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Abstract The paper describes the application of fuzzy techniques to analyze motion
problems in a mobile robot. The robot is equipped with ultrasound sensors used
for obstacle detection, but, in some cases, small obstacles are out of the range
of the sensors and can be dragged by the robot without being detected. Using
other variables as, measured velocity, undershoots of that velocity or changes in
battery voltage, a fuzzy system is able to determine those situations. The paper
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also analyzes the knowledge extraction process for the application using expert and
induced knowledge (from data collected during navigation tasks) in a cooperative
way, dealing with integration and simplification issues. The expert knowledge was
used for describing the robot behaviour in order to identify the variables that should
be used with the aim of detecting a collision of the vehicle against an undetected
obstacle, as well as proposing a suitable recovery action. Data collected in real
trials were used for inducing knowledge so as to complete and validate the expert
knowledge. Both kind of knowledge were integrated in the final fuzzy-based system.
The aim is to build up a knowledge base, which is interpretable and accurate at the
same time, and it is used by our fuzzy system in order to solve the motion problems
under consideration.

Key words accuracy-interpretability tradeoff · expert and induced knowledge ·
fuzzy logic · mobile robot

1 Introduction

It is widely admitted that autonomous robots, independent of their application,
must have efficient locomotion systems (low power consumption subsystems, highly
precise sensors, and large autonomy batteries are the essential key points), reliable
navigation and operational systems, and be able to work safely in their environment.
Thus, the technology required to realize robust, reliable and safe robots is given
considerable worldwide attention. As a consequence, the use of autonomous or semi-
autonomous robots in real applications is only possible when those robots exhibit a
certain level of intelligence, being capable of fulfilling the previous requirements.

Soft computing techniques have been considered as a way of adding that level of
intelligence from different points of view. The most common approach integrating
soft computing techniques in mobile robotics is that of application in navigation
[1, 13] and control [9, 22]. Some other approaches have considered these techniques
in sensor information processing (ultrasound, vision, . . . ) applied to localization
[6, 20], path following (corridors, walls) or obstacle avoidance [23]. In some cases
[10], the fuzzy techniques are introduced at different levels (control, path planning,
and obstacle avoidance).

The use of fuzzy techniques in diagnosis problems has been considered [19] but
mostly in the field of automation, without considering autonomous robots. It is
also possible to find similar problems in the automobile industry, where some fuzzy
approaches have been applied [21, 27]. When considering a semi-autonomous robot
working in real conditions, the integration of any kind of on-board fault diagnosis
system seems to be quite important. Such systems are needed to prevent abnormal
behaviour that would damage either the robot or the environment. In that sense, the
effort is quite reduced and only a few applications have been proposed considering
model based diagnosis, mostly using artificial neural networks, and centred on
the diagnosis of actuator problems. Duan [7] presents a recent survey on fault
detection and diagnosis for wheeled mobile robots. Under normal circumstances,
all sensorial capabilities on board the robot work properly and they provide valuable
and sufficient information about the environment so as to correctly perform obstacle
avoidance manoeuvres. Nonetheless, there are some obstacles (short and heavy ones,
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indeed) that are not detected by sensorial means. As a result, in case the robot finds
an obstacle of this type along its way, the vehicle will inevitably collide with the
obstacle, and the collision could damage the robot.

In order to focus on this problem, a general architecture for integrating fault
diagnosis and recovery modules into autonomous robots has been developed in the
framework of the European research project ADVOCATE II [28], whose main goal
is to increase the safety, the efficiency and the reliability of autonomous robotic
systems. As pieces of this architecture, different Artificial Intelligence based modules
devoted to diagnosis and recovery are developed. Neuro symbolic systems, Bayesian
belief networks, and Fuzzy systems are developed and integrated into the existing
control architecture of different robotic platforms.

The present paper describes one of the application problems of the ADVOCATE
II project: Diagnosis of collision of a ground robot with non detectable obstacles,
with the aim of providing recovery actions. The diagnosis module is made up of a
fuzzy system whose originality relies on its designing process: It is based on expert
knowledge, but integrates data sample information.

The strength of Fuzzy Inference Systems (FIS) relies on their twofold identity:
On the one hand they are able to handle linguistic concepts; on the other, they are
universal approximators able to perform non linear mapping between inputs and
outputs. These two characteristics have been used to design two kinds of FIS. The
first kind of FIS to appear focused on the ability of fuzzy logic to model natural
language [24]. These FIS contain fuzzy rules built from expert knowledge; they can
be seen as a fuzzy extension of expert systems. Sugeno [30] was one of the first to
propose self learning FIS and to open the way to a second kind of FIS, those designed
from data. As this field of fuzzy logic has become very popular, a lot of methods are
available [14].

In this framework we propose combining both the advantages of fuzzy inference
system. Their natural language ability is used to collect expert knowledge as qual-
itative linguistic rules. Their learning capability is used to induce rules from data.
Thanks to fuzzy logic interpretability, the human expert is able to check the validity
of the induced rules.

The proposed process is iterative, starting from expert knowledge; the knowledge
base is then enriched by induced rules with supervision of the expert. This process
involves various types of data management: Experimental data to train the system,
simulation data to test the rule base containing both types of rules and finally tests in
real world environment.

The use of different kinds of information (expert and induced knowledge from
data provided by the sensorial capabilities of the vehicle) leads us to think about
the JDL model [29, 32], a model focused on data fusion from several sensors and
information sources developed by the US Joint Directors of Laboratories (JDL).
This model, indeed, is not an architecture, but only a framework for data fusion
system. Although the topic of this work is not a data-fusion system, the proposed
system may represent a good example of implementation of higher levels of JDL
model. However, this work does not go into details about JDL framework for several
reasons: First, our fuzzy system is added and integrated into an existing control
architecture, on the other hand when a system with data fusion is constructed in
many cases the sensors and the communication structure are decided beforehand.
Second, the problem under analysis is solved in a high abstraction level through using
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a compact and easily understandable fuzzy knowledge base; on the contrary realistic
implementations of data fusion processing often are complex. Finally, data fusion is
useful if complementary types of sensors detect the same object, which depends on
the availability of a big number of sensors and on a correct association of data. Our
system let us increase the robustness, reliability, and efficiency of the robot, without
adding more sensors.

The structure of the paper is as follows. Section 2 briefly describes the diagnosis
problem considered in this work, related to motion problems produced when the
robot collides with non detected (due to a reduced height) obstacles. Then, Section 3
analyzes the knowledge extraction process considering only the expert knowledge.
After that, the introduction of induced knowledge is considered in Section 4.
This section includes data generation in order to test the suitability of the expert
knowledge base, rule induction to extract additional knowledge from data, and the
fusion of both rule bases. The section ends with a complete analysis of the obtained
results. Finally, Section 5 highlights the main conclusions.

