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Nonlinear Lateral Control of Vision Driven Autonomous Vehicles*
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Abstract: This paper presents the results of a lateral control strategy that has been applied to the problem of
steering an autonomous vehicle using vision. The lateral control law has been designed for any kind of car-like
vehicle presenting the Ackerman kinematic model, accounting for the vehicle velocity as a crucial parameter for
adapting the steering control response. This makes the control strategy suitable for either low or high speed ve-
hicles. The stability of the control law has been analytically proved and experimentally tested by autonomously
steering Babieca, a Citroen Berlingo prototype vehicle.
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1. Introduction

LATERAL automatic steering of autonomous car-like
vehicles has become an apparent field of application

for robotics researchers. Basically, this problem can be
stated as that of determining an appropriate control law
for commanding the vehicle steering angle. Many steer-
ing control designs are already documented in the litera-
ture [1], [3], [6]. A comparative study on various lateral
control strategies for autonomous vehicles can be found in
[11], where a linearized model of the lateral vehicle dy-
namics is used for controller design based on the fact that it
is possible to decouple the longitudinal and lateral dynam-
ics. On the contrary, a simplified nonlinear lateral kine-
matic model is proposed in this work to ease the design
and implementation of a stable lateral control law for au-
tonomous steering of car-like vehicles. The lateral control
strategy was implemented on Babieca, an electric Citroen
Berlingo experimental prototype, using vision as the main
sensor to measure the position of the vehicle on the road.
Real tests were carried out on a private circuit, emulating
an urban quarter, composed of streets, intersections (cross-
roads), and roundabouts, located at the Industrial Automa-
tion Institute (IAI) in Arganda del Rey, Madrid. Addition-
ally, a live demonstration exhibiting the system capacities
on autonomous steering was carried out during the IEEE
Conference on Intelligent Vehicles 2002, in a private cir-
cuit located at Satory (Versailles), France.

2. Lateral Control

Considering the case of an autonomous vehicle driving
along some reference trajectory, the main goal of the lateral
control module is to ensure proper tracking of the reference
trajectory by correctly keeping the vehicle in the center of
the lane with the appropriate orientation (parallel to the de-
sired trajectory). This constraint can be generalized as the
minimization of the lateral and orientation errors of the ve-
hicle (de, θe) with respect to the reference trajectory, at a
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Fig. 1 Lateral and orientation errors at the look-ahead distance
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Fig. 2 Approximate kinematic model of the vehicle (Ackerman steering)

control point, as illustrated inFig. 1. To solve this con-
trollability problem and design a stable lateral controller,
a model describing the dynamic behavior ofde andθe is
needed.

2. 1 Kinematic model

The kinematic model of the vehicle is the starting point
to model the dynamics of the lateral and orientation errors.
The vehicle model is approximated by the popular Acker-
man (or bicycle) model [4] as depicted inFig. 2, assum-
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ing that the two front wheels turn slightly differentially and
thus, the instantaneous rotation center can be purely com-
puted by kinematic means. Letκ(t) denote the instanta-
neous curvature of the trajectory described by the vehicle:

κ(t) =
1

R(t)
=

tan φ(t)
L

=
dθ(t)
ds

(1)

whereR is the radius of curvature,L is the wheelbase,φ
is the steering angle, andθ stands for the vehicle orienta-
tion in a global frame of coordinates. The dynamics ofθ is
computed in Eq. (2) as a function of vehicle velocityv:

θ̇ =
dθ

dt
=

dθ

ds

ds

dt
= κ(t)v(t) =

tan φ(t)
L

v(t). (2)

Let φ andv be the variables of the vehicle control input
space. On the other hand, the vehicle configuration space is
composed of the global position and orientation variables,
described by (x, y, θ), under the flat terrain assumption.
Mapping from the control input space to the configuration
space can be solved by using the popular Fresnel equations,
which are also the so-called dead reckoning equations typ-
ically used in inertial navigation. Equation (3) shows the
dynamics of (x, y, θ):

ẋ =
dx

dt
= v(t) cos θ(t)

ẏ =
dy

dt
= v(t) sin θ(t) (3)

