moment and depending on it, some
control actions will be taken. These control actions, are
caused by the inference of a set of linguistic fuzzy rules
with the pattern antecedent implies consequent, where
the antecedents are the linguistic variables for the input
values and the consequents are the control actions to be
taken in order to control the system [22]. For example,
in the case of a speed regulator, the variable to be con-
trolled may be the speed error from a reference speed,
and some simple rules as follows.

if speederror negative then throttle stepon
if speederror positive then throttle stepoff

where the control action is to stepon or stepoff the throt-
tle pedal depending on the car going slower or faster
than the reference [23]. It does not mean that there is
a rule simplification. On the contrary, this rule implies
that the output fuzzy variable throttle has two asso-
ciated linguistic labels called stepon and stepoff with
their membership functions represented as singletons.

The output of the inference of the rules represents the
resulting degree of truth of the consequent of each
rule depending on corresponding the antecedent. Then
each rule will generate a degree of truth for the output
fuzzy variable throttle. Once finished the inference of
all rules, the defuzzyfication operation is executed. In
our case, we use the center of mass method to obtain the
crisp value of the fuzzy inference. The activation weight
of a rule represents its contribution to the global con-
trol action (calculated as the minimal degree of current
crisp input membership value of its respective fuzzy
partitions), which relates the different values of the in-
ference of each rule. Accordingly, it can be stated that
there are not only two different throttle positions, but
the throttle output fuzzy variable has been modeled
with two linguistic labels.

The definition of the fuzzy variables includes associ-
ated membership functions Â that contain the represen-
tation of the degree of truth for the determined variable
range. The fuzzy control works executing fuzzy control
iterations sequentially. It is initially necessary to trans-
form the crisp values of the control variables (given by
the process sensors) into fuzzy linguistic ones. This is
called fuzzyfication. Once the input values are fuzzy-
fied, the inference rules are executed, obtaining the de-
gree of truth to be applied to the control action. Then,
this degree must be defuzzyfied in order to be trans-
formed again in crisp values that can be applied to
the actuators to execute the control. In order to design
the fuzzy control system for automatically control the
steering wheel of a vehicle, we are going to use the
same parameters defined in the classical control de-
scribed in 2.2, but we will manage them in a different
way. The input variables to be considered will be the
lateral error (de) and the orientation error (θe) that must
be minimized too. The output variable will be the steer-
ing turning signal (φ) that must be sent to the steering
wheel controlling motor in order to minimize the input
errors. We will also consider two fuzzy contexts that
will execute depending on the driving circumstances:
curve driving mode and straight driving mode. As in
humans drivers, the driving error appreciation slightly
varies depending on the road situation. This will be re-
flected in the fuzzy variable design. The control actions
will also be the same (e.g. turn the steering wheel to the
right when there is a trajectory deviation to the left) in
any context. Only varies the magnitude of the actions,
not the actions themselves.ext, we are going to define
the three stages of the steering fuzzy controller.
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2.3.1 Fuzzyfication

The fuzzyfication stage consists on the transformation
of the input crisp variables into linguistic variables that
will be used as input data for a fuzzy controller. A lin-
guistic label is composed by a set of linguistic labels
in which the variable range is divided. Each label has
associated a membership function that represents the
degree of truth of this label along the range of the vari-
able. In our case, the automatic steering control, we
use two fuzzy variables, the lateral and the angular er-
rors. When a human drives, the steering management
basically consists on correcting the errors on the tra-
jectory, when the car deviates to the left or to the right.
If we take the human experience as reference, we can
define two linguistic labels for each input variable: left
and right, depending on the trajectory deviation occur-
ring to the left or to the right of the reference route.
Each one of this linguistic labels has an associated a
membership function, as shown in Fig. 3. In this figure
we can appreciate the two driving contexts defined, for
curve and straight line driving. (a) and (b) represent
the typical driver appreciation when we drive along a
straight road. The gradients of the shape of de and θe

are very high. This means that a little trajectory devia-
tion will be considered as important error, similarly as
humans do, because we should circulate at high speeds
and any deviation may cause a lane depart. The defi-
nition of the de and θe membership functions for the
curve-driving context is shown in (c) and (d). In this
case, the gradient of the shape is lower than in straight

mode. The reason of this is that, similarly to human
driving, in curved roads the speed is lower and there
are inherent errors due the curvature of the path so, it
is not necessary to consider little deviations as impor-
tant errors. Once defined the labels and membership
functions for the fuzzy variables, we can transform the
crisp variables into fuzzy ones, comparing it to the cor-
responding membership functions and obtaining their
membership degree.