2 Problem Description

The application described in this paper was developed in the framework of AD-
VOCATE II project. This project aims to define a generic software architecture
for intelligent diagnosis in autonomous robots. We concentrate on the application
related to the ground robot BART (Basic Agent for Robotic Tasks), a Pioneer2-
AT robot, see Fig. 1. The robot has the following configuration: Orinoco PCMCIA
Gold wireless card, Linux Red Hat 9.0 operating system, wireless tools for WIFI
managing, Orinoco driver patch, a 16 ultrasound sensor ring, and a SONY pan-tilt-
zoom camera.

BART is a ground vehicle commanded in teleoperated mode (a Remotely Op-
erated Vehicle) by a human operator from a base station through a wireless link.
The vehicle is intended to perform surveillance tasks after hours in a large building
composed of corridors, halls, offices, laboratories, etc.

Fig. 1 Basic Agent for
Robotic Tasks (BART)
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The overall approach of the project envisages different motion problems to be
detected. The problems considered in the case of BART are: Vehicle trapped, limited
capability of motion, or actuator blocked (tangled).

A deep analysis and understanding of the problem to be solved can only be
achieved if a detailed description of the vehicle dynamics and its interaction with
the environment is carried out. The model for the AGV (Autonomous Ground
Vehicle) is a classical and simple one in the ground robotics domain. The AGV
has four driving wheels, two at each side of the vehicle mechanically connected and
constrained to move at the same velocity. Thus, the robot presents a differential
kinematic model where in-place rotation is feasible. Concerning the nomenclature
of the variables involved in the robot kinematic model, v stands for the vehicle linear
velocity, and � represents the rotational or angular velocity. According to this, the
commanded velocities for the left and right wheels of the vehicle, ωlef tcmd and ωrightcmd

(in rad/s), can be easily calculated based on the commanded linear and rotational
velocities, Vcmd and �cmd, as shown in Eq. 1.

ωrightcmd = Vcmd

R
+ �cmd L

2R

ωlef tcmd = Vcmd

R
− �cmd L

2R
(1)

where L stands for the inter-wheels distance (vehicle width) and R is the wheel
radius. The commanded velocities Vcmd and �cmd, are the inputs to the system
while the resulting velocities Vres and �res, constitute the outputs and can be finally
reconstructed by inverse kinematic using Eq. 2.

Vres = R
2

(ωrightres + ωlef tres)

�res = R
L

(ωrightres − ωlef tres) (2)

where ωlef tres and ωrightres stand for the resulting angular velocities of the left and
right wheel respectively. There exists a small time delay td between the issuing of
the commanded angular velocities of the wheels (ωlef tcmd, ωrightcmd) by the active task
(after kinematic conversion from Vcmd, �cmd) and their real application to the system.
This time delay must necessarily be considered, especially for simulation purposes,
as it has a non negligible effect on the overall system dynamics. The low level
velocity controller is implemented by a separate PI (Proportional-Integral) controller
providing the input control voltage for each wheel pair motor (Vcontrol,lef t, Vcontrol,right).
The coefficients of the PI controllers are empirically tuned. On the other hand,
a Kalman filter is utilised for filtering the measured velocities of each wheel pair
ωlef tmeas and ωrightmeas so as to provide the quasi noise free estimations, ωlef tres and
ωrightres, that serve to compute Vres and �res by inverse kinematics as previously
mentioned.

The paper describes a diagnosis system whose objective is to provide, when the
vehicle piloting module generates and sends an alarm, one of the diagnoses described
below. This alarm is provided whenever the vehicle piloting module1 detects some

1The vehicle piloting module is one of the elements of the ADVOCATE II architecture.
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disturbances in the measurements that could be related to a collision not detected by
the ultrasound array. Alarms are produced after any potential faulty situation, and
are based on a low level analysis. So, diagnosis modules deploy a deeper analysis to
disregard false alarms or to determine the specific problem that occurred. Several
diagnosis modules are integrated in the system, but this paper concentrates on only
one of them.

To build up this diagnosis system we choose the fuzzy logic formalism [33] for its
well known ability for linguistic concept modelling. The fuzzy rule expression is close
to expert natural language, while, being universal approximators, fuzzy inference
systems can also be used for knowledge induction processes.

The potential diagnoses considered by the system are:

• Normal: It means that a false alarm has been received, as no real collision has
occurred.

• Vehicle_drags_obstacle: The vehicle has collided against an obstacle not heavy
enough to block vehicle movement. Thus, after a transient interval the vehicle
controller regains the velocity commanded and keeps on moving by dragging the
obstacle on its way.

• Vehicle_stalled: In this case the obstacle is heavy enough to impede the vehicle
from moving. The vehicle, stopped as a result of the collision, gets trapped by the
obstacle.

• Test_needed:2 It may happen that no accurate diagnosis can be issued based
on the available information. In this case, a test is recommended in order to
gather further data so as to launch a more precise diagnosis. The tests are mainly
oriented to discriminating whether the vehicle is moving or not. Based on this,
slippery situations on the vehicle wheels can be easily deduced. In most of the
cases, the test involves additional manoeuvres or measurements dedicated to
diagnosis, requiring the robot mission postponement. Consequently, tests will
only be considered if primary data are not enough for accurate diagnosis.

The problem under consideration in this paper requires the integration of both,
expert and induced knowledge, since none of these sources of information seems to
offer a complete view of the problem. These two approaches, expert and data driven
knowledge, will be considered as complementary sources of information prioritizing
expert knowledge.

Once diagnosis is made, if and only if it is a critical diagnosis, i.e. it corresponds to
Vehicle_stalled or Vehicle_drags_obstacle, the system will provide a recovery action
so as to rid the vehicle of the obstacle and resume the mission. Three situations are
analyzed:

1. Liberate_Left: A liberation manoeuvre is started, if feasible (there is enough
space on the left in the surrounding area), by moving BART backward, then
slightly to the left, until the vehicle can regain the intended track and resume the
mission.

2It is important to notice that Test Needed is not an output of the inference system, it is a post
processing output produced when inferred values for several diagnoses are very similar. By default,
Test Needed is not activated.
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2. Liberate_Right: In this case the same liberation manoeuvre is made on the right
side.

3. Go_Back: When there is not enough space in the surroundings for the vehicle to
avoid the obstacle and proceed the mission. For example, the robot is moving in
a narrow corridor.

BART is able to determine the state of the environment according to information
provided by the ultrasound array. Thus, depending on the free space in the place
(corridor, hall, office, . . . ), the suitable recovery action is achieved. Nevertheless, the
implementation is not detailed in this paper where the main topic deals with collision
diagnosis. Although the diagnosis system developed in this work is ideal to be applied
indoors, it can also be used in outdoor environments whenever the terrain is not
uneven.

