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Abstract—This paper addresses the problem of high level road
modeling for urban environments. Current approaches are based
on geometric models that fit well to the road shape for narrow
roads. However, urban environments are more complex and those
models are not suitable for inner city intersections or other urban
situations. The approach presented in this paper generates a
model based on the information provided by a digital navigation
map and a vision-based sensing module. On the one hand,
the digital maps include data about the road type (residential,
highway, intersection, etc.), road shape, number of lanes and
other context information such as vegetation areas, parking slots,
railways, etc. On the other hand, the sensing module provides a
pixelwise segmentation of the road using a ResNet-101 network
with random data augmentation, as well as other hand-crafted
features such as curbs, road markings and vegetation. The high
level interpretation module is designed to learn the best set of
parameters of a function that maps all the available features to
the actual parametric model of the urban road, using a weighted
F-score as a cost function to be optimized. We show that the
presented approach makes the maintenance of digital maps using
crowd-sourcing easy, due to the small number of data to send, and
adds important context information to traditional road detection
systems.

Index Terms—Autonomous Vehicles, Enhanced Digital Maps,
Deep Learning, Random Data Augmentation, Urban Road De-
tection.

I. INTRODUCTION

The high number of casualties on the road can be explained

by many factors. As reported in [1], more than 12.000 lives

can be saved per year on European roads if everybody fasten

their seat belt, respect speed limits and do not drive under the

influence of alcohol. Distraction is another factor since drivers

need to keep their attention focused on surrounding traffic

continuously, not just for their own safety but for the sake of

their passengers and other road users too. Apart from driver

distractions, all road elements (vehicles, drivers, infrastructure,

etc.) play an important role in the probability of crash or the

final outcome. Future scenarios aim to increase the efficiency

in several aspects and autonomous driving can help to reduce

the number of accidents and also the CO2 emissions.

Self-driving cars require a precise and robust perception of

the urban environment. It is a crucial point in the development

of autonomous vehicles because the perception layer is the

base for higher level systems, such as path planning and

control algorithms. It has been an exhaustive topic of research

in the fields of Advanced Driver Assistance Systems (ADAS)

and Autonomous Driving (AD). On the one hand, ADAS have

mainly focused on increasing the safety of drivers and road

users by warning and assisting the drivers. On the other hand,

AD has become a high priority research issue. Most of the

major car makers aim at producing fully autonomous vehicles

by 2020.

Different levels of autonomy have been demonstrated in

highways, urban scenarios and cooperative environments [2]–

[5]. However, in all cases a high definition 2D, or even 3D,

map is required. Enhanced maps integrate precise information

of the environment such as road shape, lane markings, curbs,

intersections, buildings, etc. The main drawbacks of this type

of maps are their size (∼ 2GB/km), the complexity of

measurements integration and their maintenance.

On the other hand, the advent of Deep Learning techniques,

namely Convolutional Neural Networks (CNNs), has involved

a breakthrough in the field of Artificial Intelligence, with

strong implications in a large variety of application domains.

Thus, research on self-driving cars is experiencing a significant

thrust due to the enhanced perception capabilities that the

deployment of CNNs are making possible today. Powerful

CNN architectures, such as AlexNet, VGG-16 or ResNet,

are endowing self-driving cars with advanced capabilities to

robustly and accurately interpret road scenes, even in complex

urban scenarios with a great deal of clutter and complex road

shapes. On top of that, the sensor costs of these road detection

approaches is considerably low since it only involves the use of

digital cameras. Other approaches based on high cost LIDARs

(∼ 75K$) are not affordable for the car industry.

In this paper we present a high level interpretation approach

capable of estimating a parametric model of the road rep-

resenting the real scenario appearing in front of the vehicle

even in complex and cluttered environments. Based on our

previous works [6], a hybrid vision-map method is proposed.

However, instead of using the best estimate of the road

shape from an enhanced digital map as a feature of a hand-

crafted road segmentation classifier [6], we propose a Deep

Learning framework using ResNet-101 network with a fully
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convolutional architecture and multiple upscaling steps for

image interpolation, to obtain an accurate estimation of the

road, outperforming our previous results. We demonstrate that

significant generalization gains in the learning process are

attained by randomly generating augmented training data using

several geometric transformations and pixelwise changes, such

as affine and perspective transformations, image cropping,

mirroring, blur, noise, distortions, and color changes. In ad-

dition, we show that the use of a 4-step upscaling strategy

provides optimal learning results as compared to other similar

techniques that perform data upscaling based on shallow layers

with scarce representation of the scene data. This pixelwise

segmentation process is combined with previously designed

hand-crafted features extraction methods ( [6]–[9]) to provide

a multi-class segmentation of the road and nearby regions.

Finally, a high level interpretation module is trained to learn

the best set of parameters of a mapping function that is capable

of transforming the multi-class segmentation output to the

actual parametric model of the urban road. The presented

approach makes the maintenance of digital maps using crowd-

sourcing easy, due to the small number of data to send,

and adds important context information to traditional road

detection systems.

II. RELATED WORK

A. Road segmentation

Different vision-based methodologies to detect the road can

be distinguished. Some of them are based on road appearance

learning, where the main hand-crafted features are texture

and color information. The second approach focuses on road

limits detection, assuming that the space between limits is the

road surface. Finally, model-based approaches try to extract

a compact high level representation of the road. In order to

have a better overview of the different sensing technologies,

road appearance and limits modeling techniques, geometrical

models and features integration we refer to [6].

