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Abstract—Prediction of vehicle lane change maneuvers has
gained a lot of momentum in the last few years. Some recent
works focus on predicting a vehicle’s intention by predicting
its trajectory first. This is not enough, as it ignores the
context of the scene and the state of the surrounding vehicles
(as they might be risky to the target vehicle). Other works
assessed the risk made by the surrounding vehicles only by
considering their existence around the target vehicle, or by
considering the distance and relative velocities between them
and the target vehicle as two separate numerical features. In this
work, we propose a solution that leverages Knowledge Graphs
(KGs) to anticipate lane changes based on linguistic contextual
information in a way that goes well beyond the capabilities
of current perception systems. Our solution takes the Time To
Collision (TTC) with surrounding vehicles as input to assess the
risk on the target vehicle. Moreover, our KG is trained on the
HighD dataset using the TransE model to obtain the Knowledge
Graph Embeddings (KGE). Then, we apply Bayesian inference
on top of the KG using the embeddings learned during training.
Finally, the model can predict lane changes two seconds ahead
with 97.95% f1-score, which surpassed the state of the art, and
three seconds before changing lanes with 93.60% f1-score.

Index Terms—Lane Change Prediction, Knowledge Graph
Embeddings, Bayesian Inference, Bayesian Reasoning

I. INTRODUCTION

Accidents occur every day in our daily lives, and the
number of deaths due to vehicle crashes is increasing every
year. Based on statistics published in 2023 by the National
Highway Traffic Safety Administration (NHTSA), the num-
ber of deaths in motor vehicle traffic crashes in the United
States of America (USA) in 2021 is 42000. Which is a
10% increase in the number of deaths compared to 2020,
and a 17.3% increase compared to 2019 [1]. Lane-changing
maneuvers are one of the causes of vehicle crashes, as a
report indicated that 33% of all road crashes happen due
to the existence of a vehicle that changes its lane. Also,
the NHTSA indicated the fact that 94% of vehicle crashes
are the driver’s fault [2]. That’s why the government put
some constraints on the road and the driver, like wearing
seat belts and being committed to the road speed limit.
Also, researchers started to focus on implementing different
models to predict the vehicle lane-changing intention to
reduce the number of accidents/crashes on the road. Most
of the recently proposed models are based on target vehicle
trajectory data and certain relative measurements with the
surrounding vehicles (e.g. relative distances and velocities).

Low Risk TTC
Left Following

High Risk TTC
Right Following

Figure 1. Target (white) vehicle will make left lane-changing maneuver
based on the risk assessment of the surrounding (green) vehicles.

Furthermore, these models are based on numerical input
values, which makes them act like a black box. This makes
reasoning and interpreting the model outputs difficult. Also,
it is challenging to explain the model and its outputs to others
who may not be familiar with the underlying algorithms. So,
this work focuses on addressing the following points:

1) Lane change prediction is carried out based on con-
textual information, not merely using kinematic infor-
mation learned from previous experiences. This goes
beyond the capabilities of current perception systems
and allows to generalize and make predictions agnostic
to the physical aspect of the road environment.

2) Predictions are based on knowledge graphs and, con-
sequently, they are interpretable and explainable, con-
tributing to developing trustworthy systems.

3) Bayesian inference is carried out as a downstream task
on the grounds of the learned embeddings, allowing the
implementation of a fully inductive reasoning system
based on KGEs.

The inputs that are fed to the model can describe the risk
situation around the target vehicle in a linguistic manner so
everyone can understand and reason why the target vehicle
took a certain maneuver. For example, Figure 1 shows a
scenario of a white target vehicle that will make a left lane
change because there is high-risk TTC with the preceding
vehicle (P) and high-risk TTC with the right following
vehicle (RF) as well. Still, there is low-risk TTC with the
left following vehicle (LF). So, the target vehicle will avoid
lane keeping or right lane changing in order to avoid colli-
sions/risks with the preceding vehicle and the right following
vehicle, respectively. Instead, the target vehicle will execute
the left lane changing maneuver. The rest of this article is
organized as follows. Section II presents the state of the
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art. Section III contains a brief introduction to the Highway
Drone (HighD) dataset and Knowledge Graphs (KGs). Then,
our proposed methodology will be discussed in detail in
Section IV. In Section V, results will be presented. Finally,
Section VI concludes the work.