θ̇ =
dθ

dt
= v(t)

tan φ(t)
L

wherev(t) represents the velocity of the midpoint of the
rear axle of the vehicle, denoted as the control point.
Global information about the position and orientation of
the vehicle (x, y, θ) is then transformed so as to develop a
model that describes the open-loop lateral and orientation
error dynamics. As observed in Fig. 1, the lateral errorde

is defined as the distance between the vehicle control point
and the closest point along the vehicle desired trajectory,
described by coordinates(xd, yd). This implies thatde is
perpendicular to the tangent to the reference trajectory at
(xd, yd). The scope of the tangent at(xd, yd) is denoted
by θd and represents the desired orientation at that point.
Based on this,de andθe suffice to precisely characterize
the location error between the vehicle and some given ref-
erence trajectory, as described in Eqs. (4) and (5):

de = −(x − xd) sin θd + (y − yd) cos θd (4)

θe = θ − θd. (5)

Computing the derivative ofde with respect to time
yields Eq. (6), while the time derivative ofθe is shown in
Eq. (7):

ḋe = −ẋ sin θd + ẏ cos θd

= −V cos θ sin θd + V sin θ cos θd

= V sin(θ − θd)
= V sin θe (6)

θ̇e =
d(θ − θd)

dt
= θ̇ − θ̇d = θ̇. (7)

Thus, the complete nonlinear model forde andθe is formu-
lated in Eq. (8):

ḋe = V sin θe

θ̇e = V
L tan φ.

(8)

2. 2 Nonlinear control law

The control objective is to ensure that the vehicle will
correctly track the reference trajectory. For this purpose,
both the lateral errorde and the orientation errorθe must
be minimized. On the other hand, for simplicity, vehicle
velocity v will be assumed to be constant. The design
of the control law is based on general results of the so-
called chained systems theory. An excellent example on
this topic can be found in [5]. Nevertheless, these results
are extended and generalized in this paper so as to provide a
stable nonlinear control law for steering of Ackerman-like
vehicles, based on local errors. From the control point of
view, the use of the popular tangent linearization approach
is avoided as it is only valid locally around the configu-
ration chosen to perform the linearization, and thus, the
initial conditions may be far away from the reference tra-
jectory. On the contrary, some state and control variable
changes are posed in order to convert the nonlinear system
described in Eq. (8) into a linear one, without any approx-
imation (exact linearization approach). Nevertheless, due
to the impossibility of exactly linearizing the systems de-
scribing mobile robots dynamics, these nonlinear systems
are converted into almost linear ones, termed as chained
forms. The use of the chained form permits to design a
control law using linear systems theory to a higher extent.
In particular, the nonlinear model forde andθe (Eq. (8))
can be transformed into chained form using the state diffeo-
morphism and the change of control variables as in Eq. (9):

Y =
[
y1

y2

]
= Θ(X) =

[
de

tan θe

]

W =
[
w1

w2

]
= Υ(U) =


 v cos θe

v tan φ

L cos2 θe


 .

(9)

These transformations are invertible whenever the vehi-
cle speedv is different from zero and the orientation error
θe is different fromπ/2. This implies that the singularities
of the transformations can be avoided by assuring that the
vehicle moves (v > 0) and that its orientation error is main-
tained under 90 degrees (the vehicle orientation must not be
perpendicular to the reference trajectory). These conditions
are reasonably simple to meet in practice. From Eq. (9), the
vehicle model can be rewritten as in Eq. (10), considering
y1 andy2 as the new state variables:

ẏ1 = ḋe = v sin θe = w1y2

ẏ2 =
d(tan θe)

dt
=

1
cos2 θe

θ̇e =
v tan φ

L cos2 θe
= w2.