On the other hand, it has been proved that CNNs can

improve state-of-the-art results on image classification [10]–

[13], and they have also been successfully applied to object

detection [14]–[16] as well as to monocular color image

segmentation. There are several approaches to obtain a CNN-

based pixelwise classification of an input image. First, the

widely-adopted fully convolutional networks (FCN) [17] adapt

classifier networks, such as AlexNet [10] or VGG [11], to

the segmentation task by replacing fully-connected layers

with convolutional ones and using a progressive interpolation

approach. Other approaches follow this trend using other base

networks, such as the ResNet [12]. In [18] dilated convolutions

are introduced to reduce the downsampling performed by the

convolutional layers, removing the need of the progressive

interpolation stages. These kind of dilated convolutions are

further explored in [19] along with another upsampling method

called dense upsampling convolution.

A more complex approach such as DeconvNet [20] learns a

deep deconvolutional network on top of the convolutional one.

SegNet [21] uses an encoder-decoder architecture. PSPNet

[22] exploits pyramidal pooling to introduce global contextual

priors in a dilated fully convolutional network. FRRN [23] is

based on a novel architecture that keeps a stream with full-

resolution features.

Other models do not directly produce a full image classi-

fication but work patchwise instead. In [24] the inputs to the

classifier layers are enhanced with spatial information of the

patch, and in [25] they use a deconvolution scheme. However,

the current trend is to use fully convolutional, end-to-end

models, from images to pixelwise classification masks [16].

In addition, there are specialized methods for road detection.

One example is [26], where the goal is to optimize the models

to speed-up inference and make them capable of being used

in a real road detection scenario. In [27], MultiNet system is

presented, which performs simultaneous street classification,

vehicle detection and road segmentation, all with the same

CNN encoder and three different decoders.

In order to learn the huge number of parameters of CNNs

architectures, thousands of images labeled with the categories

to learn are required. There are different datasets available

for autonomous vehicles. One of the most popular is KITTI

benchmark [28]. This dataset has labeled 289 images with

road and non road labels. However, CityScapes dataset [29]

is increasing the number of submissions due to the number

of labeled categories (30) and the number of images (25K).

The results of CNNs in the field of road detection have

outperformed all the algorithms that use other approaches.

B. Map road model fitting

The simplest geometric model used for road boundaries

are straight lines. Due to the pin hole camera model, straight

parallel lines converge in a vanishing point. This principle is

exploited in the state of the art to model the road using an

edge descriptor extracted from the image [30]. More complex

models are used to model curved roads, such as parabolic

curves [31], clothoids [32], B-splines [33] or active contours

(snakes) [34]. These parametric models improve the noisy

bottom-up detections due to their constraints of width and

curvature. However, urban environments are more difficult to

model due to the presence of intersections and the variety of

curvatures and width changes.

Non parametric models are less common because they

demand only that the line should be continuous. It provokes

the model to be less robust than parametric models but more

flexible to adapt to the irregular shapes present in urban

environments [35] or rural paths [36].

Map-based models 1 are dominated by high definition maps.

They have demonstrated to be a robust way to navigate [2]–

[4] and they are usually built integrating several measurements

of a multi beam LIDAR [37], [38] or multiple single beam

LIDARs [39]. The drawback is their size (∼ 2GB/km), which

is difficult to manage in a long trip or in a city. The ultimate

goal is to drive everywhere with full functionality, but there are

two main points of view on how to get to it. The first approach

tries to drive in some places with full functionality using 3D

detailed map (∼ GB/km) and low resolution sensing. On

the other side, the goal is to drive everywhere with partial

functionality using low resolution maps and high resolution
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sensing. The problem of the first approach is the scalability of

the map and the updates. The problem of the second approach

is to get stronger artificial intelligence. The ultimate goal is

to get cognitive perception as humans do. However without

that level of artificial intelligence, a higher resolution map is

required to compensate that weakness.

(a) High definition scene reconstruction
after the integration of several measure-
ments of a multi beam LIDAR.

(b) High level output provided by
our approach.

Fig. 1. Map-based models: comparison between heavy 3D cloud-based
models and light high-level interpretation.

III. CNN-BASED ROAD CLASSIFIER

On the one hand, and given the generalized use of CNNs

on the road detection problem, this paper proposes a road

detector based on the ResNet network model [12] adapting its

last stages to the fully convolutional architecture [17]. First,

a ResNet-50 model already trained on the ImageNet dataset

(1000 labels at image level) has been used. In contrast, our

system is designed on the KITTI road detection dataset [28],

which only defines 2 labels (road/non-road) at pixel level.

Accordingly, the original ResNet-50 architecture has to be

transformed into a fully convolutional network to admit an

input of an arbitrary size and to produce an output of the

same size with pixelwise segmentation. In order to do that,

the last inner-product fully-connected layer (1000 outputs) is

replaced with a new convolutional layer (two outputs) that

will be learned from scratch. In addition, due to the fact

that ResNet has an overall downsampling factor of 32, some

upsampling stages are needed. As can be observed in Figure

2 the upsampling is performed in three interpolation stages:

1) UPSCORE 32: the main output scores are upsampled by

a factor of 2. The output from the previous block CONV

4 is added, since both scores have the same accumulated

downsampling factor (16).