II. STATE OF THE ART

Recently, different works have focused on predicting vehi-
cle lane changes using different inputs (including target ve-
hicle position, speed, acceleration, and surrounding vehicles’
states) and methods (like rule-based algorithms and data-
driven models). Rule-based algorithms define certain rules
at which the vehicle makes a lane change, such as the gap
acceptance model, which assumes that the vehicle will make
a lane change when it achieves the least possible distance
between it and the front/rear vehicles in the same lane as
in [3]. Data-driven models are based on training a model on
certain inputs to obtain a certain complex equation that maps
these inputs to a certain output. The models can be some
traditional machine learning models like Support Vector Ma-
chine (SVM) and logistic regression, or deep learning models
like Artificial Neural Networks (ANN) and Recurrent Neural
Networks (RNN) with all its variations. In 2018, [4] utilized a
Long Short-Term Memory (LSTM) model to predict vehicle
lane changes by considering the vehicle’s past trajectory and
neighbors’ states. The models take different inputs extracted
from the NGSIM dataset. The inputs were the vehicle’s lateral
and longitudinal global positions with respect to the lane, the
vehicle’s acceleration, the existence of right/left lane vehicles,
and the longitudinal distance between the target vehicle and
(front/rear)(left, center, right) surrounding vehicles. Work [5]
in 2019 utilized two machine learning models to predict lane
changes of surrounding vehicles on highways. The inputs
were extracted from the NGSIM dataset. The inputs were lon-
gitudinal/lateral velocities, longitudinal/lateral accelerations,
distance to left/right lane markings, yaw angle, and yaw rate
related to the road. These inputs were trained and tested on
SVM and ANN models. In 2019, authors in [6] predicted
lane-changing intentions of surrounding vehicles using two
different methodologies and by only using visual information
provided by the PREVENTION dataset. The first method
was Motion History Image - Convolutional Neural Network
(MHI-CNN), where temporal and visual information was
obtained from the MHI, and then fed to the CNN model. The
second model was the GoogleNet-LSTM model, in which a
feature vector was obtained from a GoogleNet CNN model
and then fed to the LSTM model to learn temporal patterns.
The used inputs were the RGB image, center (X, Y), and
the bounding box’s dimensions (W, H). The results showed
that the GoogleNet-LSTM model outperformed the MHI-
CNN model. In 2020, [7] trained LSTM and RNN models on
the PREVENTION dataset to predict surrounding vehicles’
lane-changing intentions by tracking the vehicles’ positions
(centroid of the bounding box). Sequences of 10, 20, 30, 40,
and 50 frames of (X, Y) coordinates of the target vehicle
were considered for comparison. It was concluded that RNN
models performed better on short sequence lengths and the

LSTM model outperformed RNN at long sequences. The
work implemented in [8] in 2022 utilized eXtreme Gradient
Boosting (XGBoost) and LSTM to predict the vehicle lane
change decision and trajectory prediction, respectively in
scenarios in the HighD dataset. The models were based on the
traffic flow (traffic density) level, the type of vehicle, and the
relative trajectory between the target vehicle and surrounding
vehicles. At first, the traffic flow and vehicle type models
were separately implemented. The traffic flow y; model took
the longitudinal velocity v;,, and acceleration a;,, of the
target vehicle, Headway, and the relative velocity between
the target vehicle and the (left/front/right preceding, and
left/right following vehicles). The vehicle type y, model took
all the inputs stated previously concatenated with the angle
between the target vehicle trajectory and road vertical line
. Then, the lane change decision prediction was achieved
utilizing the XGBoost model. The model took the following
inputs: von, aion, @, lateral velocity v;,; and acceleration
ajq¢ Of the target vehicle, Headway and the relative velocity
between the target vehicle and the mentioned five surrounding
vehicles, y;, and y,. Finally, vehicle trajectory prediction
occurred based on historical trajectories and the predicted
lane-changing decision. In 2023, [9] built a dual transformer
which contained two transformer models. One was for lane
change prediction, while the other was for trajectory predic-
tion. The first model used the target vehicle’s historical lateral
trajectory information and the surrounding vehicles’ states,
including the longitudinal distance and velocity between the
target vehicle and (the left/front/right preceding vehicle and
the left/right following vehicles). The intention prediction
output obtained from the first model was fused with the
target vehicle’s historical lateral trajectory information and
fed to the second model to establish the connection between
the intentions and the trajectories. The dual transformer was
trained and validated on the HighD and NGSIM datasets.
Finally, this research assumed that the ego vehicle sensors
can obtain all the information regarding the position and
speed of the target vehicle and all the surrounding vehicles.
After closely examining the previous literature, the following
research gaps can be identified, which are covered throughout
this work.