3 Expert Knowledge Extraction

Usually, knowledge based systems are considered when there is a difficulty in
describing or analyzing a model of the problem with an appropriate accuracy, or
when the uncertainty of the process advises against such an approach. However,
the use of a model (even one that is approximate or partial) may provide us with a
qualitative view of the problem, and can serve as a method to extract such qualitative
knowledge by appropriate interaction with the expert. In most cases that will not be
enough to solve the problem but, it will provide us with quite useful information to
determine involved variables, as well as qualitative behaviour rules.

The expert knowledge extraction process can be kept at a “high” abstraction level.
The process can be limited to the expert domain, without considering implementa-
tion details which are not part of expert knowledge. For example the expert can only
indicate the number of linguistic terms he needs for a given variable without defining
the corresponding fuzzy sets.

The overall approach to knowledge extraction is that defined in [17]. First of all,
we will consider the qualitative modelling of the behaviour of the robot upon obstacle
collision. This covers the first step of the expert knowledge extraction, according to
what we have stated in the previous paragraph.

3.1 System Behaviour Upon Obstacle Collision

The interaction between the vehicle and the colliding obstacle is of particular
importance in order to appropriately identify and characterize the different vari-
ables involved in the process, and the expected global behaviour of the system.
On the other hand, diagnosis on motion problems should be performed based on
the observation of commanded and measured variables such as vehicle linear and
angular velocities, battery voltage, etc, making the task of diagnosis quite complex.
As described in the following paragraphs, the global system dynamics are highly non
linear and difficult to model with accuracy.

Before starting the description of the system behaviour, it is mandatory to
summarize the nomenclature that relates the dynamics of the system and the
knowledge of the fuzzy system. The variables involved in the vehicle dynamics that
will also be considered in the knowledge base, are basically those related to velocity
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(commanded or measured, and linear or angular) as well as those derived from these
variables. The list and the correspondence are provided below, where the name
relates to the variable used by the fuzzy system and the symbol to the variable of
the analytical study:

• Measured_linear_velocity corresponds to vres.
• Commanded_linear_velocity corresponds to vcmd.
• Measured_angular_velocity corresponds to ωres.
• Undershoot_depth corresponds to the depth of the undershoot in vres.
• Undershoot_width corresponds to the width of the undershoot in vres.

An obstacle collision may induce a change in the vehicle velocity with regard
to the commanded value. This is true, even after using a Kalman filter to remove
noise from velocity measurements, as mentioned in the previous section. But,
this is not the only source for such behaviour, since a change in vehicle velocity
also occurs during uphill-downhill slopes. These two situations are illustrated in
Fig. 2, and are distinguishable through a visual analysis. A colliding obstacle produces
a sudden variation of vehicle linear velocity that the low level velocity controller
rapidly compensates for, producing a short but deep undershoot in the value of vres,
as depicted in Fig. 2a. This situation is different from that caused by a change of slope
as shown in Fig. 2b, where a change of 10 degrees in slope occurred. There is a very

Fig. 2 Variation of robot
linear velocity due to a
colliding obstacle that is
dragged by the robot (a) and a
change of slope (b)

Vres (due to an obstacle)

t obs t
(a)

Vres (due to a slope change)

t slope t
(b)
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clear difference between a velocity modification caused by a colliding obstacle and
a velocity modification due to a change in slope. In the case of colliding obstacles,
an abrupt and fast velocity drop takes place in almost all cases, for obstacles whose
weight is above 1 kg. For very light obstacles, the effect of the collision is negligible
and no intelligent action is needed. On the contrary, a change in slope always causes a
very smooth velocity variation. Indeed, the variation is so smooth that it is absolutely
indistinguishable from normal robot velocity variations during navigation. Besides,
variations in slope are very small in real indoor environments where this robot is
supposed to operate. In conclusion, the only remarkable external effect over robot
velocity during navigation is that caused by collision with heavy obstacles.

Under these circumstances, vehicle consumption will be greater than necessary
(due to the over-actuation required to compensate the overload produced by the
obstacle) leading to an undesired situation that should be detected and corrected.
Remember that we are considering the case of small obstacles that cannot be
detected by the obstacle avoidance system on-board the robot (ultrasound based),
and thus, only commanded and measured variables can be used to infer that a
collision has occurred. For this purpose, the sudden variation of vehicle velocity
caused by the collision, followed by the fast actuation of the low level controller that
takes the velocity back to its commanded value, will be a key for diagnosis.

The dynamics of vehicle velocity, as a function of an external torque TWL

(representing the effect of the collision or the slope), can be described by computing
the relation between TWL and the angular velocity of the wheels ωres. Equation 3 pro-
vides the expression for ωres(s)/TWL(s) in Laplace domain, assuming no saturation
of the variables, as demonstrated in [25].

ωres(s)
TWL(s)

= Ra + Las
(Ra + sLa) · (sJ + B) + kTkE

(3)

Ra and La represent the internal electrical resistance and inductance components
in the motor armature, kT is the motor torque constant, kE stands for the motor
voltage constant, and J and B denote the total equivalent inertia and damping,
respectively of the motor-load combination. Parameters J and B depend on several
factors such as vehicle geometrical configuration, vehicle weight, and the operation
surface (texture or roughness). Consequently, the estimation of the exact values of
J and B are difficult to compute for use in a model based approach. Appropriate
handling of Eq. 3 leads to the simplified expression in Eq. 4.

ωres(s)
TWL(s)

= Ra + Las
kTkE(s2τmτe + sτm + 1)

(4)

τm and τe stand for the mechanical and electrical time constant of the system,
respectively, and are computed as shown in Eq. 5.

τm = Ra · J
kTkE

τe = La

Ra
(5)

Equation 4 can then be approximated by the expression in Eq. 6 as τm is several
hundred times greater than τe in practice. Thus, it can be demonstrated that vehicle
velocity upon obstacle collision follows approximately a first order dynamic response
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with time constant described by τm. Accordingly, the duration of the undershoot is
more or less proportional to τm. Likewise, τm is a function of J, the system inertia,
which depends on the obstacle weight among other parameters. This means that
the heavier the obstacle, the higher the value of τm and, consequently, the wider
the duration of the undershoot. This simple reasoning could be used for diagnosis
purposes in order to detect the collision and, possibly, to make the difference
between a heavy and a non heavy obstacle. But this is only an approximate reasoning,
as long as the controller dynamics plays a predominant role in the process, and should
mandatory be considered.

ωres(s)
TWL(s)

≈ Ra + Las
kTkE(sτm + 1)

(6)

On the other hand, a similar reasoning will be followed so as to find a relation
between the maximum undershoot �ω and the system parameters. In a first and
intuitive approach, it can be stated the �ω depends basically on two variables:

1. External torque produced by the obstacle TWL, which is a function of the
obstacle weight, geometry, position, and orientation.