2) UPSCORE 16: the previous result is upsampled by a

factor of 2. The output from the previous block CONV

3 (downsampling factor of 8) is then added.

3) UPSCORE 8: the result is upsampled by a factor of 8

to recover the scores in the original input size.

This process allows to recover pixelwise scores smoothly,

with a high level of detail. The final output combines the

coarser global features (MAIN SCORE) with some finer local

features (SCORE CONV 4 and SCORE CONV 3).

Upsampling layers are initialized with bilinear interpolation

kernels, that do not need to be trained. The scores from

the shallower layers are obtained with a two-output convo-

lutional layer in the same manner as the main score. Also,

a learnable scaling layer is placed before each one to help

the network to adapt the different features to their addition.

A large padding is added on the first stage (CONV 1) to

compensate for the width and length reduction that pooling

layers and convolutions combined with downsamplings can

cause. Finally, some croppings have to be performed to align

the score maps and match dimensions, with an offset which

is calculated automatically during the architecture definition.

The final output of our architecture consists of two channels

that represent the probability maps for background and road

respectively, obtained from the final SOFTMAX layer.

A. Data Augmentation

One of the main weaknesses of CNNs is their dependence

on the training data. With data augmentation a better general-

ization can be achieved and different road conditions can be

simulated, increasing the robustness of the network against

illumination, color or texture changes, or variations in the

orientation of the cameras. We adopt an on-line augmentation

approach where modifications are performed at random each

time. This way, the CNN never sees the same augmented

image twice and this virtually infinite dataset does not require

extra storage space on disk.

It can be distinguished between geometric transformations

and pixel-value modifications. It is also possible to apply

several augmentations on the same image, or to apply different

augmentations for each label (road or background) or to

patches.

1) Geometric Transformations: These transformations are

applied to both the image and the ground truth mask. Zero

padding is added when needed to keep the original image size

and the padding pixels are assigned to the ignore label” of the

classifier. The applied transformations include:

• Random affine transformations: translations, rotations,

scalings and shearings are performed in order to change

the positions of the points, while keeping lines parallel.

Initial points are fixed to form a triangle with its bottom

side aligned to the bottom of the image. This has been

tested to provide good transformations (similar to those

that could happen when driving a car). Final points are

drawn from a 2D Normal distribution centered in each

initial point. Although these transformations could be

applied independently, better results are obtained with

combined affine transformations due to the high variabil-

ity.

• Mirroring: apart from the affine transformations, horizon-

tal flipping is performed independently to easily double

the size of the training set.

• Cropping and scaling: the original image is cropped and

scaled to the original size. Crops are defined by a random

top left corner and also random size, within image limits.

• Distortion: random distortion parameters are applied to

the image.

• Perspective transformations: the original positions are

selected empirically on road limits. The final positions

are calculated adding Gaussian noise to the original ones

with two restrictions. First, the shift of top points is the

opposite of that of the bottom ones. Second, top points

should not cross each other to prevent reflected images.
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Fig. 2. High-level schematic of the CNN-based road detector, implementing the FCN-8s architecture [17] on a ResNet-50

2) Pixel-Value Changes: These transformations are only

applied to the image, since they produce changes only on pixel

values.

• Noise: random addition of Gaussian, speckle, salt & pep-

per noise, generation of an image with signal-dependent

Poisson noise. Gaussian and speckle noises are additive:

the first one is defined by a given standard deviation, and

the second one is generated by a uniform distribution

with a given variance and a magnitude proportional to

the image itself. Salt & pepper noise is generated by

setting to white or black random pixels with a given (low)

probability. Regarding Poisson noise, a new image is

generated drawing each pixel from a Poisson distribution

with lambda (mean) proportional to the image value in

that point.

• Blur: the filters are applied independently to the image,

creating a blur effect. The selected filters are: Gaussian,

diagonal motion (left-to-right or right-to-left, at random),

box, median and bilateral filtering.

• Color changes: three types of transformations are applied.

The first one is casting, which consists in adding a

random constant to each RGB channel, with the effect

of altering the color components of the image [40]. The

second one is an additive jitter, which is generated at

random by means of exponentiation, multiplication and

addition of random values to the saturation and value

channels, or simply drawing a constant from a uniform

distribution in the case of hue channel. This jitter is then

added to the original HSV image. Uniform distribution

limits have been tuned empirically for this dataset in order

to keep those transformations realistic. The last one is a

PCA-based shift, which is a method presented in [10] for

performing slight alterations in RGB space. It is based on

a previous PCA analysis of RGB values throughout the

training subset and consists in adding to each pixel a lin-

ear combination of the found three principal components

(eigenvectors of the covariance matrix) with magnitudes

proportional to their corresponding eigenvalue times a

random Gaussian variable (standard deviation of 0.01).

This way, instead of changing RGB values independently,

the shift is performed in the principal components’ space.