1) Lane change prediction based on contextual linguistic
information, not only using trajectory numerical infor-
mation learned from previous experiences.

2) Predictions are interpretable and explainable as they are
based on KGs.

3) Enabling a fully inductive reasoning system using
Bayesian inference built on top of the KGEs.

III. PRELIMINARY

This section briefly introduces the dataset used in this work
(HighD), and the foundation model (KG and KGE) used to
develop the lane change prediction system.

A. HighD Dataset

The HighD dataset [10] is a German dataset that records
naturalistic top-view scenes on German highway roads using
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a camera integrated into a drone. The dataset is recorded in
six locations and includes 60 tracks (=~ 15 minutes each)
containing more than 110,500 vehicles. For each vehicle
in the dataset, much information is provided, including but
not limited to vehicle position, speed, acceleration, TTC
with the preceding (front) vehicle, whether a left/center/right
preceding, left/right side, or left/center/right following (rear)
vehicle exists, and the vehicle’s current lane. The dataset can
be reached through the following link: https://levelxdata.com/
highd-dataset/.

B. Knowledge Graph and Knowledge Graph Embedding

A graph is a type of database that represents complex
data in a structured way, which is human-interpretable and
can be easily observed and analyzed. It stores informa-
tion in the form of entities (nodes) and their relationships
(edges). Each relation connects two nodes and acts as the
relationship between them. The relation can be directed (x
isFatherOf y) or undirected (x isFriendWith y, y isFriendWith
x) [11]. A knowledge graph is a directed heterogeneous
(nodes can have different types) multigraph (each pair of
nodes can be connected with more than one relation). In
the context of KGs, a triple < s,7,0 > consists of subject
and object entities connected by a relation. For example,
<vehicle, INTENTION_IS, leftLaneChanging>. The subject
is vehicle, the relation is INTENTION_IS, and the object
is leftLaneChanging [11]. KGE is a supervised machine
learning task that learns to represent (embed) the knowledge
graph entities and relations into a low-dimensional vector
space while preserving semantic meaning. There are several
KGE models, such as DistMult, TransE, RotatE, ComplEx,
and HolE. Each model’s unique scoring function measures
the distance between two entities using the relation between
them. The purpose of the scoring function is to make entities
connected by a relation close to each other in the vector
space, while entities that do not belong to this relation should
be far apart [11], [12].

IV. METHODOLOGY
A. Architecture Overview

Figure 2 shows the pipeline of our proposed methodology.
The pipeline consists of three phases. Phase one is the
linguistic input generation phase, in which the numerical
input variables are converted to linguistic input categories
using some threshold limits. Phase two is the KGE phase in
which the KG will be generated as triples in a CSV file and
embedded (trained) using the Ampligraph library [12]. The
third phase is the Bayesian inference and prediction phase.
This phase is responsible for calculating the probability that
a vehicle will make a LLC, LK, and RLC given the linguistic
inputs generated from phase one. And the highest probability
is the model prediction. The calculation of these probabilities
is based on the formation of triples and the evaluation of these
triples using the embeddings obtained from phase two and
the Bayesian reasoning in phase three. The KG ontology and
input structure will be stated in the next section. Then, each
of the three phases is discussed in detail.