This definition of the lateral error membership func-
tion depends on the combined tuning of the member-
ship functions of all the variables. Lateral error de-
fined in a range of (−∞, −10, 0) means that the full
membership degree is obtained when the lateral er-
ror is lower than −10. This means that only in the
case of an extreme trajectory deviation, the lateral er-
ror may infer to the system the maximum weight. In
the cases with a higher error, the system output is a
combination of both lateral and angular errors which
increases the performance and sensitivity of the fuzzy
controller.

2.3.2 Fuzzy rules

The fuzzy rules relates the input variables with the
output ones in order to reflect the human behavior
in driving actions. In this case, only four rules are
necessary for modeling this behavior:

R1: IF θe Left THEN φ Right
R2: IF θe Right THEN φ Left

Fig. 3 Membership function definition for the fuzzy input variables
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R3: IF de Left THEN φ Right
R4: IF de Right THEN φ Left

Although the presented fuzzy rules set has only four
rules, in this paper we have tried to show the power of
the fuzzy controllers that, by using an extremely simple
set of rules and variables, can generate similar results
to those obtained by a nonlinear classical controller.
However, it is truth that as we increase the variable and
rule number softer behavior might appear. Concerning
the rapid changing orientation errors it can be stated
that they are caused by the low precision of the orienta-
tion calculation with GPS at low speeds (under 5 km/h).
This is other strong point of the developed fuzzy con-
trollers, as long as they may deal with imprecise data
generating good control actions.

The philosophy of these rules (Mamdani type [23])
is to correct the trajectory errors, lateral as well as an-
gular, when they appear, moving the steering wheel in
the opposite sense of the error. It is really a simple be-
havior as humans do. When a human drives, there are
some control layers, depending on the abstraction and
conscience level [25]. The travel planning and route fol-
lowing are parts of the high level control layer whose
subject is out of the focus of this paper. Low level con-
trol consists on maintaining the vehicle always into the
corresponding road lane. Fuzzy controller automates
this low level human driving task using the same infor-
mation and reasoning as humans do. The aim of the pre-
sented controllers is to maintain the vehicle always with
the minimum error from the reference trajectory. In a
normal road driving operation, several situations may
appear. This way, we have divided the automatic fuzzy
driving controllers in some independent fuzzy contexts
that fit to any of these situations. Straight driving, curve
driving or overtaking are the three fuzzy contexts we
have defined. It is truth that other rule and member-
ship function configurations may be applied but we
have chosen this one in order to prove this three behav-
iors independently as well as the relationships among
them. Any other configuration might be applied but the
results will be similar, as shown in the experiments sec-
tion. No different context appears in this case, because
the methods for correcting the errors are always the
same. It only varies the amount of the correction that
will directly depend on the input variables.

The fuzzy qualifiers number is a tricky topic in fuzzy
systems practical deployment as well as from the the-
oretical point of view. It is also a research topic from

the psychological science: Determining the minimum
qualifier number to define the possible states of a vari-
able is not a trivial issue. The most common method is
to try to find the minimum possible number of quali-
fiers that allow the control. In our case, the division in
fuzzy contexts allows to have very few qualifiers. If we
use only one context, we would augment the number
of contexts and rules, increasing the complexity of the
fuzzy controller. Then, the selection and definition of a
multicontext controller is a design decision in order to
simplify the system appearance. However, one-context
controllers have also been proved obtaining similar re-
sults but, this is out of the scope of this paper.