B. Network components and training variants

Regarding fully convolutional CNNs, there are several el-

ements that can be optimized, such as the initialization of

the score layers (with zeros, noise, etc.), and the initialization

and training of the upsampling layers. We can also use more

complex activation functions rather than the simple ReLU,

such as parametric ReLUs (PReLUs), which are recommended

in combination with MSRA initialization [41]. Although it

is not possible to change the original pre-trained ResNet-

50 structure, we can add PReLUs to the new score layers.

Training alternatives involve trying different learning rates and

learning rate policies, such as decreasing the learning rate

when the training stalls in previous trials, or doing a warmup

stage [12] at a reduced learning rate until error goes under

(20%). Other alternative is to have a higher learning rate for

score layers, which are learned from scratch, and a lower

rate for inherited layers. Moreover, in [17], several training

schemes are defined: the standard accumulated learning (batch

size of 20 and standard momentum of 0.9) or the heavy

learning scheme, which uses a single image per gradient

actualization and a high momentum of 0.99, that simulates the

gradient accumulation effect of the batch size. In [19] they use

a variant of the accumulated learning (batch size of 12) with

a polynomially decreasing learning rate which we try in the

form 2.5 · 10−4
× (1− iter/max iter)0.9.

C. Training in Bird’s Eye View

The traditional training approach uses images in perspective

view and obtains detections in this space. However, since

KITTI benchmark evaluates its results with the F1-measure

in Bird’s Eye View (BEV) [42], we also train the network

model directly in BEV. In this case, a less aggressive data

augmentation strategy is used since geometric transformations

in BEV creates important distortions.

D. Deeper models

A ResNet-101 [12] model has been adapted using the same

procedure applied to the ResNet-50, to test a deeper model in

this problem. On the one hand, this model has an increased

learning capacity. On the other hand, the risk of overfitting

becomes more relevant.

E. Upsampling variants

Apart from the schematics presented in Figure 2, the number

of connections from shallower layers is modified. In order

to obtain a more fine grained classification, both the full
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step-by-step upsampling (with additional connections from

CONV 2 and CONV 1) and the four-step one (only additional

connection from CONV 2) have been tested. Likewise, a two-

step approach has also been evaluated to cover all possible

cases, as well as the basic approach with no skip connections

and just one large interpolation step.

There are other methods to increase the field of view of the

deeper layers without downsampling the input features. The

dilated convolution [18] and its improved version [19], which

is claimed to avoid grid effects are evaluated. This approach

replaces the downsampling performed in one or more blocks

with dilated convolutions in all of the subsequent layers.

However, downsampling not only is necessary to enlarge the

field of view. It also plays an important role reducing the size

of the input features to reduce the GPU memory consumption.

If downsampling is completely removed, the model would not

fit in memory. For this reason, our tested method combines a

dilated convolution in the deeper block of the ResNet-50, with

two upsampling steps to achieve a tradeoff (see Figure 3).

S/16

CONV 5

DILATED

3x

512 @ 1x1

512 @ 3x3

2048 @ 1x1

AVG

POOL

7x7 2 @ 1x1

SCALE

CONV 4

SCORE

CONV 4

2 @ 1x1

S/16

OFFSET=3

2 @ 3x3

UPSCORE

16

CROP

+

OFFSET=5

S/8

UPSCORE

8

2 @ 15X15

CROP

+
MAIN

SCORE

SCALE

CONV 3

SCORE

CONV 3

2 @ 1x1

Fig. 3. Detail of the scoring stage with dilated convolution in CONV 5. It
removes the necessity of using the UPSCORE 32 layer.

IV. HIGH LEVEL INTERPRETATION MODULE

A. Digital Navigation Maps

There are two main type of maps. The first ones are

navigation maps, which provide information about the steps

to reach our destination. The second ones are high definition

maps, which provide 3D information of the environment

with centimeter precision. Most of the autonomous navigation

vehicles are based on these types of maps [2]. In contrast

to that, our approach is closer to the human way of drive.

Human drivers do not need high definition maps. They drive

using visual perception and local navigation methods. The only

information they need are the indications and steps on the

navigation map to reach the destination.

The digital navigation maps used for our approach are Open

Street Map. These collaborative maps are created by a large

community around the world and all the information stored in

the map is editable and it is freely accessible. The map consists

of a list of streets called ways. Every way is composed of a

list of nodes with a location and its relations with the other

nodes and ways. Thanks to the location and relation between

the nodes, the shape of the current street and its surroundings

can be estimated. In addition, digital maps include the number

of lanes, road type, etc.

B. Road map modeling

The features extracted from the cameras (including the

features obtained in [6]) are fused with digital navigation

maps to obtain a high level interpretation of the urban scene.

The map includes relevant information about the presence

of railways, parking areas, buildings or intersections, which

are key points for a correct scene interpretation. Most of

the elements in the map model are fixed (buildings, gardens,

etc.). However, the road width should be adapted depending

on the road type (residential, highway, intersection, etc.).

Our proposed model has 6 degrees of freedom: number on

lanes, lane width (w), lateral offset (y), longitudinal offset (x),

angular offset (a) and curvature radius in intersections (r), see

Figure 4.

Fig. 4. Parameters to adjust in the proposed model of the urban road. The
real scene is painted in grey and the model to adjust is shown in green.

It is assumed that the number of lanes is determined by the

map. Nowadays, most of the maps indicate the number of lanes

and the lane you should drive to reach your destination. The

other parameters are evaluated in two steps, the first one for

a coarse adjustment and the second one for a fine adaptation.