(10)

In order to get a velocity independent control law, the
time derivative is replaced by a derivation with respect to
ς, the abscissa along the tangent to the reference trajectory
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Fig. 3 Graphical description ofς

as graphically depicted inFig. 3. Analytically, ς is com-
puted as the integral of velocityvς , measured along axis
ς:

ς =
∫

vςdt =
∫

v cos θedt

⇒ ς̇ =
dς

dt
= v cos θe = w1. (11)

The time derivatives of the state variablesy1 andy2 are
expressed as functions ofς in Eq. (12):

ẏ1 =
dy1

dt
=

dy1

dς

dς

dt
= y′1 ς̇

ẏ2 =
dy2

dt
=

dy2

dς

dς

dt
= y′2 ς̇

(12)

wherey′1 andy′2 stand for the derivatives ofy1 andy2 with
respect toς. Solving fory′1 andy′2 yields Eq. (13):

y′1 =
ẏ1

ς̇
=

v sin θe

v cos θe
= tan θe = y2

y′2 =
ẏ2

ς̇
=

v tan φ

L cos2 θev cos θe
=

tan φ

L cos3 θe
=

w2

w1
= w3.

(13)

As observed in the previous equation, the transformed
system is linear and thus, state variablesy1 and y2 can
be regulated to zero (so as to yieldde = de,ref = 0 and
θe = θe,ref = 0) by using the control low proposed in
Eq. (14):

w3 = −Kdy2 − Kpy1, (Kd, Kp) ∈ �+2. (14)

Using Eqs. (13) and (14) and solving for variabley1

yields Eq. (15):

y′′1 + Kdy
′
1 + Kpy1 = 0 (15)

where the dynamic behavior ofy1 with respect toς is
proved to be linear.

Under the assumption of positive values for constants
Kd andKp, variabley1 tends to zero as long as variable
ς grows. In fact, variabley1 has a second order linear dy-
namic behaviour dominated by two poles with negative real
components. According to this,y1 tends to zero as the inde-
pendent variable (ς in this case, not time) tends to infinite.
This statement ensures thatde tends to zero asς tends to
infinite as dictated by Eq. (9) (y1 = de). From Eq. (13), if

y1 is zero, theny2 is also zero (y2 = y′1). Likewise, ify2 is
zero thenθe is zero from Eq. (9) (y2 = tan θe). Thus, both
variablesy1 andy2 tend to zero as variableς grows. The
previous statement is analytically expressed in Eq. (16):

lim
ς→∞ de = lim

ς→∞ θe = 0. (16)

Accordingly, variableς must always grow so as to en-
sure that bothde andθe tend to zero. This condition is met
wheneverv > 0 and−π/2 < θe < π/2. In other words,
the vehicle must continuously move forward and the ab-
solute value of its orientation error should be belowπ/2
in order to guarantee proper trajectory tracking. Thus, the
nonlinear control law is finally derived from Eqs. (13) and
(14) such that

φ = arctan
[−L cos3 θe(Kd tan θe + Kpde)

]
. (17)

The control law is then modified by a sigmoidal function
as shown in Eq. (18) to account for the physical limitations
in the vehicle wheels turning angle and prevent from actu-
ator saturation:

φ = arctan
[
−KL cos3 θe

1 − exp−K(Kd tan θe+Kpde)

1 + exp−K(Kd tan θe+Kpde)

]
(18)

On the other hand, the use of sigmoidal functions preserves
the system stability [10].

The control law is saturated toφmax by properly tun-
ing parameterK. Thus, the maximum value of Eq. (18)
is φmax = ± arctan(−KL). Therefore,K is chosen to
ensure thatφmax = ±π/6 rad (physical limitation of the
vehicle) given the wheelbaseL = 2.69 m, yielding a prac-
tical valueK = 0.2146:

K =
tan π

6

L
. (19)

From observation of Eq. (15), the dynamic response of
the variabley1 can be considered to be a second order lin-
ear one. In practice, it is not indeed linear due to the sig-
moidal function used to saturate the control law, although it
can be reasonably approximated as such. Thus, an analogy
between constantsKd, Kp and the parameters of a second
order linear system,ξ (damping coefficient) andωn (natu-
ral frequency), can be established, yielding Eq. (20):

ωn =
√

Kp

ξ =
Kd

2
√

Kp

.
(20)

Likewise, system overshootMp and settling distanceds

(given that the system error dynamics is described as a
function of space variableς, not time) can be obtained from
Eq. (21):

Mp = exp

−ξπ√
1 − ξ2

ds|2% =
4

ξωn
.