2. Vehicle velocity.

After the collision, the total amount of system energy should remain unaltered.
This implies that the condition expressed in Eq. 7 should be met (an elastic conserv-
ative collision is assumed for simplicity).

m · vi = (m + mobs) · vf (7)

m and mobs represent the mass of the vehicle and the obstacle, respectively, vi stands
for the initial velocity of the vehicle (before the collision), and vf is the final velocity
of the system composed by the vehicle and the obstacle after the collision. The
variation of velocity �v experimented by the system (assuming no initial reaction
of the velocity controller) can be derived from Eq. 7 yielding the expression in Eq. 8.
Obviously, �ω should be proportional to �v (�ω = k � v).

�v = vi − vf = vi ·
(

mobs

m + mobs

)
(8)

Two main conclusions can be derived from Eq. 8: On the one hand, the heavier
the obstacle the higher the amplitude of �v, i.e., the higher the amplitude of the
undershoot. On the other hand, the higher the initial velocity of the vehicle the
higher also the undershoot. Although these are simple approximate statements, as no
assumptions about the friction coefficient have been made, they can serve as a basic
support for linguistic reasoning providing useful information in order to construct an
intelligent diagnosis module. Besides, the velocity controller dynamics should also be
accounted for, as it has a strong influence in the settling time needed to restore the
commanded velocity after the collision. Throughout the previous reasoning process
no initial reaction of the controller has been assumed. In other words, the effect
of the collision has been divided in two stages: In a first stage, the vehicle velocity
gets decreased to a final value as computed in Eq. 7. During that short interval the
controller is assumed not to have enough time for reaction. In a second stage, the
controller pushes the vehicle velocity back to its commanded value. The duration of
the second interval depends also on the obstacle weight.



J Intell Robot Syst (2007) 48:539–566 549

Due to the existence of non linearity in the system, which is difficult to model and
identify, and considering the previous statements concerning the linguistic relation
between the velocity undershoot amplitude and duration and the occurrence of a
collision, the use of a fuzzy logic based diagnosis module becomes apparent and
convenient.

3.2 Expert Knowledge

To deal with complex problems such as robot motion, expert knowledge is of prime
importance. The expert knows the main influential variables and is able to describe
their behaviour. This kind of information has been used in the previous section to
define a behaviour model that will now be considered to create qualitative rules.

The first step is the definition of the number and nature of variables involved in
the diagnosis. The second step is the definition of qualitative diagnosis rules.

3.2.1 Linguistic Variables

Let us consider now those previously defined variables and introduce some others
related to additional knowledge.

As it has been previously shown (Fig. 2), a fast but deep undershoot in vehicle
velocity takes place upon collision with an obstacle, until the velocity controller
regains the commanded reference. This constitutes the key hint to properly providing
a diagnosis. Consequently, depth of velocity undershoot (Undershoot_depth) upon
collision is a crucial variable for determining whether the vehicle has really collided
with an obstacle that is being dragged, or on the contrary, whether the undershoot is
due to measurement noise or entering uphill slopes.

The depth of the velocity undershoot is tightly related to the commanded vehicle
velocity as deep peaks occur at high velocity while small ones take place at low speed,
as have been analytically considered in Eq. 8. As a consequence, this undershoot will
be considered in percentage instead of using the absolute value.

One more hint is the effect of collisions on battery voltage. Battery voltage
suffers a decrease when colliding against an obstacle. This decrement is directly
linked to the vehicle consumption that should increase upon collision to regain the
commanded speed, subsequently causing the battery voltage to go slightly down.
Under specific circumstances, the contribution of some subsystems of the robot to
energy consumption should also be considered. As in the previous case, this variable
needs some pre-processing made by comparison of the mean value of battery voltage
over an interval before and after peak (minimum) value of velocity. The obtained
value is defined as Decrease_of_battery_voltage.3

A ring of 16 ultrasound based sensors is used to provide range measurements
around the robot. The analysis of those range measurements as well as their
derivatives, provide us with information concerning robot movement with respect to
its environment. To do so, the variables Range_sonar and Derivative_of_range_sonar
(the absolute value is considered) are introduced.

3This variable is computed as the difference between the Battery Voltage, just before the peak, minus
that Voltage just after the peak. So, a positive value means a decrease of voltage, while a negative
one represents an increase of voltage.
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Table 1 Input variables

Variable Interest range Labels Linguistic terms Units

Undershoot_width [1, 5] 7 null, very small, small, medium, ms
medium large, large, very large

Undershoot_depth [10, 70] 7 null, very small, small, medium, %
medium large, large, very large

Decrease_of_battery_voltage [0, 0.8] 7 zero, very small, small, medium, v
medium large, large, very large

Range_sonar [20, 3000] 2 zero (20), NOT(zero) (30) mm
Derivative_of_range_sonar [0, 1500] 2 zero (0), NOT(zero) (50)
Commanded_linear_velocity [0, 250] 6 zero, very low, low, mm/s

medium, high, very high
Measured_linear_velocity [0, 250] 6 zero, very low, low, mm/s

medium, high, very high

In a first step, expert knowledge extraction process was kept at a “high” abstrac-
tion level. The expert defined linguistic variables, their ranges, and the number of
linguistic terms needed for each given variable without defining the corresponding
fuzzy sets. Table 1 shows the main parameters of input variables defined by the
expert. Undershoot_width, Undershoot_depth, and Decrease_of_battery_voltage have
7 labels because initially, the expert did not know how to model their behaviour.
This number, seven, has been considered as providing enough granularity for the
analysis. Range_sonar and its derivative, Derivative_of_range_sonar, have 2 labels
because they provide information concerning whether the robot is moving or
not with respect to its environment. Finally, Measured_linear_velocity and Com-
manded_linear_velocity have 6 labels, since the usual operation of the robot is based
on the range from 0 to 250 considering changes of commanded speed in steps of
50 mm/s.

As expert rules use linguistic terms, it is of prime concern to design highly inter-
pretable fuzzy partitions. The necessary conditions for interpretable fuzzy partitions
have been studied by several authors [5, 8, 12, 15, 26]. In short, the variable definition
should satisfy at least the next conditions:

1. Define a small number of labels, linguistic terms, for each variable.
2. Link linguistic terms and fuzzy sets without ambiguity.
3. Work with normal membership functions. These kinds of functions satisfy the

Eq. 9, where U is the universe, N represents the number of labels, and μAi(x) is
the degree of membership of x to the fuzzy set Ai.

∀i = 1, 2, ..., N, ∃x ∈ U, μAi(x) = 1 (9)

4. Use membership functions that cover the entire universe, with an overlapping
which ensures Eq. 10, where ε is the coverage degree.