Table I shows the range of every parameter, obtaining more

than ∼ 800K and ∼ 15K combinations in the coarse and fine

adjustment respectively. The integration of the vehicle ego-

motion with the previous models along the time creates a prior

knowledge where the model should be. This prior knowledge

removes the coarse adjustment and the fine adjustment could

be extended. The selected option to reduce the number of

combinations divides the process in three steps: the first step

combines lane width and lateral displacement, the second one

adjusts the angular offset and finally the third step combines

the longitudinal offset and the curvature radius. This process

reduces the number of combinations from more than ∼ 815K
to only 512.

The metric to evaluate the best adjustment is calculated

using equations 1 and 2, where the precision and recall

are estimated by matching the model and the sensing of

the environment. The matching is evaluated in 4 different

groups (G). The first one compares vegetation areas (garden,

grass, forest) and obstacles (barriers, buildings, walls) [6]. The

second one is the road provided by the CNN model. The third

group is composed of curbs and road markings [6]. The last

one only compares curbs [6] in order to reinforce the correct
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TABLE I
MODEL PARAMETER RANGE OF VALUES

COARSE FINE

PARAM START RANGE STEP RANGE STEP

Lane Width 3.20 m ±0.40 m 0.20 m ±0.20 m 0.10 m

Lateral Displacement 0.0 m ±8.00 m 0.50 m ±0.50 m 0.10 m

Angular Offset 0.0
◦ ±5.00

◦
0.25

◦ ±0.20
◦

0.10
◦

Longitudinal Offset 0.0 m ±8.00 m 0.50 m ±0.50 m 0.10 m

Curvature Radius 7.00 m ±3.00 m 1.0 m ±1.0 m 0.50 m

adjustment of the road boundaries. The weights of every group

in the final score (S) are set after a training stage to optimize

the correct adjustment. The combination of the parameters

with the highest score (S) generates a map-based model which

is the output of the algorithm. This map is then provided at

the same space of the images obtained from the cameras.

Fscore =
2 · precision · recall

precision+ recall
(1)

S =
∑

i

wi · Fscore(Gi) (2)

As an example, we depict in Figure 5 the results of the

sensing stage. The map model is adapted to the current

scenario taking into account every detected feature and their

correspondence in the map model.

(a) Input image.

(b) Sensing result with road in grey, road markings in white, curbs in blue,
obstacles in red and vegetation areas in green.

(c) Road model generated from the sensing results and the information from the
digital navigation map. Road is painted in grey, lanes are delimited in white,
vegetation and obstacles are painted in green and red respectively.

Fig. 5. Results of the high level interpretation module.

Note that the resulting model is based on static elements

such as the road, vegetation areas, buildings, etc. This is a clear

advantage in order to maintain an updated and enhanced ver-

sion of the high-level structure of the digital navigation maps.

When performing autonomous navigation, the drivable area is

directly provided by the CNN-based road classifier which will

not include dynamic objects such as pedestrians, bicycles and

cars. Previous hand-crafted [43]–[46] and more recent deep

learning-based approaches [16] can be here adopted to detect

dynamic obstacles.

V. RESULTS

A. Experimental Setup

Our CNN-based road segmentation model was trained on

the KITTI dataset, which is composed of 289 images manually

labeled with two classes: road and non-road. 50% of the

images were used for training the net, and the remaining 50%

are kept aside for validation.

More specifically, the ResNet-50 model previously trained

on ImageNet was used for weight initialization, and then

the full net is fine-tuned on the road detection task. This

is performed with stochastic gradient descent at a constant

learning rate of 5 · 10−5 (except for the bilinear filters, which

are fixed), weight decay of 5 · 10−4, one image per iteration

and high (0.99) momentum. This scheme is referred as heavy

learning in [17]. The training is run for 24K iterations, with

validation checkpoints every 4K iterations.

The Caffe framework [47] was used for the network

prototype definition and the control of training and testing

processes. In addition, a Python input data layer, adapted

for KITTI, is used for loading images and labels into the

net: each training image is randomly picked along with its

corresponding label, and some minimal preprocessing must

be done. The ImageNet per-channel pixel mean is subtracted,

and the label images are converted into a 1 × height × width

integer array of label indexes to be compatible with the loss

function. As stated before, instead of passing the original

image to the network, some data augmentation operations were

applied to extend the training set, prevent overfitting and make

the net more robust to image changes. The data augmentation

layer runs on CPU, and the rest of the processing can be done

on GPU. It takes between 2-3 hours to complete the standard

training on a single Titan X GPU.

The parameters of the high-level interpretation module were

estimated using the same images used to train the ResNet

segmentation module from KITTI dataset. This module was

implemented in C/C++. Training stage takes less than 1 minute

and on-line estimation is performed in real time (< 5ms).

B. Road Segmentation Results

In this subsection we present the results obtained from

the different variations on the network previously mentioned.

As proposed in [42], quantitative results are calculated in

terms of F1-measure, computed over the validation subset on

Bird’s Eye View (converting from perspective view when the

road detector is trained in this space). Namely, the MaxF’ is

computed using the working point (confidence threshold) in

the precision-recall curve that maximizes F1-measure.