(21)

The design of constantsKd andKp is undertaken con-
sidering that the system overshoot must not exceed10%
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of the step input and the settling distance should be be-
low some given threshold. Thus, for a typical settling time
ts = 20 s and given a vehicle velocityv, the proper settling
distance can be computed as in Eq. (22):

ds = tsv = 20v. (22)

The value ofKd is derived from Eqs. (20) and (21) yield-
ing the velocity dependant expression in Eq. (23):

Kd =
8
ds

=
0.4
v

. (23)

Likewise, damping coefficientξ is derived from
Eqs. (20) and (21), as shown in Eq. (24):

ξ =

√
1(

π
ln 0.1

)2 + 1
=

Kd

2
√

Kp

=
4

ds

√
Kp

. (24)

Finally, Kp is deduced from the previous equation,
yielding Eq. (25):

Kp =
(

6.766
ds

)2

=
(

0.3383
v

)2

. (25)

The dependency ofKp andKd on the vehicle velocityv
permits to ensure proper dynamic response. In particular,
vehicle turning angle will be smooth at high speeds, there-
fore avoiding possible oscillations due to physical con-
straints in steering dynamics.

2. 3 Extension of the control law for high speeds

The nonlinear control law designed in the previous sec-
tion provides stable trajectory tracking for Ackerman-like
vehicles at moderate speeds (up to 10–20 km/h). This
makes the previous control law suitable for low speed ve-
hicles. However, experience demonstrates that tracking er-
rors and vehicle oscillation increase as velocity rises. Then
it becomes necessary to develop an extension of the nonlin-
ear control law for high speeds. The first step is to modify
the vehicle control point as depicted inFig. 4, in order to
anticipate the trajectory curvature at a given distanceLh

denoted by Look-ahead distance. The new lateral and ori-
entation errors are then computed as illustrated in the same
Fig. 4, yielding the results in Eq. (26):

de = −(x + Lh cos θ − xd) sin θd

+(y + Lh sin θd − yd) cos θd (26)

θe = θ − θd.

The choice ofLh is carried out based on the current vehi-
cle velocityv, as described in [3], yielding the parameters
shown in Eq. (27):

Lh(v) =




Lmin if v < vmin

vt1 if vmin ≤ v ≤ vmax

Lmax if v > vmax

(27)

wheret1 = 1.5 s is the look-ahead time,vmin = 25 km/h,
vmax = 75 km/h, Lmin = 10.41 m, andLmax = 31.25
m. Considering the same scheme followed in the previous
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Fig. 4 Lateral and orientation errors at the look-ahead distance

section, the new nonlinear model forde andθe is shown in
Eq. (28):

ḋe = v sin θe +
vLh

L
cos θe tan φ

(28)
θ̇e =

v tan φ

L
.

This model can be transformed into chained form using
the state diffeomorphism and change of control variables,
as in Eq. (29):

Y =
[
y1

y2

]
= Θ(X) =

[
de

tan θe

]

W =
[
w1

w2

]
= Υ(U) =



v cos θe +

vLh cos2 θe tan φ

L sin θe

v tanφ

L cos2 θe


 .

(29)

These transformations are invertible whenever the vehi-
cle speedv is different from zero and the orientation error
θe is different fromπ/2. From Eq. (28) the vehicle dy-
namic model can be rewritten as in Eq. (30), considering
y1 andy2 as the new state variables:

ẏ1 = ḋe = v sin θe +
vLh

L
cos θe tan φ = w1y2

(30)

ẏ2 =
d(tan θe)

dt
=

1
cos2 θe

θ̇e =
v tan φ

L cos2 θe
= w2.

In order to get a velocity independent control law, the
time derivative is replaced by a derivation with respect to
ς, a variable related to the abscissa along the tangent to the
reference trajectory. Analytically,ς is computed according
to the following expression:

ς =
∫ (

v cos θe +
vLh cos2 θe tanφ

L sin θe

)
dt. (31)

The time derivatives of the state variablesy1 andy2 are
expressed as functions ofς in Eq. (32):

ẏ1 =
dy1

dt
=

dy1

dς

dς

dt
= y′1 ς̇

(32)

ẏ2 =
dy2

dt
=

dy2

dς

dς

dt
= y′2 ς̇
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wherey′1 andy′2 stand for the derivatives ofy1 andy2 with
respect toς, respectively. Solving fory′1 and y′2 yields
Eq. (33):

y′1 = tan θe = y2
(33)

y′2 =
tanφ

L cos3 θe + Lh
cos4 θe tan φ

sin θe

= w3.