B. Knowledge Graph Ontology and Input Definition

The KG ontology is a formal (general) representation
of the entities and their relationships in the KG. In KGs,
ontologies are important because they act as a schema for
constructing the KG so that they can ensure consistency
and explainability of the KG. Also, It is worth mentioning
that we apply a number of reifications on the given inputs
to get reified triples. For example, if the target vehicle
has a preceding vehicle, and the TTC with this preceding
vehicle is at high risk, then, the reified triple is <vehicle,
PRECEDING _TTC_IS, highRiskPreceding> where vehicle
in that triple points to the target vehicle. Table I shows
the ontology for our lane change prediction KG model. The
table shows all the input/output classes in the first column,
a description in the second column, a set of possible reified
linguistic instances (categories) for each class in the third
column, a description of that instance (if needed) in the
fourth column, and the name of the relation pointing to
that class after reification in the fifth column. Figure 3
shows a KG instance based on the formed ontology. For
example, it can be observed that the generic entity vehicle
has a child with ID 638, and this child has latVelocity class
assigned to movingStraight instance. Also, this child has
highRiskPreceding TTC. vehicle 638 intention is LLC. The
same applies to all the entities in the graph for this child and
any other child. Note that the entity vehicle is connected to
all other children, which forms a large KG where numerous
instances are interconnected via this general entity as shown
in Figure 4 and Figure 5. Such that Figure 4 contains KG
for only 10 vehicles (instances), and Figure 5 contains KG
instances for 2000 vehicles. It is worth mentioning that the
total number of instances used for training and validation is
39304, which is hard to fit into one figure.

C. Linguistic Input Generation Phase

The used inputs to the model are vehicle lateral (velocity
and acceleration), TTC to (preceding, left preceding, right
preceding, left following, right following) vehicles. The
dataset directly provides the first three inputs. The TTC
inputs for the preceding/following left and right vehicles are
extracted based on Equation 1. That d is the distance between
the two vehicles, and v represents the velocity. The sub-
letters p and f refer to preceding and following vehicles,
respectively.

TTC, = dy/(Viarget — vp), TTCy=ds/(vy — Viarget)
ey
After extracting the needed features, all the numerical data
is converted to linguistic ‘string’ categories. The conversion
from numerical value to a linguistic category is done by
converting each feature to a string based on some threshold
limits obtained from statistics and literature. For example,
the latVelocity feature numerical values (shown in Figure 6)
can be separated into three linguistic categories {movingLeft,
movingStraight, movingRight}. The challenge here is to
choose the numerical threshold limit values that separate
the three linguistic categories accurately. These values are
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Lane Change Intention Prediction Pipeline

Input Numerical
Data

Numerical Values

:‘

<vehicle, INTENTION_IS, LLC> (<movingstraight, INTENTION_IS, LLC>
- ighRi: ding, INTENTION_IS, LLC>
<vehicle, INTENTION_IS, LK> L
<vehicle, INTENTION_IS, RLC>|

<movingStraight, INTENTION_IS, LK>
<highRiskPreceding, INTENTION_IS, LK>
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Bayesian Inference using Embedding

<vehicle, LATERAL_VELOCITY_IS, movingStraight>
<vehicle, PRECEDING_TTC_IS, highRiskPreceding>

Linguistic Input Generation | |

Knowledge Graph Embedding

Bayesian Inference and Prediction

Figure 2. The pipeline for anticipating lane changes consists of three phases: Linguistic Input Generation, Knowledge Graph Embedding, and Bayesian

Inference and Prediction.

highRiskPr

0 lowRiskRi
eceding

ghtPreced

zeroAccel
eration

movingStr

highRiskRi
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Figure 3. One KG instance where every entity (class) is assigned to its
unique instance.