2.3.3 Defuzzyfication

Finally, the defuzzyfication process consists on trans-
forming the results of the inference of the rules into
crisp values that permit to be applied directly to the
mechanical elements of the car. In our case, we have
also defined the output variable (φ) as a singleton,
very useful in control tasks [24]. We use singletons be-
cause they are a good solution for control systems since
Sugeno [24] demonstrated the equivalence between this
singleton-type-II controllers and type-I, whose output
is defined with trapezoidal membership functions.

3 Implementation and results

Both control laws for autonomous steering described
in this paper were tested on the so-called Rocinante
prototype vehicle (an electric Citroen Berlingo). The
vehicle was modified to allow for automatic velocity
and steering control at a maximum speed of 90 km/h.
Babieca is equipped with a DGPS receiver to provide
lateral and orientation position of the ego-vehicle with
regard to the center of the lane, a Pentium PC, and a
set of electronic devices to provide actuation over the
accelerator and steering wheel, as well as to encode
the vehicle velocity and steering angle. The DGPS re-
ceiver is a Z-12 Real Time model by Ashtech that im-
plements the RTCM SC 104 V2.2 standard. Practical
experiments were conducted on a private circuit lo-
cated at the Industrial Automation Institute in Arganda
del Rey (Madrid). The circuit is composed of several
streets, intersections, and roundabout points, trying to
emulate an urban quarter. The control objective is to
achieve the reference error vector de,ref = 0, θe,ref = 0.
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This objective implies proper tracking of the road cur-
vature. Various practical trials were conducted so as to
test the validity of the two control laws (nonlinear and
fuzzy) for different initial conditions in real circum-
stances. During the tests, the reference vehicle velocity
is assumed to be kept constant by a velocity controller
developed in [8]. Constants Kd and K p were calculated
as a function of v using Equations (21) and (23). In the
experiments, a quasi-straight reference path was used
to autonomously guide the vehicle based on DGPS.
Figures 4 and 5 show the transient response of the ve-
hicle lateral and orientation errors for reference veloc-
ities in the range 7–25 and 7–40 km/h, respectively. In
both cases, the vehicle starts the run at an initial lateral
error of about 0.3 and 1 m, respectively, and an initial
orientation error in the range ±5◦. As can be clearly
appreciated, the steady-state response of the system
is satisfactory for both experiments. Thus, the lateral

error is bound to ±20 cm at low speeds and ±25 cm
at v = 40 km/h, while the absolute orientation error in
steady state remains below 1◦ in all cases. Just to give
an example on how the practical results conform to the
expected values as derived from the theoretical devel-
opment, let us consider the transient response of the ve-
hicle depicted in Fig. 5 for v = 7–40 km/h. Assuming
a theoretical maximum overshoot of Mp = 10% and a
settling time of ts = 20 s, the controller coefficients are
tuned to Kd = 0.072 and K p = 0.0037, according to
Equations (21) and (23). Nonetheless, from observation
of Fig. 4 the maximum overshoot obtained in practice
is almost 100% for the lateral error, while the settling
time takes some 20s. This is mainly due to the existence
of nonlinear actuator dynamics and latencies, not con-
sidered in the model. In spite of these slight differences
with regard to the theoretical expected values, the prac-
tical results exhibited in this section demonstrate that

Fig. 4 Transient response of the lateral and orientation error for v = 7–25 km/h using the nonlinear controller

Fig. 5 Transient response of the lateral and orientation error for v = 7–40 km/h using the nonlinear controller
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Fig. 6 Transient response of the lateral and orientation error for v = 7–25 km/h using the fuzzy controller

the nonlinear lateral control law developed in this work
still permits to safely steer the vehicle at operational ve-
locities. Next, the same experiment was repeated using
the fuzzy controller for a commanded velocity ranging
from v = 7–25 km/h. The result is depicted in Fig. 6.
As can be observed, the overshoot and settling time are
smaller than in the case of the nonlinear controller.

In a final trial, the same test was carried out under the
same conditions using both controllers in an attempt to
establish a comparison of performance. For that pur-
pose, the vehicle was started in the same position (a
marked one) in either case, with an initial lateral error
of 1 m and an initial orientation error of approximately
0 degrees. In both cases, the vehicle was provided with
a commanded velocity v = 20 km/h, leaving the con-
trol of the accelerator to the velocity controller in order
to mantain the reference velocity. The comparison is
graphically depicted in Fig. 7.