∀x ∈ U, ∃i : 1 ≤ i ≤ N, μAi(x) > ε, ε ≥ 0 (10)

5. Define convex fuzzy sets, which are defined by Eq. 11 in [33]. Note that although
non-convex fuzzy sets are not used in our approach, they are considered in other
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Fig. 3 Strong fuzzy partition
with five fuzzy sets

contexts [11]. For instance, they let us represent the mealtimes (breakfast, lunch,
and dinner) by time of day.

∀x, y ∈ U, λ ∈ [0, 1], μAi(λx + (1 − λ)y) ≥ min(μAi(x), μAi(y)) (11)

We use strong fuzzy partitions, as illustrated in Fig. 3. These partitions satisfy all
the stated conditions, with a coverage level ε = 0.5, and moreover:

∀x ∈ U,

N∑
i=1

μAi(x) = 1 (12)

In the present case, an initial family of fuzzy partitions has been produced using
regular strong fuzzy partitions adapted to the range defined by the expert. For
that purpose, in addition to the physical range of the variable, the expert will
define a range of interest to fit more adequately those values of the variable that
represent useful information to solve the considered problem. So, regular strong
fuzzy partitions [26] in the range of interest were generated for each input variable,
with a number of fuzzy sets equal to the number of linguistic terms given by the
expert. In addition, for Range_sonar and Derivative_of_range_sonar, as their ranges
are too broad and only two labels are considered, the expert defined the modal
points, i.e. the fuzzy set centres (see values in brackets in Table 1, attached to each
linguistic term of these variables).

3.2.2 Linguistic Rules

The next step of expert knowledge extraction process consists in writing linguistic
rules using the linguistic terms.

As a first example, let us consider the use of range measurements to get informa-
tion about a possible situation of a stalled robot. To gain further knowledge on how
expert rules are stated, let us determine whether the vehicle is moving or not. The
following options are possible:

1. The value of variable Range_sonar is different from zero (something is detected
within the detection range) and its derivative (that will be considered in absolute
value without any special filtering, only the low level filtering made by the
software on board the robot) is different from zero. It could mean that the
robot is moving in a static environment, that the robot is moving in a dynamic
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environment, or that the robot is not moving but the environment is dynami-
cally changing (due to some moving obstacle). Consequently, no deterministic
diagnosis could be provided under these circumstances.

2. The value of variable Range_sonar is different from zero (something is detected
within the detection range) and its derivative is zero. This means that the vehicle
is not moving.

3. The value of variable Range_sonar is zero (nothing is detected within the detec-
tion range). In this case there is no information at all about the environment, and
thus, no diagnosis could be issued either.

According to the three previous possibilities an expert rule could be constructed
by considering the following reasoning. If range measurements are different from
zero and their derivatives are zero then the environment surrounding the robot is not
changing. If on these circumstances the vehicle odometry system measures a velocity
equal to zero while being commanded with a linear velocity different from zero, it
can be deduced that the vehicle is stalled. The rule can be formalized as follows:

IF Undershoot_depth is very large AND
Range_sonar is not(zero) AND
Derivative_of_range_sonar is zero AND
Commanded_linear_velocity is not(zero) AND
Measured_linear_velocity is zero

THEN Vehicle_stalled

This piece of knowledge contains several fuzzy propositions that are affected
by one of the main questions considered when designing fuzzy systems: the use of
negation. This paper will not analyze this situation in deep, but there are two possible
interpretations of the next fuzzy proposition:

Commanded_linear_velocity is NOT(zero)

NOT can be interpreted at the level of membership functions (numerical level) or
at the level of terms (linguistic level). We work at the second level where NOT(zero)
is computed as an OR combination of the remaining linguistic terms (a deeper
analysis could be found in [16]), which in our case, according to linguistic terms
defined in Table 1, represents very low OR low OR medium OR high OR very high.
Consequently, the proposition will be interpreted as:

Commanded_linear_velocity is
(very low OR low OR medium OR high OR very high)

The semantics of the linguistic terms considered in these rules, as well as the
method to define them, will be described in the following section.

Another example of expert rule can be produced for the collision and drag case,
introducing the variable Decrease_of_battery_voltage previously described. To do so,
raw data has to be processed to be put in the form of the variable used by the expert.
For example, the velocity signal shown in Fig. 4, is processed through Kalman or
FIR (Finite-input response) filtering in order to define a clearer velocity undershoot
produced by the collision.
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Fig. 4 Vehicle velocity
(instantaneous, Kalman and
FIR) upon obstacle collision

Considering this new variable, an expert rule is that described below:

IF Undershoot_width is (small OR medium) AND
Undershoot_depth is (very small OR small OR medium OR

medium large OR large) AND
Decrease_of_battery_voltage is small

THEN Vehicle_drags_obstacle

The expert knowledge extraction process yields a qualitative (and potentially
incomplete) rule base that in the case of this application is made up of the two rules
previously described.

3.2.3 Knowledge Base Quality

This subsection explains the criteria for evaluating knowledge base quality. It is
measured according to data through considering the following indices for the output
variable:

• Error cases: Number of covered cases from data set that produce error, i.e.
observed and inferred values are different, in inference.

• Ambiguity cases: Number of covered cases from data set that produce ambiguity,
i.e. difference between the two highest confidence levels is smaller than an
established threshold.

• Unclassified cases: Number of cases from data set which do not fire at least one
rule with a degree higher than �.
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These indices convey complementary information. A good knowledge base should
minimize them by offering an accurate (reducing error cases), consistent (reducing
ambiguity cases) and complete (reducing unclassified cases) set of rules.

The application of those indices to the set of two rules provided by the expert is
described in the following section by considering a data set that will also be used for
knowledge induction.

4 Induced Knowledge Integration

Complementary to expert knowledge, data are likely to give a good image of variable
interaction. So starting from the knowledge described by the expert, some additional
information is required in order to be able to solve the problem considered.

The process to get that additional information implies several steps. First, data is
required, so experimental or simulated data should be provided. Second, additional
rules will be generated on the basis of the provided data, and the linguistic variables
previously defined by the expert. At a third stage, expert and induced rules will
be integrated to check the whole knowledge base. Finally, the whole knowledge
base, data base and rule base, will be simplified in order to achieve a more compact
knowledge base, with a smaller size in order to increase interpretability [4] while
preserving accuracy.

4.1 Generating Data for Knowledge Induction

Some real experiments have been performed so as to collect data concerning all the
variables of interest, and especially the vehicle battery voltage and linear velocity.
All practical experiments were conducted in an absolutely real environment, which
is the Department of Electronics at the University of Alcalá, in Madrid. The test
environment has a surface of 60x60 square metres.

Thus, in a first trial, a small but heavy obstacle was deliberately introduced in the
environment in order to interrupt the vehicle trajectory during autonomous opera-
tion. Due to its small size, the obstacle cannot be detected by the ultrasound-based
obstacle detection module onboard the vehicle. Accordingly, the vehicle collides with
the obstacle, yielding a temporary decrease in its linear velocity. Upon collision,
the velocity controller adapts to this situation by increasing the actuator torque so
as to rapidly reach the commanded reference velocity. This causes the vehicle to
drag the obstacle along its way by increasing the battery current consumption, and
consequently, the battery voltage goes down slightly.