obtained for lateral velocity based on the normal distribution
of the data shown in Figure 6. Based on the standard
deviation o and mean p for the data of each lane changing
category, the p & 20 values represent the threshold limit of
each linguistic variable. So, in this case, the movingStraight
linguistic variable has a threshold limit [ — 20, u + 20],
movingLeft (—oo, u — 20), and movingRight (i + 20, 00).
The same category separation criterion is applied to obtain
the lateral acceleration linguistic categories. Regarding the
TTC variables, [13] indicated that there is no definitive value
for TTC threshold limits to enable classification between
safe and unsafe maneuvering situations. That is because of
the fact that drivers’ behavior is inconsistent in different
situations. [14] stated that TTC values can be divided into
three-time segments that show the correlation between the
TTC values and the driver braking behavior which is used in
risk assessment of the situation. TTC values between zero and

Figure 4. KG with 10 instances where the vehicle generic entity is connected
to 10 child vehicles.

four seconds indicate high correlation, TTC values between
four and 16 seconds indicate low correlation, and TTC values
larger than 16 indicate negligible correlation. [13] used TTC
values between 0.5 and 10 seconds to discriminate between
safe and unsafe car-following situations during the study of
improving the TTC formulation. So, in this work, the selected
TTC thresholds for each surrounding vehicle location are
based on the TTC with preceding vehicle values provided
by the mentioned works. Therefore, TTC € [0,4] is high-
risk, TTC € (4,10) is medium-risk, and any other positive
or negative TTC value is low-risk.

D. Knowledge Graph Embedding Phase

After the linguistic input generation phase, the KG is
formed in a CSV file in the form of triples. Then, trained
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TABLE I

Ontology table which includes the definition of all entities (classes), their instances, and possible relations that can be connected to them.

Class Class Description Instance Instance Description Possible Relation
LLC Left Lane Changing
intention Lane changing intention LK Lane Keeping INTENTION_IS
of the vehicle RLC Right Lane Changing
movingLeft -
latVelocity Vehicle lateral velocity movingStraight - LATERAL_VELOCITY_IS
movingRight -
leftAcceleration -
latAcceleration Vehicle lateral accelera- zeroAcceleration No lateral acceleration | LATERAL_ACCELERATION_IS
tion rightAcceletion -
highRiskPreceding -
ttcPreceding TTC with the preceding mediumRiskPreceding - PRECEDING_TTC_IS

(front) vehicle lowRiskPreceding -
highRiskLeftPreceding -

ttcLeftPreceding TTC with the left mediumRiskLeftPreceding - LEFT_PRECEDING_TTC_IS
preceding (front) vehicle lowRiskLeftPreceding -
highRiskRightPreceding -

ttcRightPreceding TTC with the right mediumRiskRightPreceding - RIGHT_PRECEDING_TTC_IS
preceding (front) vehicle lowRiskRightPreceding -
highRiskLeftFollowing -

ttcLeftFollowing TTC with the left mediumRiskLeftFollowing - LEFT_FOLLOWING_TTC_IS
following (rear) vehicle lowRiskLeftFollowing -
highRiskRightFollowing -

ttcRightFollowing TTC with the right mediumRiskRightFollowing - RIGHT_FOLLOWING_TTC_IS
following (rear) vehicle lowRiskRightFollowing -

vehicleID Child vehicle ID which | 10 1D number (e.g. *638%) - HAS_CHILD
changes every frame
. Generic entity pointing to B B
vehicle every child vehicle Any

Lateral Velocity Distribution by Lane Changing Category

2000 -

1500 -

Count

1000 -

500 -

il
m RLC
. K

Figure 5. Large KG with 2000 instances from a total of 39304 instances.

using the Ampligraph library.