1) Data augmentation: We can see, in the training and

validation losses curves (Figure 6), that the use of data

augmentation prevents the network from overfitting, since the

gap between training and validation losses disappears: training

losses rise slightly whereas validation losses decrease. We

have observed that geometric transformations introduce higher

variability than pixel value changes, and using both kinds we



7

obtain the best results. We transform the full image with a

single random operation each time. This way, we get a high

variability, as we note from the width of the losses curve in

6b, but with an acceptable level of noise.

(a) Training without data augmentation (b) Training with data augmentation

Fig. 6. Comparison of the training and validation losses without data
augmentation and with data augmentation.

With this method we can achieve an improvement of ap-

proximately 1% in F-measure when training in perspective

space (from 94.59% to 95.76%), and 2% when training in

Bird‘s Eye View, which will be discussed later on.

Moreover, the trained model was tested on some sequences

at the campus of the University of Alcala, Madrid (Spain),

to test the network in a different environment from that used

in the training. Figure 7 demonstrates that data augmentation

makes the model more robust against illumination, texture,

perspective and orientation changes.

2) Network Components and Training Variants: The up-

score described in Figure 2 is composed of fixed bilinear

kernels and score layers are initialized using the MSRA

method because it is considered robust against symmetries

in gradient propagation. Neither finetuning the bilinear filters

(slower convergence and we get the same kernels in the end)

nor learning them from scratch (smoother convergence and

we get different interpolation kernels that use information

from both classes’ scores, and scattered road limits) improve

our previous performance Regarding the learning rate, three

different rates are compared (1 · 10−6, 5 · 10−5, 1 · 10−4).

The slower one (1 · 10−6) does not converge even with 40K

iterations, the faster one (1 · 10−4) adds instability to the

process and the best results are obtained with the trade off

between both approaches (5 · 10−5).

Since we are performing a fine-tuning with few iterations,

changing the learning rate does not seem to have positive ef-

fects: decreasing policies can yield a monotonically decreasing

validation losses curve, but the final losses and the F-measure

are not better, and if the decrease is too abrupt, the training

will become unstable, probably due to the high momentum;

with the warmup scheme, there are not improvements either. It

also appears to be better to let the whole net adapt to the new

task of per-pixel road detection, instead of using a reduced

(0.1×) learning rate for inherited layers. Finally, accumulated

learning policies lead to worse results and are also much

slower (proportionally to the batch size). The polynomially

decreasing learning rate variant from [19] is better but still

not superior to heavy learning in our trials.

3) Training in Bird’s Eye View: In general, the model

is able to learn better (less training losses) and also to

generalize better (smaller gap with validation losses) during

the training in perspective view because perspective images

have more information about the scene, and more aggressive

data augmentation recipes can be applied while maintaining

the meaning of the image. Thus, without data augmentation,

the model trained in BEV (94.08%) is worse than the one in

perspective view (94.59%).

Data augmentation can significantly reduce the gap between

training and validation losses and makes it worthwhile to train

in BEV. Although the BEV approach with data augmentation

is still worse at learning than the perspective one, the fact of

learning in the same space as the evaluation obtains a better

performance (96.06%). Analyzing in detail the performance,

the model trained in BEV performs similarly at near and fur-

ther pixels, whereas the perspective model has more problems

with further pixels. Some problems of the BEV approach is

that in some cases, buildings at the end of the road or incoming

tunnels can be confused with a continuation of the road.

4) Deeper Models: The training tests in perspective space

over deeper models establish that the ResNet-101 achieves

slightly better results over ResNet-50, which are obtained

consistently with fewer iterations. As a drawback, the training

takes slightly more time to complete than with ResNet-50 and

more GPU memory is needed, see Table II.

TABLE II
COMPARATIVE RESULTS OF DEEPER MODELS PERFORMANCE.

Model F-measure Training Time Iterations Memory

ResNet-50 95.76 2h00 24K 7GB

ResNet-101 95.88 2h30 20K 10GB

In the experiments evaluated in BEV, it is observed over-

fitting in the learning curve (training losses decrease while

validation ones do not) because the deeper model has more

learning capacity and needs a larger training set to generalize.

Therefore, the training is stopped at 20K iterations to avoid the

problem and the obtained F-measure is (96.13%). In conclu-

sion, ResNet-101 offers a small but consistent improvement

in detection performance, at the expense of needing more

computing resources and time.

5) Upsampling variants: Different upsampling variants are

evaluated in a ResNet-50 trained in perspective view. As

expected, the detections with the full step-by-step upsampling

scheme have the highest resolution, but they are noisier and the

F-measure is worse (95.49%), probably because the extracted

features come from too shallow layers with little knowledge

of the full scene. In the four-step case, the resolution is

higher than in the original setup and the F-measure is slightly

upraised (95.80%). The four-step approach has also been tried

with a ResNet-50 trained in BEV, and a ResNet-101 trained

both in perspective and BEV spaces. Whereas the ResNet-50

gives similar results (95.97%), the ResNet-101 yields the best

detections so far, with a F-measure of 96.09% and 96.31% in

perspective and BEV spaces respectively. The dilated convo-

lution approaches yield also similar results. In particular, the
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(a) Training without data augmentation

(b) Training with data augmentation

Fig. 7. The qualitative results of the proposed model are coloured as follows: TP in green, FP in blue and FN in red. The scenarios with strong illumination
changes and challenging road textures are better detected in the model trained with data augmentation.

method from [18] combined with two upsampling steps seems

to be as good as the four-step approach in a ResNet-50 and

less (20K) iterations, but it does not improve the results with

the ResNet-101.