For generalization purposes, Table 2 shows a complete list of all the different
obstacle weights used in the experiments, as well as the vehicle velocity at each
test. A total of 90 different tests were carried out. All obstacles above 0.5 kg
produce a sudden decrease in robot velocity that is compensated for by the velocity
controller after a few milliseconds. The effect can then be considered as a minor
disturbance, although the problem is that energy consumption remarkably increases
while dragging an obstacle.

Let us concentrate on the simple example depicted in Fig. 5 to illustrate the
knowledge extraction process, including its cooperation with expert knowledge. The
vehicle battery voltage and linear velocity are depicted for a real collision-and-drag
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Table 2 Experimental setup
No. of experiments Velocity (mm/s) Weight (Kg)

6 50 0.5
6 100 0.5
6 150 0.5
6 200 0.5
6 250 0.5
6 50 1.0
6 100 1.0
6 150 1.0
6 200 1.0
6 250 1.0
6 50 2.0
6 100 2.0
6 150 2.0
6 200 2.0
6 250 2.0

case, for two different commanded linear velocities. Although in both cases there
are two substantial drops in the velocity, only the first ones (those inside the circles)
correspond to the collision-and-drag situation and they are correctly classified. The
undershoot in the left figure has a depth of 25% of velocity, i.e. 25 mm/s, while the
one on the right has a depth of 44%, i.e. 11 mm/s. These two values, according to the
partitions that were generated in the Section 3.2.1, can be considered as small and
medium undershoots, respectively. The rest of drops in the velocity are considered
as normal situations.

Fig. 5 Vehicle battery voltage and linear velocity during a collision-and-drag case
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Table 3 Results based only in expert knowledge

Total Error Ambiguity Unclassified Diagnosis
cases cases (%) cases (%) cases (%)

89 2.25 0 70.79 Vehicle_drags_obstacle
34 0 0 2.94 Vehicle_stalled
44 2.27 0 97.73 Normal

One hundred sixty seven instances (the 90 cases shown in Table 2 were obtained in
real trials, and 77 more ones were generated in software simulations4), corresponding
to various configurations (according to changes in the vehicle velocity and in the
obstacle weight), have been collected, and the set has been randomly divided into
2 different subsets (84 and 83 examples), maintaining the ratio of each diagnosis in
both data sets. The number of cases for each possible diagnosis is detailed in Table 3.

How are these samples managed using the two expert rules? As expected, the
expert knowledge base is incomplete: It covers only 35% of the cases.

Table 3 shows clearly that only the case of Vehicle_stalled diagnosis is handled by
the expert rules. The diagnosis of Vehicle_drags_obstacle seems to be more difficult
to define, only 26.96% of the cases over 89 are correctly classified. Finally, as no
rule has been defined for Normal diagnosis, all the corresponding examples are
unmanaged, except one which is misclassified.

As previously stated, the expert is only able to express a partial view of the
problem. Data may also be used to provide new knowledge elements.

4.2 Rule Induction

Once the variable partitions have been designed, they can be used to define fuzzy
rules. To the two kinds of knowledge, expert knowledge and data, correspond two
kinds of rules. As both types of rules use the same linguistic labels defined by the
same fuzzy sets, rule comparison can be achieved by considering the linguistic level
only.

From the expert side, as previously described, rules are merely written in a
linguistic way using the available connectives between variables.

The process of generating rules from data is called induction. It aims to produce
general statements, expressed as fuzzy rules in our case, valid for the whole set,
from partial observations. The observed output, for each sample item, is part of the
training set allowing supervised training procedures.

A lot of methods are available in the fuzzy logic literature [14, 18]. We choose a
prototype oriented strategy according to the classification proposed in [3]. It starts
from examples. The alternative strategy is called input space strategy, as it examines
all the fuzzy regions.

4Five simulations were made for each configuration in Table 2, and two more simulations were made
in the case of 50 mm/s and 0.5 kg, because this case was the more critical due to the huge level of
noise.
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The used method is adapted from the Wang and Mendel (WM) algorithm [31].
Given the fuzzy partitions, it starts by generating one rule for each data pair of the
training set.

The ith pair one is written:
IF x1 is Ai

1 AND x2 is Ai
2 . . . AND xp is Ai

p THEN y is Ci.
The fuzzy sets Ai

j are those for which the matching degree of xi
j is maximum for

each input variable j from pair i. The fuzzy set Ci is the one for which the matching
degree of the observed output, yi, is maximum.

A degree is assigned to each rule. For a given rule it is equal to the rule firestrength
for the considered pair. In case of identical premises for two rules, only the one with
the higher degree is kept.

This procedure is very easy to use as it does not require any parameter. Moreover,
it allows the rule base to be adaptive: new rules may compete with existing ones.

Rule induction may be carried out from the whole training set, but this way
some induced rules are likely to be redundant with expert rules. An alternative
process consists of removing from the training set the samples managed by the expert
knowledge base. In this paper both ways are studied and compared. An item is
considered as managed by an expert rule if its firestrength is higher than a threshold
(in this case we have considered 0.3, a value obtained empirically).

As the induced rules are defined using all the available variables, they are likely
to be simplified.

4.3 Integration and Simplification Process

Induced and expert rules have to be integrated into a unique rule base. As explained
previously, rule comparison can be achieved by considering the linguistic level only,
because both types of rules use the same linguistic labels defined by the same fuzzy
sets. The merging of two rule bases may be a source of conflict. The integration
process preserves the new rule base from two important defects: Inconsistency and
redundancy.

A simplification procedure is also carried out within the integration phase. It aims
to reduce the number of rules in the rule base and the number of variables that
are considered in each rule. Figure 6 shows a schematic diagram of knowledge base
simplification process. It is a cyclical process. Depending on the original knowledge
base, the whole process may involve several iterations as data base reduction affects
to rule base simplification and vice versa.

4.3.1 Data Base Reduction

Data base is related to variable definitions, i.e. qualitative and quantitative informa-
tion about variable behaviour. It includes partition definition for each input or output
variable, as well as the semantic meaning, linguistic term, attached to each fuzzy set.

The strong fuzzy partitions are made up of elementary fuzzy sets. They can be
combined to define composite OR and NOT linguistic terms. The implementation of
OR and NOT operators is detailed in [16]. The OR composite labels are defined as
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Fig. 6 Knowledge base
simplification

the convex hull of the combined terms. And the NOT composite labels are defined
according to Eq. 13, generating two OR composite linguistic terms.