1) Knowledge Graph Generation: As mentioned, the KG
is generated in the form of triples in a CSV file. The file
contains three columns and many rows. Each row represents
an entity and its relationship with another entity. The structure
of each row consists of three parts: subject (first column),
predicate (second column), and object (third column). Re-

-0.5 0.0 0.5 1.0 1.5
Lateral Velocity (m/s)

Figure 6. Histogram shows the relation between lateral velocity numerical
values and the lane-changing labels.

turning to the example in Figure 3, the triples CSV file will
have the following structure. <vehicle, HAS_CHILD, 638>,
this is the first row. <638, INTENTION_IS, LLC>, this is
the second row. Then, the formation of the triple will go
by using the same procedure with the other nodes. Note that
each vehicle will have a new ID in each frame even if it is the
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same vehicle. So, in the next frame, <vehicle, HAS_CHILD
639>. 638 and 639 are IDs for the same vehicle, but during
triples and KG generation, they are considered as IDs of
two different vehicles. This graph can be extended to all
the indicated seven inputs and to any number of vehicles
by following the same structure.

2) Knowledge Graph Embedding: After producing the
triples CSV file, Ampligraph 2.0.1 library [12] is used
for KGE. Training/validation and testing data are separated
based on tracks to ensure that the vehicles’ behavior is
not overlapping, as vehicles from the same track can have
similar behavior (e.g. track has a right exit at the end of
the road). So, The first 48 (80%) tracks in the dataset are
used for training and validation. The other 12 (20%) tracks
are kept for testing. Different numbers of triples are used
for validation (500, 1K, 2K, 4K, and 10K). However, they
all had the same results during testing. So, only 2K triples
are considered for validation. These triples are provided by
using the train_test_split_no_unseen function provided by the
Ampligraph library. The numbers of triples are 351736, 2000,
and 12222 for training, validation, and testing, respectively.
Two scoring models were tested: TransE and ComplEx.
Training parameters are fixed for fair comparison: embedding
size k=100, five negative triples are generated for each
positive triple where both the subject and the object of triples
are corrupted, Adam optimizer with learning rate = 0.0005,
SelfAdversarialLoss, batch size of 10000, validation burn in
= 5, validation freq. = 5, validation batch size = 100. Finally,
the early stopping criterion is used to monitor the validation
Mean Reciprocal Rank (MRR) metric with the patience of 5
validation epochs.

E. Bayesian Inference and Prediction Phase

Our proposed solution is intended to allow for inductive
reasoning. For that purpose, we implement some reifications
in the graph (at the ontology level) and we carry out Bayesian
inference on the learned embeddings. After obtaining the
embeddings, we can compute the probabilities of the reified
triples using the KGE evaluation method provided by the
AmpliGraph library. These triples have the form P(h,r,t),
where h is the head (or subject entity), r is the relation, and t
is the tail (or object entity). Based on that, P(hle) (h stands
for hypothesis and e stands for evidence) is computed using
Bayes rule as follows Equation 2:

P(h)P(e|h)

P(hle) = =

2)
where hypothesis % is the event or entity that we want to pre-
dict (lane change category), and evidence e is the information
that we have measured with onboard sensors for the current
frame, which are the inputs given by the HighD dataset in
that case. For example, hypothesis: vehicle intention is left
lane change, evidence: the vehicle TTC with the preceding
vehicle is risky and the vehicle is accelerating laterally to the
left. Computation of P(h) takes place by evaluating a single
triple after reification as in this example: (vehicle intention is

left lane change) can be reified to <vehicle, INTENTION_IS,
LLC>. P(e) is computed using the following equation:

P(e) = P(e1) x --+ x Pley) 3)

where each P(e;) can also be computed by reification in
the graph. For example, evidence 1 (e;), which says that
the vehicle TTC with the preceding vehicle is risky, can be
reified as <vehicle, PRECEDING_TTC _IS, highRiskPreced-
ing>; evidence 2 (e2) which says that vehicle is acceler-
ating laterally to the left can be reified as <vehicle, LAT-
ERAL_ACCELERATION _IS, leftAcceleration>. All pieces
of evidence are reified following this philosophy. Regarding
the computation of P(e|h), it can be rewritten as the follow-
ing:

P(elh) = P(e1,...,en|h) = P(ei|h) x -+ x P(ep|h) @

— P(elc) X e X P(enc)

where P(e;.) stands for the probability of e; given that the
hypothesis # is true. Also, conditioned pieces of evidence are
reified. For the given example, e;. is: what is the probability
of having a highRiskPreceding vehicle, given that the hypoth-
esis is that the target vehicle makes LLC. This can be reified
to the triple <highRiskPreceding, INTENTION_IS, LLC>.
It means that we take it for granted that the object entity
is a vehicle, and it is for sure changing its lane to the left
lane. In such conditions, the probability that such a vehicle
in such circumstances will have a risky preceding vehicle
will be computed. Same applies to eq., <leftAcceleration,
INTENTION_IS, LLC>. Then, e, is multiplied by es. to get
P(e|h) as in Equation 4. Finally, P(hle) can be calculated
using Equation 2 given that all these individual probabilities
are computable from the graph using the embeddings.

V. RESULTS

After embedding the KG and utilizing Bayesian reasoning
to get the predictions, the model is tested on the last 12
tracks in the HighD dataset. Testing started by comparing
the fl-score of the TransE model and the ComplEx model
three seconds before changing lanes. The TransE model
has 93.60% fl-score, and the ComplEx model scores 12%
fl-score. So, the TransE model worked better and all the
upcoming experiments and discussions will be based on using
the TransE model. Testing takes place at different instances
before crossing the lane line starting with 0.5 seconds till
four seconds with a step of 0.5 seconds. Table II shows
the results at one, two, three, and four seconds. It can be
observed that the model maintains the fl-score percentage
over 90% for the first three seconds. Then, the performance
drops until it reaches 66.52% f1-score four seconds before
changing lanes. Then, the model is compared in terms of f1-
score with other recent works that used the HighD dataset as
shown in Table III. The table shows that [8], and [9] have
an average of 1% score margin with the proposed model at
0.5 and 1 seconds. Starting from 1.5 seconds, our model still
maintains its performance with approximately the same f1-
score and passes both models as their scores start to decrease.
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a) Frame capture att=-6s
(no action yet).

b) Frame capture att=-4 s
(LLC prediction).

. s
) Frame capture att=0.6 s
(crossed lane marking).

) Frame capture att=-15s
(vehicle is merging).

Figure 7. Scene explanation through four different frame captures.

TABLE 11
Precision, recall, and fl-score metrics of the predictions obtained from our
proposed model at different instants.

1 Second Precision (%) Recall (%) Fl-score (%)
LK 98.33 96.96 97.64
LLC 97.98 97.50 97.74
RLC 97.00 99.42 98.19

Macro avg 97.77 97.96 97.86

2 Seconds  Precision (%) Recall (%) F1-score (%)
LK 98.86 96.96 97.95
LLC 97.50 99.15 98.32
RLC 96.52 98.66 97.58

Macro avg 97.66 98.25 97.95

3 Seconds  Precision (%) Recall (%) F1-score (%)
LK 92.53 96.96 94.70
LLC 95.71 91.77 93.70
RLC 95.46 89.50 92.38

Macro avg 94.56 92.74 93.60

4 Seconds  Precision (%) Recall (%) Fl-score (%)
LK 69.63 96.96 81.05
LLC 91.30 46.00 61.16
RLC 88.75 42.39 57.37

Macro avg 83.22 61.78 66.52
TABLE III
Comparison with other models using the fl-score (%) metric.
Pred. time | 0.5 Seconds | 1 Second | 1.5 Seconds | 2 Seconds
18] 98.20 97.10 96.61 95.19
9] 99.18 98.98 97.56 91.76
Ours 97.72 97.86 98.11 97.95

Figure 7 and Figure 8 show a left lane-changing sce-
nario, where Figure 7 shows different captures at different
instants for the white target vehicle and its surrounding
green neighbors in that scenario. While Figure 8 shows
a graph for the numerical values and linguistic categories
of the inputs that are fed to the KG model for the same
scene. The upper sub-figure is for the lateral velocity, fol-
lowed by the lateral acceleration, and then the TTC with
left/right following vehicles. After that, the TTC with the
left/center/right preceding vehicles. Finally, the last sub-
figure is for the prediction probabilities throughout the scene.
The focus here is to show that the model uses human/machine
interpretable and explainable linguistic inputs to get a rea-
sonable prediction. The scene starts with Figure 7a at —6
seconds before changing the lane. By observing the plots
in Figure 8, the target vehicle is (movingStraight), without
lateral acceleration, and low-risk TTC with all surrounding
vehicles. At this moment, human reasoning says that the

Left Lane Change Maneuver
4 right

Lat. speed.[m/s?]