As in the previous section, the transformed system is lin-
ear and thus, state variablesy1 andy2 can be regulated to
zero (so as to yieldde = de,ref = 0 andθe = θe,ref = 0)
by using the new control low proposed in Eq. (34):

w3 = −Kdy2 − Kpy1 (Kd, Kp) ∈ �+2. (34)

Using Eqs. (33) and (34) and solving for variabley1

yields Eq. (35):

y′′1 + Kdy
′
1 + Kpy1 = 0 (35)

where the dynamic behaviour ofy1 with respect toς is
proved to be linear.

Once again, this implies that variablesy1(= de) and
y2(= tan θe) tend to zero as variableς grows. The pre-
vious statement is analytically expressed in Eq. (36):

lim
ς→∞ de = lim

ς→∞ θe = 0. (36)

Accordingly, variableς must always grow so as to en-
sure that bothde andθe tend to zero. This condition is met
wheneverv > 0 and−π/2 < θe < π/2. In other words,
the vehicle must continuously move forward and the ab-
solute value of its orientation error should be belowπ/2
in order to guarantee proper trajectory tracking. Basically,
stability conditions remain the same as in the previous sec-
tion. Thus, the new nonlinear control law for high speeds
is finally derived from Eqs. (33) and (34) such that

φ = arctan
[ −L sin θe cos3 θe(Kd tan θe + Kpde)
sin θe + Lh cos4 θe(Kd tan θe + Kpde)

]
.

(37)

The control law is then modified by a sigmoidal function
to account for the physical limitations in the vehicle wheels
turning angle and prevent from actuator saturation. From
this point onwards, tuning ofK, Kd, andKp follows the
same scheme derived in Eqs. (19), (23), and (25), respec-
tively.

3. Implementation and Results

The control law for autonomous steering described in
this paper was tested on the so-called Babieca prototype ve-
hicle (an electric Citroen Berlingo), as depicted inFig. 5.
The vehicle was modified to allow for automatic velocity
and steering control at a maximum speed of 90 km/h. Ba-
bieca is equipped with a color camera to provide lateral and
orientation position of the ego-vehicle with regard to the
center of the lane, a Pentium PC, and a set of electronic de-
vices to provide actuation over the accelerator and steering
wheel, as well as to encode the vehicle velocity and steer-
ing angle. The color camera provides standard PAL video

Fig. 5 Babieca prototype vehicle

signal at 25 Hz that is processed by a Meteor frame grab-
ber installed on a 120 MHz Pentium running the Real Time
Linux operating system. The complete navigation system,
implemented under Real Time Linux using a pre-emptive
scheduler, runs a vision-based lane tracking task for com-
puting the lateral and orientation errors.