NOT(MFi) ⇒
{

MF1 OR · · · OR MFi−1

MFi+1 OR · · · OR MFm
(13)

This reduction process includes the next steps:

1. Look for labels which are used by none of the rules and propose to remove them.
2. Look for labels which are always used together and propose to merge them into

a new one.

Removing or merging labels affects the elementary fuzzy sets of the partition.
If one label is used by none of the rules, then it can be removed. However, in order

to keep a strong fuzzy partition, adjacent fuzzy sets are expanded. The right boundary
of the prior fuzzy set and the left boundary of the subsequent one are moved up to
the centre of the other.

Labels which are always used together can be grouped into a unique one. The
procedure also stands for OR combinations: When a OR composite label is used but
its elementary components aren’t used neither alone nor within another composite
label, then the elementary labels can be merged at the partition level. The number
of labels is decreased and a new label with trapezoidal or semi trapezoidal shape
substitutes to the old component labels.

For instance, Fig. 7 illustrates how a strong fuzzy partition with five linguistic terms
(picture on the top) is altered through two consecutive modifications: First, in the
middle part A2 has been deleted, then A3 and A4 have been merged in the bottom
part of the figure. Let us note that final partition is still a strong fuzzy partition.
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Fig. 7 Removing and merging
labels within a strong fuzzy
partition

4.3.2 Rule Base Simplification

Rule premises are made up of tuples (input variable, linguistic term), where the
absence of an input variable in a rule means that the variable is not considered in
the evaluation of the rule. On the other hand, rule conclusions are made up of tuples
(output variable, linguistic term), where the absence of an output variable means that
this rule does not concern that output variable. For each input variable, the user can
choose between basic labels or composite labels (by using OR/NOT operators).

As rules can be either defined by an expert or induced from data. Rule nature is
taken account into the simplification process: In case of conflict priority is given to
expert rules.

The overall reduction process involves two steps.
First, the Simplify RB procedure is applied in order to remove redundant rules.

Redundancy can be total, i.e. identical rules, or partial: The input space covered by
one rule is included into the one covered by the other, and both rules have the same
conclusion. The most specific rule is removed, but only if it is an induced rule, or it is
an expert rule and the most general rule is an expert rule too.

Second, the Merge RB procedure is used for building more compact and general
rules. A linguistic analysis of the rule base is made in order to detect rules that
can be merged. Two rules can be merged if they are of the same nature (expert or
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Fig. 8 Rule generalization

induced rules) and also satisfy next condition: They have the same conclusion and
their premises can be merged using composite linguistic terms.

The procedure for merging rules follows next sequence of steps, which are
repeated until the whole rule base is analyzed:

1. Evaluate quality of knowledge base.
2. Look for two rules which can be merged.
3. Generate a temporal copy of the knowledge base.
4. Substitute both rules by the merged rule in the temporal knowledge base.
5. Evaluate quality of temporal knowledge base.
6. If (new quality isn’t worse than old quality) Then (changes in knowledge base

are saved) Else (changes are discarded).
7. Go to 2.

In order to merge two rules, it is needed to analyze the premise part of the rules.
There is no problem with the conclusion because it is the same in the merger rule
and in the original rules. However, for each input the premises of original rules have
to be compared. If both premises are the same, then this is the merger rule premise.
But, if premises are different, then a new premise has to be built as merger of both.

The simplification process produces a generalization, a simplified rule may cover
an input space which was not initially managed, for instance because there are no
available training data in this zone. Figure 8 shows how the merger rule R12 covers
a larger input space than the one covered by R1 and R2.

Merging rules changes rule base configuration, but it does not modify the fuzzy
partitions in data base. Nevertheless, as a result of Merge RB process, composite
labels could appear in the premise part of the rules. The fuzzy partition modification
is made in the Data Base Reduction process as explained in Section 4.3.1.

4.3.3 Improving Integration

The integration of expert and induced knowledge has been designed with the aim of
completing, through a data driven process, the knowledge provided by the expert. In
that sense, the induction process should concentrate on those areas of the problem
that were not appropriately described by the expert. As a consequence, it seems
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Table 4 Induced rules quality over training set (84 cases)

Method Rules Error Ambiguity Unclassified
cases (%) cases (%) cases (%)

1 Expert 2 3.57 0 59.53
2 WM 70 1.19 0 0
3 WM + Simplification 9 1.19 0 0
4 Expert + WM 72 1.19 2.38 0
5 Expert + WM + Simplification 12 1.19 1.19 0
6 Expert + Data selection + WM 47 1.19 4.76 0
7 Expert + Data selection + WM + Simplification 9 1.19 4.76 0

to be interesting to reduce the training set, by removing those cases that represent
situations clearly described by the expert knowledge, before the induction process.

The first aim of this reduction of the training data set is focused on reducing the
required effort for both the induction and the simplification stages of the process,
but as will be shown by the results, there is a side effect that at the end is the
most important one. The data selection process improves the quality of the obtained
knowledge base both in interpretability and accuracy. Interpretability is improved
through the reduction of the rule base, while the number of correctly classified cases
is larger (accuracy improvement).

4.4 Results

Tables 4 and 5 summarize the main results for the training (84 cases) and test (83
cases) sets respectively.

The first line illustrates the performance of the expert rule base. As we know, only
a third part of the samples are managed.

Lines 2 and 3 give the results gained using the induced rule base, without any
cooperation with expert rules. These results highlight the poor level of generalization
of the induced rules. The number of uncovered samples rises up to 45.78% for
the test set. The simplification process helps in building more general rules: While
the number of rules decreases from 70 to 9, the number of unmanaged samples
drops to 7.23%. We can argue that the simplification process somehow produces a
generalization.

Table 5 Induced rules quality over test set (83 cases)

Method Rules Error Ambiguity Unclassified
cases (%) cases (%) cases (%)

1 Expert 2 0 0 68.67
2 WM 70 0 0 45.78
3 WM + Simplification 9 2.4 0 7.23
4 Expert + WM 72 0 0 32.53
5 Expert + WM + Simplification 12 3.61 0 8.43
6 Expert + Data selection + WM 47 0 2.4 24.1
7 Expert + Data selection + WM + Simplification 9 1.2 3.61 0
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Table 6 Input Variables after Simplification

Variable Labels Linguistic terms

Undershoot_width 6 null, very small, small, medium,
medium large OR large, very large

Undershoot_depth 4 null, very small,
small OR medium OR medium large OR large,
very large

Decrease_of_battery_voltage 5 zero, very small, small, medium, large
Range_sonar 2 zero, NOT(zero)
Derivative_of_range_sonar 2 zero, NOT(zero)
Commanded_linear_velocity 4 zero, very low, low, medium OR high OR very high
Measured_linear_velocity 4 zero, very low, low OR medium OR high, very high

The first way of cooperation, lines 4 and 5, deals with the expert rules and the rules
induced from the whole training set. The resulting rule base is likely to be redundant,
even inconsistent, as illustrated by the presence of ambiguous classification cases.
The remarks already made about induced rule generalization hold in this way of
cooperation. The number of unclassified items drops from 32.53 to 8.43% when the
number of rules becomes 12 (72 in the initial base).