0.5 Linguistic Lat. speed.

0 + zero
S0.5 | \N

-1 L L L i T —— — left
0.5 right

Lat. accel. [m/s]
Linguistic Lat. accel.

0

-1 Zero

4 left

-0.5 . . I I i . .
20 4 high
———TTC - L-Follow. [s] Linguistic Left
10 - — — —TTC - R-Follow. [s] — — — Linguistic Right
(S P ——— 4 med.
| T T = —
10 F — |
|
=20 E n N N n n ——g low
TTC L-Prec. [s] TTC R-Prec. [s] — — — Linguistic Center
— — —TTC C-Prec. [s] Linguistic Left Linguistic Right
20

4 high
10
< med.

0

-10

-20 - : : : ————— low

Lr LLC

Figure 8. Temporal sequence of numerical variables and linguistic cate-
gories.

vehicle is keeping its lane. Using Bayesian reasoning, the
model is asked to compute the probability of LLC given the
generated linguistic inputs, the same question is addressed for
LK and RLC, and the prediction with the highest probability
will be the model’s prediction. The model uses the KGE to
get all the triples probabilities after reification as mentioned
earlier in section IV and Figure 2. During this instant, the
model prediction is LK as it has a higher probability than
LLC and RLC. Moving on to the second instant which is
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described in Figure 7b at —4 seconds before changing lanes.
Despite having zero lateral velocity and acceleration, the
model gives an LLC prediction (represented by a red arrow
pointing to the left) because of a medium-risk TTC with
the preceding vehicle. Moreover, focusing on the interval
t=[—5, —4], it is shown that the right preceding vehicle TTC
risk changed from low to medium, which makes the RLC
probability decrease, causing an increase in the LK and LLC
probabilities. After that, in the third captured frame repre-
sented in Figure 7c. The target vehicle starts to accelerate
in the left direction, moving with lateral velocity in the left
direction as well. So, the vehicle started moving to merge
and was about to change lanes. The model LLC probability
increased approximately to 90%. Then, in the last capture
after crossing the lane lines in Figure 7d. The target vehicle
is merging with right acceleration while moving left, and
high-risk right preceding vehicle. Moreover, by comparing
the locations of the surrounding vehicles with respect to our
target vehicle in Figure 7c and Figure 7d. It can be observed
that the preceding vehicle with high-risk before changing
lanes becomes the right preceding high-risk vehicle after the
left lane changing. Also, the left preceding vehicle becomes
the preceding vehicle. The same applies to all other target
vehicle neighbors which causes a high change in the TTC
values. Finally, Table IV contains links for some multimedia
videos that provide results of different scenes including the
scene discussed in this section.

TABLE IV
Different Multimedia for Better Visualisation.

Link
https://youtu.be/jPFj3YstBzs
https://youtu.be/F7BSMsAyerl
https://youtu.be/zavuxrzb3KY

Scenario

Left Lane Change

Left Lane Change

Lane Keeping

Right Lane Change https://youtu.be/7xzeycfmRke

https://youtu.be/wLfESPfAUgU

Right Lane Change

VI. CONCLUSION

In this work, the problem of vehicle lane change prediction
is addressed using explainable contextual linguistic informa-

at different instants before the target vehicle changes lanes.
The results showed that the model can predict lane-changing
intention two seconds earlier with an fl-score of 97.95%,
and three seconds earlier with an fl-score of 93.60%. This
shows the reliability and robustness of the model to keep the
fl-score higher than 90% for three seconds before changing
lanes. Moreover, the model surpassed other recent works that
used the HighD dataset, especially after 1.5 seconds when the
other models’ scores started to decrease, and our model kept
its high score without decreasing.
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