Practical experiments were conducted on a private cir-
cuit located at the Industrial Automation Institute in Ar-
ganda del Rey (Madrid). The circuit is composed of sev-
eral streets, intersections, and roundabout points, trying to
emulate an urban quarter. Various practical trials were con-
ducted so as to test the validity of the control law for dif-
ferent initial conditions in real circumstances. During the
tests, the reference vehicle velocity is kept constant by a
velocity controller. CoefficientsKd and Kp were calcu-
lated as a function ofv using Eqs. (19) and (21).Figures
6 and7 show the transient response of the lateral and ori-
entation errors of the vehicle for reference velocities of 20
km/h and 50 km/h respectively. In both cases, the vehicle
starts the run at an initial lateral error of about 1m and an
initial orientation error in the range±5◦. For illustrative
purposes,Fig. 8 depicts the steering control provided by
the controller during the path tracking experiment carried
out at 50 km/h. As can be clearly appreciated, the steady
state response of the system is satisfactory for either exper-
iments. Thus, the lateral error is bound to±5 cm at low
speeds and±25 cm atv = 50 km/h, while the absolute ori-
entation error in steady state remains below1◦ in all cases.
Just to give an example on how the practical results con-
form to the expected values as derived from the theoretical
development, let’s consider the transient response of the
vehicle depicted in Fig. 6 forv = 20 km/h. Assuming a
theoretical maximum overshoot ofMp = 10% and a set-
tling time of ts = 20 s, the controller coefficients are tuned
to Kd = 0.072 andKp = 0.0037, according to Eqs. (19)
and (21). Nonetheless, from observation of Fig. 6 the max-
imum overshoot obtained in practice yields up to almost
25% for both the lateral and orientation errors, while the
settling time takes some 22 s. This is mainly due to the ex-
istence of nonlinear actuator dynamics and latencies, which
are not considered in the model. In spite of these slight dif-
ferences with regard to the theoretical expected values, the
practical results exhibited in this section demonstrate that
the nonlinear lateral control law developed in this work still
permits to safely steer the vehicle at operational velocities.

In a final trial, the results achieved in the second test for
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Fig. 6 Transient response of the lateral and orientation error forv = 20 km/h
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Fig. 7 Transient response of the lateral and orientation error forv = 50 km/h
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Fig. 8 Steering normalized response (between−1 and+1) for v = 50
km/h

v = 20 km/h are compared to human driving at the same
speed along the same trajectory. For this purpose a human
driver steered the vehicle, leaving the control of the accel-
erator to the velocity controller in order to keep a reference
speed of 20 km/h. The comparison is graphically depicted
in Fig. 9.

One can observe that the human driver takes less time
than the automatic controller to achieve lateral and orien-
tation errors close to zero. On the other hand, the steady

state errors are similar in both cases. Surprisingly, human
driving turns out in sporadic separations from the refer-
ence trajectory up to 40–50 cm, without incurring in dan-
gerous behavior, while the automatic controller keeps the
vehicle under lower lateral error values once stabilized.
Far from being an isolated fact, this circumstance was re-
peatedly observed in several practical experiments. As
the conclusion, the lateral control law developed in this
work can reasonably be considered to be valid for driv-
ing a car-like vehicle as precisely as a human can. Dur-
ing the last year, Babieca ran over hundreds of kilome-
ters in lots of successful autonomous missions carried out
along the test circuit using the nonlinear control law de-
scribed in this paper. A live demonstration exhibiting the
system capacities on autonomous driving using the non-
linear control law described in this paper was carried out
during the IEEE Conference on Intelligent Vehicles 2002,
in a private circuit located at Satory (Versailles), France. A
complete set of video files demonstrating the operational
performance of the control system in real test circuits (both
in Arganda del Rey and in Satory) can be retrieved from
ftp://www.depeca.uah.es/pub/vision.

4. Conclusions

To conclude, the next key points should be remarked.

• First of all, the nonlinear control law described in this
work has proved its empirical stability for lateral driv-
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Fig. 9 Comparison between automatic guidance and human driving atv = 20 km/h

ing of car-like vehicles. In fact, it has been imple-
mented on a real commercial vehicle slightly modified
so as to allow for autonomous operation and tested on
two different private circuits.

• A key advantage of the proposed method over other
nonlinear control techniques relies on its ability to pro-
vide a priori design of the system transient response by
proper fitting of constantsKd andKp, while providing
stable steady state response.

• Vehicle commanded actuation is taken into account by
considering the current velocity in the design of the
controller coefficients. This permits to adapt the steer-
ing angle as a function of driving conditions at not
high energy expense from the control signal point of
view.

• As demonstrated in practical trials, driving precision
achieved by the lateral control law is as accurate as
that of a human driver under normal conditions.

Nonetheless, in spite of having achieved some promising
results there is still much space for improvement concern-
ing vehicle stability and oscillations. Indeed, our current
work focuses on accounting for more precise vehicle mod-
els including actuator dynamics and nonlinearities. Ac-
cordingly, a new nonlinear control law should be developed
in an attempt to increase stability and comfortability when
driving at high speed.
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