The last lines investigate a new way of cooperation: Examples covered by expert
rules are removed from the training set before induction. The removed samples are
16 of the stalled case (over 17) and 12 (over 45) of the drag case. The induction
process yields a smaller number of rules: 45 instead of 70. The generalization
ability of complete induced rules is still poor: 24.1% of items in the test set remain
unclassified. After simplification, with 7 induced rules and 2 expert rules, all the
samples are managed by the system. The final result gives one error case (1.2%)
and three ambiguous cases (3.61%) dealing with the test set. This last simplified rule
base uses the linguistic terms given in Table 6. The nine final rules are available in
the Appendix.

The analysis of the results provides some information about the knowledge
extraction approach that has been considered. The first idea is that the integrated
knowledge base with expert and induced knowledge outperforms the results of both,
the expert and the induced knowledge base. That point seems to be the obvious result
of adding rules with the subsequent effect of improving accuracy.

But there are two other less obvious ideas since they represent the fact that in
some cases the reduction of the rule base (improving interpretability) produces an
accuracy improvement. In that sense, the second situation to be considered is the
fact that in all the three options for generating the knowledge base (induction,
expert plus induction, and expert plus induction after data selection), the effect
of simplification is a simultaneous improvement of interpretability and accuracy.
It is really impressive how simplification process can lead to 24.1% more of the
unclassified cases being classified (see lines 6 and 7 in Table 5). The knowledge gain
is due to the simplification process affects to the whole knowledge base (fuzzy rules,
variables, and membership functions). It produces a generalization at both levels,
variables and rules. As a result, the simplified knowledge base may cover an input
space which was not initially managed, for instance because there are no available
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training data in this zone. Finally, the third conclusion is that, in the two cases of
integration of expert and induced knowledge that have been considered (with and
without simplification), the data selection process has produced an improvement of
both interpretability and accuracy.

Finally, and what seems to be the most interesting question from the point of view
of learning, the results obtained with simultaneous data selection and simplification
show a similar performance on training and test sets (even considering the reduced
size of the training data set), i.e., the generalization ability of the approach is quite
good.

5 Conclusions

Some ground robot motion problems are considered in this paper and especially the
detection, using robot motion parameters, of non visible obstacles using the usual
onboard sensorial capacities of the robot. This detection is of prime importance
for autonomous operation of ground robots in real environments. The designed
system aims to provide diagnosis as well as recovery actions in these circumstances.
Although the diagnosis system developed in this work is ideal to be applied indoors,
it can also be used in outdoor environments whenever the terrain is not uneven.

As the obstacle characteristics are, obviously, unknown, the global system, i.e.
robot and obstacle, cannot be accurately modelled from a quantitative point of view
and only qualitative (or approximate) reasoning can be applied. As demonstrated
throughout the paper, some linguistic relationships can be established between the
obstacle characteristics and their influence in the robot motion variables upon colli-
sion. Fuzzy logic and fuzzy inference systems are used to model those relationships.
To complete expert knowledge, experiments have been carried out to characterize
typical behaviours. Resultant data were used for building new induced fuzzy rules.

This paper illustrates that the two kinds of knowledge, expert knowledge and
data, convey complementary information. Fuzzy inference systems offer a common
representation framework, as these two types of knowledge can be modelled using
fuzzy linguistic rules. The cooperation of expert knowledge and data in system
modelling remains an open problem, especially when the goal is to obtain an accurate
and interpretable system. This work proposes a cooperation framework, focused
on rule base integration and simplification under expert control. The results show
that the proposed approach leads not only to a good balance between accuracy and
interpretability but also to a simultaneous improvement of both. The final knowledge
base is more compact and transparent, but also more accurate than the initial one.

All results presented in this paper were reached using KBCT[2], a free software
tool (distributed under the terms of the GNU General Public License) for generating
or refining fuzzy knowledge bases.
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Appendix

Expert Rules

IF Undershoot_depth is very large AND
Range_sonar is not(zero) AND
Derivative_of_range_sonar is zero AND
Commanded_linear_velocity is not(zero) AND
Measured_linear_velocity is zero

THEN Vehicle_stalled

IF Undershoot_width is (small OR medium) AND
Undershoot_depth is (very small OR small OR medium OR

medium large OR large) AND
Decrease_of_battery_voltage is small

THEN Vehicle_drags_obstacle

Induced Rules after Simplification

IF Undershoot_width is NOT(null) AND
Undershoot_depth is NOT(null) AND
Range_sonar is NOT(zero) AND
Commanded_linear_velocity is NOT(zero) AND
Measured_linear_velocity is (very low OR low OR medium OR high)

THEN Vehicle_drags_obstacle

IF Undershoot_width is NOT(null) AND
Decrease_of_battery_voltage is NOT(large) AND
Range_sonar is NOT(zero) AND
Commanded_linear_velocity is(low OR medium OR high OR very high) AND
Measured_linear_velocity is (low OR medium OR high OR very high)

THEN Vehicle_drags_obstacle

IF Undershoot_width is very large AND
Undershoot_depth is NOT(null) AND
Decrease_of_battery_voltage is large AND
Range_sonar is NOT(zero) AND
Derivative_of_range_sonar is zero AND
Commanded_linear_velocity is very low AND
Measured_linear_velocity is zero

THEN Vehicle_drags_obstacle

IF Undershoot_width is NOT(null) AND
Undershoot_depth is very large AND
Decrease_of_battery_voltage is very small AND
Range_sonar is NOT(zero) AND
Derivative_of_range_sonar is zero AND
Commanded_linear_velocity is very low AND
Measured_linear_velocity is zero

THEN Vehicle_drags_obstacle
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IF Undershoot_width is very large AND
Undershoot_depth is very large AND
Decrease_of_battery_voltage is large AND
Range_sonar is NOT(zero) AND
Derivative_of_range_sonar is NOT(zero) AND
Commanded_linear_velocity is low AND
Measured_linear_velocity is zero

THEN Vehicle_stalled

IF Undershoot_width is NOT(null) AND
Undershoot_depth is (null OR very small) AND
Decrease_of_battery_voltage is (small OR medium OR large) AND
Range_sonar is NOT(zero) AND
Commanded_linear_velocity is (zero OR very low) AND
Measured_linear_velocity is very low

THEN Normal

IF Undershoot_width is NOT(null) AND
Undershoot_depth is null AND
Decrease_of_battery_voltage is (zero OR very small OR small) AND
Range_sonar is NOT(zero) AND
Commanded_linear_velocity is very low AND
Measured_linear_velocity is very low

THEN Normal
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