6) Global Road Segmentation Results: Table III summa-

rizes the quantitative results in F-measure over our KITTI

validation subset for the most interesting network variants.

The baseline algorithm is the ResNet-50 model with the fully

convolutional architecture and three-step upsampling shown in

Figure 2.

TABLE III
QUANTITATIVE RESULTS IN F-MEASURE ON KITTI DATASET FOR THE

MAIN NETWORK VARIANTS EVALUATED.

Data aug. BEV train ResNet-101 4-step up. F-measure

X 94.08%

94.59%

X 95.76%

X X 95.80%

X X 95.88%

X X 96.06%

X X X 96.09%

X X X 96.13%

X X X X 96.31%

The two best-performing methods, namely the ResNet-101

with data augmentation and four-step interpolation are trained

with perspective and BEV images. Small obstacles such as

pedestrians, cyclists or cars are well differentiated from the

road areas (Figure 8a), although two cyclists riding together

are considered as a single obstacle (Figure 8b) since the space

between them is not well segmented. This problem is also

present when training in BEV and may be solved with higher

resolution approaches.

Both models sometimes leave FN gaps (Figure 9a and

Figure 10a on top-right corner), as well as FP patches outside

road limits (Figure 9d) that could be filtered with some post-

processing methods. However, the model trained in BEV

seems to be better delimiting road limits in the same image

(Figure 10b) because in this representation they are straighter.

It can be seen that the BEV-trained model is better at

detecting irregular road limits (Figures 10c and 10d) than

the perspective-trained one (Figures 9c and 9d). However, the

main problem of the BEV-approach is that in some particular

cases, the resulting image is so distorted and the net confuses

buildings with the continuation of the road (Figure 10e). This

(a) Single cyclist well segmentated

(b) Group of cyclists considered a single obstacle

Fig. 8. Results from the perspective-trained model in a scene with cyclists.

would be very unlikely to happen if the image was analyzed

in perspective space.

C. High-level Interpretation Results

Considering the hand-crafted features of our scene inter-

pretation module, we remark the following statements. The

curb detection method was analyzed in detail in [7]. The

algorithm was compared using different sources for the 3D

cloud data (LIDAR and stereo), obtaining a lateral RMSE of

12cm in a range from 6m to 20m. The proposed algorithm

can deal with curbs of different curvature and heights, from

as low as 3cm, in a range up to 20m whenever that curbs are

connected in the curvature image. Finally, the use of fixed

or empirical thresholds is avoided given that the proposed

function is adapted automatically for different road scenes

depending on the predominant curvature value. The boosting

classifier was described and tested in [6], [8]. The weight

of each feature in the final road classification reveals that

3D features (Y and Z coordinates) and its 2D representation

(column and row) are the most discriminant features. However

some of the other 2D features are still important such as the

grey value of (HSV) or the vegetation. Some of the road

misclassifications are produced in sidewalks, where the only

difference between the road and sidewalk is a small curb.

Furthermore, in challenging urban scenarios the limit of a

drivable area is difficult to distinguish from the non-drivable

area, such as a cyclist lane. In some cases the limit is just

a road marking or a variation in the pavement texture. It is

remarkable that road markings have a low weight in the final

response.

According to the results obtained in [6], [8], the weight

of curbs and road markings in the road classification is
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(a) FN gaps inside road area (b) FN areas due to incorrect road limits detection

(c) Missdetection of a distant intersection (d) FN of an incoming lane (e) Correct detection of the building

Fig. 9. Results from the perspective-trained model

(a) FP in parking areas in the
closer meters

(b) Improved road detection (c) Improved far intersection
detection

(d) Improved near intersec-
tion detection

(e) FP detection of a build-
ing

Fig. 10. Results from the BEV-trained model

very small because that type of features describe road limits

instead of the road surface. The proposed algorithm follows a

human reasoning. Therefore road markings and curbs should

have a relevant role in the interpretation of the environment.

That is the reason to match the map model with 4 different

groups of features: vegetation + obstacles, road, curbs + road

markings, curbs. After a weight training stage for each group,

the qualitative results demonstrate the effectiveness of the

proposed method to infer complex urban environments.

TABLE IV
QUANTITATIVE RESULTS ON F-SCORE IN KITTI DATASET.

Image plane Bird Eye View

Classifier UM UMM UU All UM UMM UU All

Boosting 85.24 93.09 82.08 87.06 85.15 89.37 62.60 79.05

Map Model 89.35 88.56 90.20 89.37 85.17 84.76 86.66 85.53

CNN 96.64 95.36 94.89 95.50 95.09 94.94 93.39 94.59

When evaluating our previous Boosting-based classifier [6]

with the new CNN-based approach, we can state that our CNN

model with data augmentation clearly outperforms the classic

hand-crafted features + classifier approach. As can be observed

in Table IV, where the F-measure is obtained using the training

set of the KITTI dataset (50%/50% training/test) both in

perspective view and BEV, the CNN-based road segmentation

provides an overall F-measure a 8.44% and a 15.54% better

than the value provided by our previous approach in the

perspective image and BEV respectively.