On the one hand, one can observe how the nonlinear
controller provides a response with a great overshoot in
the lateral error, while the orientation error response is

more stable, with almost no overshoot. Once the non-
linear controller succeeds in reaching null errors the
system remains stable, keeping the absolute values of
the lateral and orientation errors bounded to 10 cm and
2 degrees, respectively. On the other hand, the fuzzy
controller provides faster lateral response, exhibiting
minor overshoot and settling time. Nonetheless, there
is a second overshoot that does not occur in the case
of the nonlinear controller. Likewise, the fuzzy con-
troller provides less stable response concerning the ori-
entation error. Indeed, a transient overshoot takes place
with a maximum amplitude of 5 degrees. As a general
comment, it can be stated that the nonlinear controller
provides a slow but stable response in the lateral and
orientation error, while the fuzzy controller provides
fast response at the expense of a bit of oscillations in
steady state. In any case, the oscillations produced by
the fuzzy controller keep the vehicle within a limit that
makes autonomous guidance a tractable issue in prac-
tice. Conversely, the slow transient response produced
by the nonlinear controller puts the issue at risk when

Fig. 7 Comparison between nonlinear controller and fuzzy controller at v = 20 km/h
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it comes to high speed autonomous navigation, while
it remains stable and safe at low speed (25–40 mk/h).

Rocinante has run over hundreds of kilometers in
lots of successful autonomous missions carried out
along the test circuit located at the IAI, using both the
fuzzy and nonlinear control laws described in this pa-
per. Moreover, live demonstrations exhibiting the sys-
tem capacities on autonomous driving were carried out
during the IEEE Conference on Intelligent Vehicles
2002, in a private circuit located at Satory (Versailles),
France, as well as in the World ITS Congress that was
held in Madrid in 2003.

4 Conclusions

To conclude, the next key points should be remarked.� First of all, the nonlinear control law described in this
work has proved its analytical and empirical stability
for lateral driving of Automobiles. In fact, it has been
implemented on a real commercial vehicle slightly
modified so as to allow for autonomous operation,
and tested on two different private circuits.� The fuzzy controller has been proved to provide sta-
bility from the empirical point of view in hundred of
experiments.� Vehicle commanded actuation is taken into account
by considering the current velocity in the design of
the nonlinear controller coefficients. This permits to
provide the system with adaptive capability.� The fuzzy controller provides faster response than
the nonlinear controller.� The fuzzy controller is more appropriate for high
speed navigation, although it suffers from the lack of
adaptive capability.� A more ellaborated fuzzy rules set is considered
as a future work in order to implement nonlinear
fuzzy rules that provide even softer actuation at all
speeds.

A combination of the positive features of both con-
trollers, i.e. fast response, stability, and adaptability,
should be highly desirable for achieving a really ro-
bust and safe controller of a road vehicle. Indeed, our
current work focuses on the development of a combi-
nation of nonlinear adaptive theory and fuzzy systems
in an attempt to increase stability and comfortability
when driving at high speed, while avoiding ad-hoc non-
adaptive designs.

Acknowledgements This work has been supported by grants
DPI2002-04064-C05-04 from the Spanish Ministry of Education
and Science (Ministerio de Educación y Ciencia) and FOM2002-
002 from the Spanish Ministry of Public Works (Ministerio de
Fomento).

References

1. Ackermann, J., Sienel, W.: Robust control for automated
steering. In: Proceedings of the 1990 American Control Con-
ference, ACC90, San Diego, CA, pp. 795–800 (1990)

2. Ackermann, J., Guldner, J., Sienel, W., Steinhauser, R.,
Utkin, V.I.: Linear and nonlinear controller design for ro-
bust automatic steering. IEEE Trans. Control Syst. Technol.
3(1), (1995)

3. Naranjo, E., Garcı́a, R., de Pedro, T., González, C., Reviejo,
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