We have also obtained the F-measure of the high-level

interpretation module (see Table IV) yielding overall values of

89.37% and 85.53% in perspective view and BEV respectively

(note that we have not been able to obtain results from the

KITTI test dataset since GPS positions are not available).

These values are a 6.13% and 9.06% worse than the CNN

classifier in the image plane and BEV respectively. This is

obviously an unfair comparison since the high-level road

estimation module is not a pixelwise approach trained with the

ground truth location of the road. It does not include dynamic

obstacles, and in some cases, it provides some regions of the

road that are not even labeled in the ground truth (opposite

lanes, or not visible intersections). In general, pixelwise classi-

fiers outperform model-based approaches because there is not

any model that fits as close to the ground truth as the pixelwise

classifiers. Figure 11 shows an example of a very complex

intersection where the pixelwise classifier outperforms the map

model due to its inner architecture. The ways are usually

centered with respect to the center of the real road, but this

scene has ways that have different number of lanes before and
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after the intersection. In addition, the lanes for left turning are

overlapped with each other, which is impossible to adjust to the

map architecture. However, the map model includes relevant

information to be supplied to any navigation module of an

autonomous navigation system.

In some other scenarios, the map-based model improves

pixelwise classifiers. Figure 12 shows an example of an urban

scene where the CNN road classifier without data augmen-

tation has many FN on the left and right boundaries of the

road. The road model fills the missing pixels close to the road

boundaries and it obtains a shape that fits better to the real

scenario.

(a) Input image.

(b) CNN classifier.

(c) Map Model.

(d) Open Street Map diagram with aerial imagery layer.

Fig. 11. Example of a very complex intersection where the map-based model
is not well fitted to the road limits. However, it provides richer high-level
information to be used in autonomous navigation systems.

The qualitative results show the added value of the inter-

pretative approach presented in this paper. Figure 13 shows an

urban street with one lane for each direction separated by a

fence. Furthermore, on the right side of each lane, there are

slots for parking and buildings. Even with a coarse detection

(a) Input image.

(b) CNN segmentation without data augmentation.

(c) Map Model.

Fig. 12. Example of a scene where the pixelwise classifier has a large number
of false negatives and the use of a map-based model improves the result.

of the road (Figure 13b) or neither detect the road, the map

model fits well to the scene and add high level information

to the system. The use of different features for the map

matching, increase the robustness of the method because the

absence of one of them does not make the system to fail.

The scene represented in Figure 14 highlights the use of high

level information extracted from the map. The use of map

information reduces the possibilities to infer the cycle lane

as a road lane and because of that, the railways and the

cycle lane are correctly labeled. Finally, Figure 15 shows an

urban street where the map model fits well to the environment

but the presence of parked vehicles creates a high number

of FP. Dynamic obstacles, such as cyclist and vehicles are

effectively removed and not considered as drivable by the

CNN-based road segmentation system. The high-interpretation

module maintains the actual structure of the road besides the

dynamic obstacles.

VI. CONCLUSIONS & FUTURE WORK

A novel high-level interpretation approach that integrates

pixelwise road segmentation, a set of hand-crafted features

that describe road limits (vegetation, road markings and curbs)

and enhanced data provided by digital navigation maps was

presented. A ResNet-50 network model with a fully con-

volutional architecture and three interpolation steps, which

are finetuned in perspective KITTI images, was used to

obtain an accurate detection of the road, which represents the

drivable area. Several variations were introduced to improve

the training such as data augmentation, training in BEV

space, training parameters tuning, using deeper models and

other upsampling architectures. Data augmentation offers a

significant improvement between of 2% in F-measure. The use

of a ResNet-101 model with a four-step upsampling scheme,

trained directly in BEV with data augmentation, improves the

results up to a 96.31% in the validation subset. The proposed

approach clearly outperforms our previous Boosting-based

road detection approach [6].



11

(a) Input image. (b) Features Detection.

(c) CNN road classifier. (d) Map Model.

Fig. 13. Results in a scene with parking slots on the right and vegetation on the left. Even with a coarse detection of the road (Figure 13b), the map model
fits well to the scene and add high level information to the system.

(a) Input image. (b) Features Detection.

(c) CNN road classifier. (d) Map Model.

Fig. 14. The use of a map model increases the robustness of a road classifier because the other boundary features compensate some road missclassifications.

(a) Input image. (b) Features Detection.

(c) CNN road classifier. (d) Map Model.

Fig. 15. Dynamic obstacles (cyclist and vehicles) are effectively not considered as drivable by the CNN-based road segmentation system. The high-interpretation
module maintains the actual structure of the road besides the dynamic obstacles.
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The presented approach can be applied to update digital

navigation maps using floating vehicles equipped with a pair

of stereo cameras. In parallel, an accurate estimation of the

drivable area is supplied by our CNN-based road segmentation

module.

Future works will be devoted to obtain smoother road

detection results by adding a post-processing layer into the

system. In addition, due to the new advances in semantic

segmentation [16], the data provided by digital navigation

maps, and the output given by the high-level interpretation

module will be enriched with new variables, including traffic

lights, traffic signs, or even urban furniture (benches, bins, bus

stops, etc.).
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